7 o F ¥y X A 42— 6
(1994. 11. 18)

BAAREEERDBENCT AT Y X b & TEF D EHE~ DR

B P
FORERAY TR BORPR

Hrbhie RAECRERE) 777 OBAARBELRDENCTATY XL RET 2, coOTAT
Y XA, REEXFIIREORFHEYT A=) X2k L GR B0 COBFERHT A=) X &
B g (€ > 0) OERSERD, ik, 4ETOWFHELT A=Y X Ak X 3 BEERE 1 tuos
Lo ¥7n Bibhi (REE AR 797 OBABE A ZHEEROEINCTADY X a4
£33,

NC Algorithms for Finding a Maximal Set of Paths
with Application to Compressing Strings

Zhi-Zhong Chen

Department of Mathematical Sciences, Tokyo Denki University
Hatoyama, Saitama 350-03, Japan.
Email address: chen@r.dendai.ac.jp

It is shown that the problem of finding a maximal set of paths in a given (undirected
or directed) graph is in NC. This result is then used to obtain an NC approximation
algorithm for the shortest superstring problem with a compression ratio of 3—%2 for any
€ > 0. This improves on the previous best ratio of 4+_€. It is also shown that the problem

of finding a maximal set of induced paths in a given (undirected or directed) graph is in
NC.

1 Introduction

In [2], Aggarwal and Anderson considered the
problem of finding a maximal set of paths with
specified endpoints in a given (undirected or
directed) graph. To be precise, let us give a

brief review of their problem. Following [1], we

call their problem the mazimal paths problem.
Given an undirected graph G = (V, E) and
twosets S C V and T'C V with SNT = 0, the
maximal paths problem requires the computa-
tion of a maximal set of vertex-disjoint paths
in G such that one of the endpoints of each
path is a vertex in S and the other is a vertex
in T'; furthermore, the remaining path does not
contain any vertices of S or of T'. The prob-
lem for directed graphs is difined similarly.
In [2], Aggarwal and Anderson showed that
the maximal paths problem is in RNC. Soon
thereafter, Goldberg et al. gave a sublinear-
time parallel algorithm for the same problem
[9]. However, it still remains open whether the
maximal paths problem is in NC.

In section 2, we consider the problem of find-
ing a maximal set of paths with unspecified
endpoints in a given (undirected or directed)
graph. Let us make our problem clearer. Given
an undirected graph G = (V, E), our problem
requires the computation of a maximal subset
F of E such that the subgraph of G induced by
F is a forest in which each connected compo-
nent is a path. We call this problem the maz-
imal path set (MPS) problem. The problem
for directed graphs is defined similarly. Note
that the maximal paths problem can be stated
in a similar way: Given an undirected graph
G = (V,E) and twosets SCV and T C V
with SNT = 0, find a maximal subset F of E
such that the subgraph of G induced by F is
a forest in which each connected component is
a path from a vertex in S to a vertexin T'. Al-
though it still remains open whether the max-
imal paths problem is in NC, we show that
the MPS problem is in NC. More precisely,
we show that the MPS problem can be solved
in O(log* n) time with a linear number of pro-
cessors on an ARBITRARY CRCW PRAM

or in O(log® n) time with O(n®) processors on
an EREW PRAM. Our algorithm can be ex-
tended to solving the following more general
problem: Given an n-vertex undirected graph
G = (V,E) and a positive integer [< n —'1,
find a maximal subset F' of E such that the
subgraph of G induced by F is a forest in
which each connected component is a path of
length < l. Note that if we fix the input inte-
ger I to be 1, the generalized problem becomes
the maximal matching problem [13]. Thus, our
result also shows that certain natural general-
izations of the maximal matching problem are
still in NC.

In section 3, we give an interesting appli-
cation of the NC algorithm obtained in sec-
tion 2. Let S = {s1,---,8n} be a set of n
strings over an alphabet X. A superstring of
S is a string s over X such that s contains
each string s; € S as a substring, ie., s can
be written as u;s;v; for some strings u; and
v; over . A shortest supersiring of S is a su-
perstring of S that has minimum length over
all superstrings of S. The shortest superstring
problem (SSP) is to find a shortest superstring
of a given set of strings. SSP has many im-
portant applications [15, 16, 17] but is unfor-
tunately N P-hard [7, 8]. This has motivated
many researchers to find approximation algo-
rithms with good performance guarantees for
SSP [3, 5, 18, 20). To evaluate the quality of
an approximation algorithm A for SSP, two
measures are usually used. One is the approz-
imation ratio, defined to be maz{%’—;{—‘i}[: S
is a set of strings}, where |A(S)| is the length
of the superstring found by algorithm A and
opt(S) is the length of the shortest super-
strings of S. The other is the compression
ratio, defined to be min{{%{—}%—&% : Sis
a set of strings}, where |S| is the sum of
the lengths of the strings in S. Here, we are
only interested in the compression ratio and
want to design an NC' approximation algo-
rithm for SSP with a good compression ratio.
Previously, only one NC approximation algo-
rithm for SSP had been given [5]. This algo-

