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The f-Coloring is Polynomial-Time Reducible
to the Edge-Coloring
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Abstract

In an edge-coloring of a graph G each color appears at each vertex at most once. An
f-coloring is a generalization of an edge-coloring in which each color appears at each vertex
v at most f(v) times where f is a function assigning a positive integer f(v) to each vertex
of G. In this paper we show that the f-coloring problem can be reduced in polynomial-
time to the ordinary edge-coloring problem, that is, given a graph G, one can construct in
polynomial-time a new graph such that an edge-coloring of the new graph using a minimum

number of colors immediately induces an f-coloring of G using a minimum number of colors.

! E-mail:(zhoulnishi)@ecei.tohoku.ac.jp

79—



1 Introduction

This paper deals with a simple graph G which has no multiple edge or no self-loops. An edge-
coloring of a graph G is to color all the edges of G so that no two adjacent edges are colored
with the same color. The minimum number of colors needed for an edge-coloring is called the
chromatic indez of G and denoted by x’(G). In the paper the mazimum degree of a graph G is
denoted by A(G) or simply by A. Vizing showed that x’(G) = A or A+1 for any simple graph
G [7, 22]. The edge-coloring problem is to find an edge-coloring of G using x'(G) colors. Let f
be a function which assigns a positive integer f(v) to each vertex v € V. Then an f-coloring
of G is to color all the edges of G so that, for each vertex v € V, at most f(v) edges incident
to v are colored with the same color. Thus a f-coloring of G is a partition of G into spanning
subgraphs whose vertex-degrees are bounded by f. An ordinary edge-coloring is a special case of
an f-coloring such that f(v) = 1 for every vertex v € V. The minimum number of colors needed
for an f-coloring is called the f-chromatic indez of G and denoted by x;(G). The f-coloring

problem is to find an f-coloring of G using x;(G) colors. Let A;(G) = maxyev [d(v)/f(v)]
where d(v) is the degree of vertex v. Hakimi and Kariv [9] have proved that for any simple
graph G = (V, E)

e onl

Their result implies that x}(G) = Ay or Ay + 1.

The edge-coloring and f-coloring have applications to scheduling problems like the file trans-
fer problem in computer networks%, 15, 16]. In the model a vertex of a graph G represents
a computer, and an edge does a file which one wishes to transfer between the two computers
corresponding to its engs. The integer f(v) is the number of communication ports available at
a computer v. The edges colored with the same color represent files that can be transferred
in the network simultaneously. Thus an f-coloring of G using x}(G) colors corresponds to a
scheduling of file transfers with the minimum finishing time.

Since the ordinary edge-coloring problem is NP-complete [11], the f-coloring problem is
also NP-complete in general. Therefore it is very unlikely that there exists an algorithm which
solves the ordinary edge-coloring problem or the f-coloring problem in polynomial time. Many
approximation algorithms of polynomial-time complexity have been developed for the problems
[2, 3, 10, 16, 17, 19, 20, 22, 24]. Any simple graph G can be edge-colored with A + 1 colors
in polynomial time [18, 20]. The best known algorithm for edge-coloring G with A + 1 colors
runs in time O(min{nA logn, m/nlog n&) [8]. Throughout the paper n denotes the number of
the vertices and m the number of the edges in G. The proof of Hakimi and Kariv’s theorem
[9] immediately yields an algorithm to f-color any graph with Aj + 1 colors in time O(mn).
On the other hand, efficient exact algorithms have been developed for various classes of graphs:
bipartite graphs [6, 9], planar graphs of large maximum degree [2, 3], series-parallel graphs [25],
partial k-trees [1, 23], degenerated graphs of large maximum degree [24], etc.

In this paper we show that the f-coloring problem on any simple graph G can be reduced
in polynomial-time to the ordinary edge-coloring problem on a new graph G}. That is, given
G, one can construct in polynomial-time G} such that x%(G) = x'(G}). Thus the f-coloring
problem is not more intractable than the ordinary edge-coloring problem although the f-coloring

problem looks to be more difficult than the edge-coloring problem. Our construction is similar
to one employed by Tutte’s f-factor theorem (21], but is much more complicated.

