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This paper presents efficient algorithms for approximating a curve by a polygonal chain
with vertices on grid points. Precisely, we are given an z—monotone curve y = f(z) in some
m X n grid plane. We want to approximate the curve by an z—monotone polygonal chain whose
vertices are grid points. For that, we discuss several optimization criteria such as minimizing
the area or squared area of the region bounded by the given curve and the polygonal chain.

Notice that the curve can be defined as a chain of z—monotone curves. When the horizontal
length of a line segment to be used for approximation is restricted to be at most k, the proposed
algorithm finds an optimal z—monotone polygonal chain in O(kn) time and O(n) space if we
assume that some basic computations (e.g. the integral of a given curve) can be computed in
constant time. This time complexity does not depend on m, the size of the value range of the
input function. The key idea behind it is the reduction to that of finding a minimum-cost path.



1 Introduction

In this paper we consider the following problem. Given an z—monotone planar curve on some
m x n grid plane, find an approximating £—monotone polygonal chain whose vertices are grid
points according to some optimization criteria such as, e.g., minimizing the area or squared
area of the region bounded by the curve and the polygonal chain.

This kind of problem arises in computer graphics when digitalizing a planar curve. The
existing naive algorithm simply computes a grid point for each vertical line of the grid by
rounding the intersection between the curve and this vertical line. However, the quality of this
simple approximation is often not sufficient.

In order to qualify this simple approximation approach, we could consider several optimiza-
tion criteria. However, we will mainly focus our attention on a simple and intuitive criterion,
i.e., minimizing the squared area of the region bounded by the given curve and the resulting
polygonal chain, although our approach could be generalized to more sophisticated criteria.

At first glance, the problem looks rather difficult. Surprisingly, the problem allows a quite
simple solution. In fact, we present two efficient algorithms. One runs in O(m?n?) time and
O(m + n) space. The key idea behind the algorithm is the reduction to that of finding a
minimum-cost path in a directed graph. The other algorithm is more efficient. It can find an
optimal solution in O(n?) time and O(n) space. It should be noticed that it does not depend
on m, the size of the value range of the input curve. Furthermore, when the length of a segment
to be used is restricted to be at most k, the time complexity is reduced to O(kn) time, which
is O(n) if k is some constant.

A related topic is the polygonal approximation of a curve studied by Imai and Iri[l], 3],
[2]. The problem there is to approximate a given finer piecewise linear curve by another
coarse piecewise linear curve consisting of fewer line segments. More specifically, it is to find a
minimum width w of rectangles such that a sequence of n points can be covered by at most m
rectangles with width w. Their algorithm runs in O(mn log?n) time.

2 Preliminaries

At the beginning, we are given a planar m X n grid G = {(z,y) | z = 0,1,.,n =1, y =
0,1,...,m— 1} and the corresponding continuous domain D = {(z,9) |0z <n~-1,0<y<
m — 1}. In addition, we are given a function

f:zel0n—1]—y=f(z)€[0,m—1]

in the domain D. We are not going to make strong assumptions on the type of function that
fits into our approach, but we will assume some basic computations (e.g. the integral over f )
to be available in constant time.

Now, we want to approximate (in a certain way) this given function by an z-monotone
polygonal chain. In other words, the intersection of any vertical line in D with the chain is
connected. Thereby, the vertices of this chain are restricted to the grid points of G. Thus, the
output of our algorithm will be a polygonal chain

P=Py,...,Py, k>1, with P, = (Z;,) € G forall i =0,... k.

Thereby, due to the z-monotonicity the z-coordinates of the vertices of the chain form a
monotonously increasing sequence 1 =0 < ... <Ip=n—1 extending from the left to right
side of the grid G.

There are several imaginable optimization criteria, among them are very intuitive ones such
as minimizing the area or the squared area of the region bounded by the curve itself and the



polygonal chain, i.e.
n—1
min / If (z) = P(z)|dz
P z=0
or )

n—1
. 2
rr;;n/m . (f(z) = P(z))d=

or minimizing the maximum vertical distance
min max |f(z) = P(z)|
among many others. We will focus our attention to the minimum area criterion.