rithm achieves a compression ratio of Z-lre for

any ¢ > 0. In section 3, using our NC' algo-
rithm for finding a maximal set of paths in a
given directed graph, we present a new NC
approximation algorithm for SSP. The algo-
rithm achieves a compression ratio of 3—1_*-_; for
any € > 0. This improves on the previous best
ratio due to Czumaj et al. [5].

In section 4, we consider the vertez counter-
part of the MPS problem, namely, the problem
of finding a maximal set of induced paths with
unspecified endpoints in a given (undirected or
directed) graph. More precisely, we consider
the following problem: Given an undirected
graph G = (V, E), find a maximal subset U
of V such that the subgraph of G induced by
U is a forest in which each connected compo-
nent is a path. We call this problem the maz-
imal induced path set (MIPS) problem. The
problem for directed graphs is defined simi-
larly. Although the MIPS problem looks very
similar to the MPS problem, designing an NC
algorithm for the former is surprisingly a lit-
tle more difficult. Indeed, our NC' algorithm
for the MIPS problem is a sophisticated NC
reduction to the problem of finding a maxi-
mal independent set in a given hypergraph of
dimension 3. It runs in O(log®n) time using
O(n3) processors on an EREW PRAM. Re-
stricting to bipartite graphs or sparse graphs
(such as planar graphs), the MIPS problem
can easily be reduced to the MPS problem and
hence has more efficient NC' algorithms.

For the definitions of the ARBITRARY
CRCW PRAM and EREW PRAM models
and complexity classes such as NC and RNC,
the reader is referred to [14].

2 Finding a maximal set of
paths

In this section, we only prove that a maximal
set of paths in a given undirected graph can
be found in NC. However, at the end of this
section, we will point out that this result can
easily be extended to directed graphs.
Throughout this section, unless stated oth-
erwise, a graph is always undirected and sim-

ple. By a path, we always mean a simple path.
Note that a single vertex is considered as a
path (of length 0). Let G = (V, E) be a graph.
A set M of edges in G is called a matching
if no two edges in M share an endpoint. A
matching in G is said to be mazimal if it is
not a proper subset of another matching. For
F C E, let G[F] denote the graph (V, F). A
set F' of edges in G is called a path set if G[F]
is a forest in which each connected componet
is a path. A mazimal path set (MPS) in G is
a path set that is not properly contained in
another path set.

Our main result in this section is the follow-
ing algorithm for finding an MPS in a given
graph. In the algorithm, we assume that the
edges in the input graph are linearly ordered,
say, by indexing them with numbers between
1 through m, where m is the number of edges
in the input graph. This assumption is not es-
sential to our result.

Algorithm 1
Input: An n-vertex graph G = (V, E).
QOutput: An MPS F in G.
1. Initialize F' to be the empty set.
2. While E # 0, perform the following steps:
2.1. Construct a new graph K as fol-
lows. Corresponding to each con-
nected component p in G[F], K con-
tains a vertex w,. For p; and p; in
G[F], K contains the edge {w,,, wp,}
iff £ contains some edge {v1, v2} such
that v; is contained in p; and vy is
contained in ps.
2.2. Find a maximal matching M in K.
23. In parallel,
for each edge {wp,,wp,} € M, add
to I the smallest edge {v1,v,} € E
such that v; is contained in p; and v,
is contained in ps, and then remove
the edge {v;,v,} from E.
2.4. Remove from F all edges e such that
F U {e} is not a path set in G.
3. Output F.

Let t be the number of executions of the
while-loop in Algorithm 1. In case ¢ = 0, the

input graph G does not contain any edge and
so Algorithm 1 is clearly correct and takes con-
stant time. Thus, we may assume that ¢ > 1.
For 1 < i<t let E;, F;, K;, and M; denote
the contents of the variables E, F', K, and M
after the i¢th execution of the while-loop, re-
spectively. For convenience, let Fy = @ and
Ey be the edge set of the input graph G. For
1 <igtlet M{ = F; — Fi_;. Note that
E, = 0 and |M;| = |M]]for 1 < i < ¢. Let
0<i<t—1. An augmentation of F; is a set
of some edges in F;. An augmentation A of F;
is said to be valid if F; U A is a path set in G.