2 Preliminaries

In this section we give some definitions. Let G = (V, E) denote a graph with vertex set V

and edge set E. We often denote by V(G) and E(G) the vertex set and the edge set of G,
respectively. The paper deals with simple graphs without multiple edges or self-loops. An edge
joining vertices u and v is denoted by (u,v). The degree of vertex v € V(G) is denoted by
d(v,G) or simply by d(v). The mazimum degree of G is denoted by A(G), or simply by A.



Clearly x'(G) > A(G). A bipartite graph B = (U, W, E) is a graph such that v € U andwe W
for every edge (v,w) € E. By Konig’s theorem x'(G) = A(G) if G is bipartite [7, 13].

Let f be a function which assigns a positive integer f(v) to each vertex v € V. One may
assume without loss of generality that f(v) < d(v) for each vertex v € V(G). Let df(v,G) =
[d(G,v)/f(v)] for v € V, and let Ay(G) = max{d;(v)|lv € V(G)}. We often denote ds(v,G)
simply by d;(v). Clearly x;(G) > Az(G). It is known that x}(G) = A;(G) if G is bipartite
[9]. For an f-coloring ¢ of G, denote by #¢ the number of colors used by ¢. For a color ¢ and a
vertex v, denote by #¢(v,c) the number of edges of G which are incident to v and colored ¢ by

. Clearly #¢(v,c) < f(v) for each vertex v and each color c. Let ¢ use colors ¢1,¢2,- -, Cap-
Vertex v misses color ¢;, 1 = 1,2, -+, # ¢, if none of the edges incident to v is colored with c;
by ¢.

Consider an edge-coloring ¢ of a graph G. Denote by Glc,¢'] the subgraph of G induced
by the edges colored with ¢ and ¢’. Clearly each connected component of Glc,c'] is a path or
a cycle, whose edges are colored alternately with ¢ and ¢/. We call such a path (or a cycle)
a cc'-alternating path (or cycle). A vertex v is an end-vertex of such a cc’-alternating path
if and only if v misses ¢ or ¢/. For a vertex v, denote by P(v;c,¢’) a cc’-alternating path or
cycle containing v. Switching path P(v;c,c’) means to interchange colors ¢ and ¢’ in P(v;¢,c’).
Switching an alternating path (or cycle) yields another coloring of G.

3 Reduction

Clearly x}(G) = 1if Ay(G) = 1. By Hakim and Kariv’s theorem x}(G) = 2 or 3 if Af(G) = 2.
Furthermore one can easily observe that the following lemma holds.

Lemmal. Let G = (V, E) be a connected graph with Ay(G) = 2. Then x;(G) = 3 if and only
if the following (i) and (ii) hold:

(1) d(v,G) = 2f(v) for every vertez v €V, and
(i) |E| is odd.

Thus the f-coloring problem can be easily solved in linear time if Af(G) < 2. Therefore, in the
remaining of this section, we may assume that A;(G) > 3.

The following simple reduction is known [24]. For each vertex v € V, replace v with f(v)
copies v1, g, -+, Vs(y), and attach the d(v) edges incident with v to the copies; [d(v)/f(v)]
or {d(v)/f(v)] edges to each copy v;, 1 < i < f(v). Let Gy be the resulting graph. Clearly
A(Gy) = Ap(G) = maxyev [d(v)/f(v)]. Since an edge-coloring of G induces an f-coloring of
G using the same number of colors,

x3(G) <X'(Gp). (1)

However, the equality in (1) does not always hold.
In this paper we show that, given a graph G, one can construct in polynomial-time a new

graph G} such that
X5 (G) = X'(G).

Given an edge-coloring of G} with x'(G}) colors, one can find in polynomial time an f-coloring
of G using X’f(G) colors. The main result of this paper is the following theorem, whose proof
will be given later.