Let G = {(z,y)ly = 0,1,....,m —1, z = 0,1,..,n — 1} be an m x n grid plane and D =
{(z,¥)] 0 £ y £ m—1,0 < 2 < n—1} is its corresponding continuous domain. Suppose that we
are given an z—monotone curve y = f(z) in the domain D where we allow vertical connection.
In that sense we abuse the symbol [. In what follows, f: f(z)dz means 3N St f(z)de, zo =
ay...,zN+1 = b when the function f(z) is defined as a chain of z—monotone functions defined
in the intervals (z;,z;41],7 = 0,..., N.

An input curve may be specified in two different ways: a polygonal chain whose vertices
may have real coordinates except for the first and last z—coordinates (0 and n — 1), and a
chain of z—monotone curves. More specifically, an input curve is specified in the form:

(mO =0, fﬂ(m):ml) fl(x),$2, s :fN—-l(x)’xN =n- 1)'

This means a sequence of monotone curves y = fi(z), ¢ = 0,..., N — 1 each defined in the
interval [z;-1,z;]. For simplicity we assume the continuity of an input curve, i.e., fi(ziy1) =
fix1(ziy1) for every i =0,..., N — 2. This assumption is, however, easily removed if we allow
to abuse the symbol of integral. ‘

Given an input curve y = f(z), we first calculate the integrals f[i] = [5 f(z)dz, =zf[i] =
fizf(z)dz, and  f2[i] = [i f(z)%de for each ¢ = 0,1,...,n — 1. It is rather easy to see
that this calculation is done in O(N + n) time, where N and n are input complexity and the
horizontal length of the grid plane. Once these values are computed, integral [} f(z)dz, for
example, is obtained as f[j] — f[i] in constant time.

Noteworthy is that we do not need to compute intersections between the curve y = f(z)
and polygonal chain. Notice that if the optimization criterion is to minimize the area of the
region bounded by two curves then their intersections are required to compute the area. When
an input planar curve is a polynomial function of degree more than five, there is no way to
compute intersections exactly. In our case, on the other hand, it will be shown that there is
no need to compute those intersections but it suffies to compute the integrals described above.
Thus, our algorithm is implemented in a framework of the algebraic decision tree computation
model.

Given an input z—monotone planar curve y = f(z), we want to find an z—monotone
polygonal chain with vertices on grid points that minimizes the squared area of the region
bounded by the input curve and the polygonal chain.

3 Algorithm 1: Naive Algorithm

The first algorithm for finding an optimal polygonal chain approximating an input curve is
based on a directed graph defined as follows: Each grid point in G corresponds to a vertex of
the graph. Two grid points (z;,y;) and (z;,y;), = < z; are joined by a directed edge weighted
by the value

/fj(f(m) — a;jz — byj) dz,



Figure 1: One-segment approximation.

where y = a;;z + b;; is the equation for the line passing through the two points, that is,

aij = (y; — vi)/(zj — =1),

bij = yi — a;jz;.

Furthermore, we add a directed edge with zero weight between each pair of grid points on
the same vertical line.

Now it is easy to see that an optimal polygonal chain corresponds to a minimum weight
path starting from the lower left corner (0,0) to the lower right corner {(n — 1,0).

Theorem 3.1 The weight of a minimum-weight path can be computed in O(m?n?) time and
O(m + n) space in the m X n grid plane.

Proof Notice that to evluate the squared area difference for a line segment (z,y, z’,4’) we need
tha values of f:' z f(z)dz, f;’ f(z)dz and f;l f(z)?dz. Apparently they take time O(z — ') if
we compute them without using any previous knowledge. To evaluate the square area difference
8(z,y,z',y) for the line segment between (z,y) and (z',3') we can use the integrals computed
to evaluate é6(z,y,z’ + 1,y +1). Thus, the computation is done in constant time.

There are O(mn) vertices, and for each vertex of a location (7,7) there are O(im) different
ways to choose its preceding vertex. Therefore, the total time complexity is O(m?n?). If we
constructed the graph explicitly it would take O(m?n?) edges. So, we do not do so but just
examine each edge in a systematic manner. An important observation is that once we complete
the computation of minimum-cost path to each vertex on some z—coordinate i then we take
their minimum value and throw them away while keeping the minimum. Thus, we need only
O(m -+ n) space instead of O(m?n?) space. O

It is an easy exercise to modify the algorithm so that not only the minimum weight but
also a description of the path is obtained.

4 Algorithm 2: Efficient Algorithm

One big disadvantage of Algorithm 1 is that its time complexity depends on m, the value range
of an input function. So, we next present an algorithm which has no such dependency. The
most important observation comes from the following problem.

[One-Segment- Approximation Problem]
Given an z—monotone planar curve y = f(z) and two integers z; and z3 (z1 < z2), find two



integers y1 and yz such that the line segment connecting the two points (z1,¥1) and (z2,y2)
minimized the squared area difference (see Figure 1):

/x (@) - (L8 (e - ay) + o) P

We define

F(y1,2) =/

z2
z1

@) = { (=~ 2) + ) de.

Rewriting the above expression using the equality between y = 2% (z — z5) + yp and y =

T2—T3
z—x3 O -
P 1) —2—12_11 y1, we have

1 2 2 z2 2$2 *2
F(y1,y2) = (w2 — 21)(¥1 + Y192+ 93) + ylf zf(z)dz — n / flz)dz
3 T2 =217 Jay To— 21" Joy
T 22:1 T2 T 2
— z)dz + / z)dz +/ z)dz.
wz_xlyzle 2f@dat+ oy [ ple)dat [ pta)

Because of the form of the expression, F(y1,y2) is minimized when y; and y; satisfy the

simultaneous equations: % = a%% = 0. Let (y7,y3) be such a pair of values. That is,

vi= ey [ ef@ie - 22 [ ey,
z1

T (22— 21)2 /o, (xg — 21)2

and

« 6 *2 day + 221 [T2
V= / of(e)de + 2 / f(z)dz.
If yT and yj are both integers, we are done. Otherwise, we need to find integer lattice points
(91,92) that minimizes the F() value. The following lemma guarantees that only a constant
numbr of lattice points near the point (y},y3) can be candidates for (91, 92)-

Lemma 4.1 When the function F(yy1,y2) is minimized when vy, = yi and yp = y3, an optimal
solution (y3,y3) to the One-Segment-Approzimating Problem can be found as a point among
some constant number of points in the neighborhood of the point (y%,y3) in the yiy,—plane.

Proof Consider a curve surface z = F(y1,y2) in the y1ypz—space. It is evidently a paraboloid
and it has a bottom point. Let (y},y3) be the bottom point. When an arbitrary z—value z
is specified so that zy > F(y},y3), the intersection of the surface with the plane z = zy forms
an ellipse centered at (yf,y3). The form of the expression for F(yi,ys) implies that the curve
F(y1,y2) = z0 in the y1y2—plane is an ellipse resulting after rotating a standard ellipse by 45
degrees in the clockwise direction. See Figure 2 for illustration.

Let zg be such a z—value that the curve zg = F(y;,y2) passes through the point (y7—0.5,y5—
0.5). Then, because of the symmetry it also passes through the point (y7 + 0.5,y + 0.5).

What we want to find here is a lattice point (f;,72) to minimize the value Flyi,y2). It
is easy to see that the ellipse F'(y1,92) = 20 = F({)1,92) does not contain any lattice point in
its interior. Therefore, the point (§1,92) must be contained in or on the ellipse Fly1,12) = 2o
defined above.