Theorem 2. For any graph G = (V, E) and a function f such that Ay(G) > 3, there is a graph
G} = (Vf, E}) such that x4 (G) = x'(G}) and |E}]| is polynomial in |E|.



An f-factor of a graph G = (V, E) is a spanning subgraph G’ of G such that d(v,G') = f(v)
for every v € V. For each vertex v of G, replace v witﬁ a complete bipartite graph Kyy,q(v)
and attach to each of the d(v) right vertices of K(,y 4(v) one of the d(v) edges which were
incident to v in G. Let Gr be the resulting graph. By Tutte’s classical f-factor theorem [21],
G has an f-factor if and only if Gr has a complete matching. Our Theorem 2 has a flavor of
generalization of Tutte’s theorem.

We first construct a new graph G* from G in the following way: for each vertex v € V add
Af(G)f(v) — d(v,G) new vertices to G and join v with these new vertices. (See Figure 1.) Let
G* = (V*,E*) be the resulting graph. We denote the sets of new vertices and edges by V'
and E’| respectively. Thus V* = VUV’ and E* = EUE'. Extend the function f as follows:
f(v) = 1 for each vertex v € V. Clearly d(v,G*) = A;(G)f(v) for each vertex v € V, and
d(v,G*) = 1 for each vertex v € V'. Hence A;(G*) = A;(G), One can easily observe that the
following lemma holds.
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Figure 1: Transformations from G to G* and G7}.

Lemma3. x}(G) = x}(G*).

We next construct a graph G} from G* as follows. For positive integers o and g, let
B(a, 8) = (U, W, UW,, Eg) be a connected bipartite graph such that

o d(v) = .« for each vertex v € U U Wy,
e d(v) = a — 1 for each vertex v € W, and
o [W| = ap.
We have the following lemma on bipartite graphs B(«, §), whose proof will be given later.
Lemmad4. For any o > 3 and 21 there is a bipartite graph B(a, B) such that
(i) 1E(B)| = O(c3flog,_., af); and
(ii) for any partition of Wy into a subsets Wy, Ws, .- -\ W, such that |W;| = (3, there is an
edge-coloring ¢ of B(a, ) with a colors ¢y,cq,-++,cq such that each of the B vertices in
W; misses color ¢; for everyi=1,2,---,a.

For each vertex v € V(G*) such that d(v,G*) > 2, replace v with a copy B, = (U, W, U
Wi, Eg) of B(a, 8,) such that @ = A¢(G) and 3, = f(v). and attach to each of the vertices in



W; one of the edges which were incident to v in G* (the set of these edges is denoted by E).
(See Figure 1.) Let G5 be the resulting graph. Clearly

E(G") = ] B,
vEV

d(v,G}) =1 or Ay(G) for each vertex v € V(G}), and hence A(G}) = Af(G) = Ap(G7).
We are now ready to prove Theorem 2.

Proof of Theorem 2.

(a) x3(G) < X'(G}).

Vizing’s theorem [7, 22] implies that x'(G}) = A(G}) or A(G})+1, and Hakimi and Kariv’s
theorem [9] implies that x/; (G*) = A;(G*) or A;(G*)+ 1. If x'(G}) = A(G}) + 1, then

X'(G7) = A(G)) + 1= Ag(G™) +1 2 x4(G") = X4(G).

Thus we may assume that x'(G}) = A(G}): there is an edge-coloring ¢ of G7 using A(G7)
(= Af(G*)) colors. Then all A(G}) colors appear around every vertex of maximum degree
A(G}). Let ¢ be a restriction of v to E(G*): 9(e) = ¢(e) for each edge e € E(G*). Note
that E(G*) C E(G}). We claim that 3 is an f-coloring of G* and hence X'(G}) = A(G}) >
X3 (G*) = x}(G). It suffices to show that #y(v,c) = f(v) for each vertex v € V and each color

¢, that is, exactly f(v) edges in E, are colored with the same color c.
For any two colors ¢; and c, every c; cp-alternating path (not a cycle) in G} ends only at a

vertex of degree 1 and does not end at any vertex in a bipartite graph B, for any vertex v € V
in G} . Therefore, the edges in E, appearing in a c; cp-alternating path (or cycle) P, are colored

alternately with ¢, and ¢y in P, and exactly one half of them are colored with ¢; and the other
half with ¢,. Furthermore every edge in E, colored with ¢, or ¢; is contained in exactly one of
the cjcy-alternating paths. Thus the same number of edges in Ey are colored with ¢; and ¢,
respectively. Therefore exactly f(v) edges among the f(v A(G7}) edges in E, are colored with

each of the A(G?) colors.

(b) x%(G) > x(Gj).
If x3(G*) = A4(G*) + 1, then

X;(G) = x3(G") = Ay(G") +1= A(G}) +12 X/(G}).

Thus we may assume that X5(G") = A;(G*). Then there is an f-coloring % of G* using o
colors c1, ¢z, -+, cq Where & = Ay (G*) = A(G}). We now claim that there is an edge-coloring
¢ of G} using the o colors. Let ¢(e) = 4(e) for each edge e € E(G*) = Uyev E,. For each
vertex v € V and for each color ¢;, i = 1,2,---, o, let Wi;(v) be the set of vertices v € W, in
By which is an end of edge ¢ € E, such that ¥(e) = ¢;. Note that [Wi(v)| = B, = f(v). By
Lemma 4 (ii) there is an edge-coloring 7, of B, = B(a, B) using the a colors ¢y, ¢q,- -+, ¢ such
that each vertex w € W;(v) misses color ¢; for every i, 1 < i < d(v). Let o(e) = n,(e) for each
edge e € E(B,) and each vertex v € V. Then ¢ is a correct edge-coloring of G7 using A(G})

colors. Therefore - , ,
xX'(G}) < #o = #¢ = x;(G") = x}(G).

() |E(G7})| is polynomial in |E)|.
By Lemma 4 (i) we have |E(B,)| = O(a®8, log,_; @B,) for each vertex v € V where
a = Ay(G) and B, = f(v). Noting A;(G) < A(G), f(v) < A(G), and 2ovev f(v) <



Y vev d(v,G) < 2|E|, we have

|E(GT)

0 (IEI +y 1E(Bv)1)

veV

o (IEI +(84(G))° Y f(v)loga—s A(G))

veV
0 (IE(24(G))*loga_y A(G)) -

IN

Q.£D.

In the remaining of this section we prove Lemma 4. We first consider an edge-coloring ¢
of a complete bipartite graph Ko—1,a-1 = (U}, W}, Ep) using o colors c1,¢2,-+;Ca: Clearly
each vertex v € U} U W} misses exactly one color. Let Ul = {u,us, "+, Us-1} and W} =
{wy,wg, ++, W1} Let § = {s1,82,"*+,8a—1} where 5; € {c1,c2, -+, ¢cq} foreach i, 1 < i <
a—1. Let T = {t,t, - ,ta_q be any permutation of S.

Then we have the following lemma.

Lemma5. There is an edge-coloring © of Ka—1,a-1 = (U}, W}, Ep) using « colors cy,c3,- -+,
Ca such that vertez u; misses color s; and w; misses t; for all1, 1<i<a—-1.

For a positive integer p, let BP(a) = (U VUL, W2 UW], E};) be a bipartite graph such that
e d(v, B?) = a for each vertex v € U§ UWE,

e d(v, B?) = a — 1 for each vertex v € U} U WY, and

o (U7 = 1W]] = (a— 1.