It is not so hard to see that the ellipse zq = F(y1,y2) touches the lines y; = y7 £ 1 and
Y2 = y3 & 1. Thus, if we draw lines y; = y} — 1,y = vy} — 0.5,y; = ¥y =yl +05y =
Yi+Lye=ys—-lyo=y5—-059, = y3,y2 = y3 +0.5,y2 = yo * +1, the interior of the ellipse
is covered by 14 small squares of side 0.5. Especially, the four squares which share the point
(1,y3) as their vertices are totally included in the ellipse. It is easy to see that the square of



Figure 2: An ellipse defined by F(y1,v2) = F(y +0.5,y3 + 0.5).

side 1 contains only one lattice point unless the four corners are all lattice points. Depending
on which quadrant contains a lattice point, we can enumerate at most four such small square
regions of side 0.5 each that can contain an integer lattice point. Thus, we have the lemma,
m}

Now the algorithm is described easily. Let D; denote the squared area difference of an
optimal polygonal chain from z = 0 to ¢ = 4, and dj; denote that of an optimal segment
approximating the input curve in the interval [z = j,z = 1]. Then, we have

D; = i D; +dj;.
R o S + %

In addition to D; we calculate a structured information p; = (j,y;;%,¥:) such that D; =
D;+d;; and (j,y;;%,vi) is a solution to the one-segment approximation problem in the interval
[5,i], fori=1,2,..,n~ 1.

Obviously the minimum weight is given by Dy, and the path itself is obtained by following
the pointer p}s starting from p,—;. If some distinction happens at some z—coordinate, we join
those points by a vertical line segment. It takes O(i — 7) time to compute dj; since the input
curve may be defined as a chain of size O(i — j) in the interval [z = j,z = 1] if we compute
them independently. Thus, the time complexity becomes O(n®). However, we can save much
_ time by a simple trick. Notice that when we need the value dj; we have already computed
dj+1,4. It is easy to see that dj; can be computed in constant time using the informations
needed for computing djy1; since the hard parts are calculations of integrals f::‘; zf(z)de,
etc. Obviously, d;_1; can be calculated in constant time. Therefore, the total time we need is
just O(n?). Furtherfore, if the length of the longest line segment used in the approximation is
upper bounded by k, the total running time is O(kn). In particular, if k is some constant, the

total running time is linear in n.

Theorem 4.2 Given an z—monotone curvey = f(z),0 <z < n—1 consisting of N monotone
curves and an integer k < n, we can find in O(N + kn) time and O(N +n) space an optimal
polygonal chain that minimizes the squared area difference.

5 Experimental Results

We have implemented the algorithm in C for various planar curves. Figure 3 shows the exper-
imental results. Figure 3(a) shows an input planar curve defined by y = 17sin(z/10.0+0.2) +



8sin(z/7+0.3) +4sin(z/2+0.5), 0 < z < 70. The optimal polygonal chain that approximates
the curve is given in (b) together with the input curve. It is seen that the approximation is
good enough. The polygonal chain itself is shown in Figure 3(c).

6 Conclusion

In this short paper we have presented an efficient algorithm for approximating an z—monotone
curve by a polygonal chain that minimizes the squared area difference between the two curves.
We have implemented the algorithm in C and the experimantal results are quite promising
from a point of human view.

In this article we had a constraint that the approximating polygonal must also be z—monotone
although vertical connection is allowed. It is not so hard to construct an example for which
a polygonal chain that minimizes teh squared area difference is not z—monotone. In fact, a
polygonal chain ((0,0),(7/2,21/8),(7/2,0),(5,0)) is best approximated by a polygonal chain
((0,0),(4,3),(3,0),(5,0)) which is not z—monotone. It has been left as an open problem to
solve the problem without assuming monotonicity. It is also open to approximate a closed
planar curve.
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Figure 3: An experimental result. (a) Input curve. (b) Approximated polygonal chain and
input curve. (c) Approximated polygonal chain.