Clearly a complete bipartite graph Kq—1,4-1 is a bipartite graph BY(a) with U} = W} = ¢.
One can recursively construct a bipartite graph B?(a) from 2(a — 1)P~* copies of Bl(a) and
«—1 copies of BP~}(a) as in Figure 2. The construction is similar as that of a well-known Clos
permutation network [4, 12, 14]. B?(a) consists of three stages connected in cascade: the first
stage consists of (& — 1)?=" copies of B!(a), the second a — 1 copies of B?~!(e), and the third
(a — 1)P~1 copies of B!(a). Vertex w; in the jth copy of B!(c) on the first stage is joined to
the jth vertex in U,f"l of the ith copy of BP~!(«) on the second stage for each 4,1 <i < a—1,
and each j, 1 < j < (a — 1)}, Similarly right vertices on the second stage are joined to
left vertices on the third stages. The sets UP, U, WE, WF of vertices in BP(«) are defined as
follows:

e UP? is the set of left vertices in the second and third stages;

o W? is the set of right vertices in the first and second stages;
e U7 is the set of leftmost vertices in B”(«); and

o W} is the set of righttmost vertices in BP(a).

Let UP = {u1,us," ", %a-1)r} and WF = {w1, w2, +,Wa-1)r}, then we have the following
lemma which is a generalization of Lemma 5.
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Figure 2: Construction of the bipartite graph B?(«).

Lemma6. Let a and p be two integers such that o > 3 andp > 1. Let S = {51,582, -, S(a=1)»}
where s; € {c1,c2,,ca} for each i, 1 < i < (= 1)P. Let T = {t1,t2, -, t(a-1)r} be any
permutation of S. Then BP(c) = (UP U UP, WP UW!, ER) can be edge-colored with o colors
€1,C2, *+,Cq S0 that u; misses s; and w; misses t; for alli, 1 < i< (a—1)P.

Proof. Similar to that for the Clos permutation network [4, 12]. Q.£D.
We are now ready to prove Lemma 4.

Proof of Lemma 4. To construct the bipartite graph Bf (o) = (UF WU}, WP UW], E}), we
use 2(a — 1)P~! copies of B!(a) and o — 1 copies of BP~!(«a). The number of new edges joining
the first and second stages and joining the second and third stages is 2(ar— 1)? in total. Clearly
|E(BY)| = (a — 1). Therefore the size of the graph BP () is

|E(BP)| (o = DIEBP™)| + 2( = 1)P7HE(B')| + 2(a — 1)

(a — D|E(BP~)| + 2a(a — 1)*.

Solving the recursive equation above, we have
|E(B?)| = (2pa — a — 1)(a — 1) < 2pa(a— 1)P.

We now construct a required bipartite graph B{a, 8) = (U, W, U W,;, Eg) from BP (). We
choose vertices wi, ws, "+, Wap as those of Wy. Therefore p must satisfy (o — 1)? > af. Thus
we choose p = [log,_, @f]. Note that @ > 3 and (@ — 1)» < (a — 1)af. Then we have
|E(B?)| = O(c*Blog,_; af). ‘

Let @ = {tapt1, ", Ua=1)r} and R = {Wap41, -+, Wa—1)r}. Join each vertex u; € Q
with w; € R for each 4, af +1 < i < (= 1)?. Add B new vertices z1,23,---,2g, and join
z; with o vertices u(i_1ya+1,UG-1)at2: ** ") Yia € UY for each i = 1,2,---,8. Let B(a, ) =
(U, W, U Wy, Eg) be the resulting bipartite graph, where

U = UPUUP,



Clearly |Eg| = O(a®Flog,_; af).
We next prove (iie.

W,
Wy

I

{wi,ws, -

€1,C2,- -, Cq such tha

e each u;,1=1,2, -

e every vertex w € W;,i=1,2,---

,af, misses color c;

s every vertex v € Q U R misses cq

WP URU {zy,z3,-,zp}, and
C Wap)-
Thus we have proved (i).

By Lemma 6 there is an edge-coloring ¢ of BP(«) using o colors

i mod o

, @, misses ¢;, and

where we let co = cq. We can extend ¢ to a required edge-coloring ¢’ of B(q, 3) as follows:

ple) if e € E(BP(a));

(%j,U(j~1)a4i) for each i and j,i=1,2,---, ¢ and j = 1,2, --

, B-
Q.£.D.

o'(e) = ¢ ca if e = (u,w) with u € @ and w € R;
cj ife=
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