Lemmal. F;is an MPS.

Lemma 2. t = O(log n).
Proof. For 0 < i <t~ 1, let e; be the size of
a maximum valid augmentation of F;. Let us
first prove that |M/ ;| > &i. Fix an integer i
with 0 <7 <t— 1. Let § be the size of a maxi-
mum matching in the graph K;;;. We want to
show that a; < 20. Let A be a maximum valid
augmentation of F;. Since A is valid, each con-
nected component of G| F; UA] must be a path.
For each connected component p of G[F; U A]
that contains at least one edge of A, we start
at an endpoint of p and traverse p toward the
other endpoint while labeling the edges of A
on p by 0 and 1 alternately (the first edge of
A on pis labeled 0). Let B be the set of those
edges of A labeled 0. Clearly, |B| > J%l =4,
Moreover, it is easy to see that corresponding
to B, there is a matching of size |B| in Kj4;.
This implies that |B] < § and in turn that
o; < 2(. On the other hand, since M;y,; is a
maximal matching in K;4, at least one end-
point of each edge in any maximum match-
ing must be matched in M;4;. This implies
that |M;41] > % Using o; < 20, we now have
M| = |Miga] > F

By the proof of Lemma 1, M{,; is a valid
augmentation of F; for 0 < ¢ <t — 1. Thus,
ajy1 + M| < o for 0 <4< t—1. Since
|M{,;] > &, we now have that a;1; < 2o
for 0 < i < t—1. Combining this with the fact
that ag is no more than the number of edges
in G, we obtain ¢ = O(log n). |

Theorem 3. Given an n-vertex m-edge graph
G, an MPS of G can be found in O(log*n)
time with O(n + m) processors on an ARBI-
TRARY CRCW PRAM or in O(log®n) time
with O(n®) processors on an EREW PRAM.

The following corollary will be used in sec-
tion 4.

Corollary 4. Given

an n-vertex m-edge graph G and a path set
F'in G, an MPS F' in G with F/ C F can be
found in O(log* n) time with O(n+m) proces-
sors on an ARBITRARY CRCW PRAM or in
O(log® n) time with O(n®) processors on an
EREW PRAM.

Let ! be a positive integer. A path of length
< lis called an IS-path. Let G = (V, E) be
a graph. A set F' of edges in G is called an
IS-path set if G[F] is a forest in which each
connected componet is an [S-path. A mazi-
mal IS-path set (MPS(1)) in G is an IS-path
set that is not properly contained in another
IS-path set. Clearly, a matching in G corre-
sponds to a 1S-path set in G and a maximal
matching in G corresponds to an MPS(1) in G.
Thus, the following corollary shows that cer-
tain generalizations of the maximal matching
problem are still in NC.

Corollary 5. Given an
n-vertex m-edge graph G = (V, E) and a pos-
itive integer { < n — 1, an MPS(I) F in G can
be found in O(log® n) time with O(n+m) pro-
cessors on an ARBITRARY CRCW PRAM or
in O(log® n) time with O(n®) processors on an
EREW PRAM.

Below, we point out that Theorem 3 can be
extended to digraphs. This extension will be
used in the next section. Let D = (V, A) be
a digraph. For F' C A, let D[F] denote the
digraph (V, F'). A directed path set (DPS) in D
is a subset B of A such that D[B] is an acyclic
digraph in which the indegree and outdegree
of each vertex are both at most 1. Intuitively
speaking, if B is a DPS in D, then D[B] is a
collection of vertex-disjoint directed paths. A

mazimal directed path set (MDPS) in D is a
DPS that is not properly contained in another
DPS.

Corollary 6. Given an n-vertex m-arc di-
graph D = (V,A) and a DPS B in D, an
MDPS F in D with B C F can be found
in O(log® n) time with O(n) processors on an
ARBITRARY CRCW PRAM or in O(log® n)
time with O(n®) processors on an EREW
PRAM.

3 NC-approximation of shortest
superstrings

For a string s, let |s| denote the length of s.
Let s and t be two strings, and let v be the
longest string such that s = uv and t = vw for
some non-empty strings u and w. |v| is called
the overlap between s and ¢ and is denoted by
ov(s,t). By sot, we denote the string uvw.
Let S = {s1,53,---,3,} be a set of strings.
As in previous studies, we assume that S is
substring free, i.e., no string in S is a substring
of any other. By opt(S), we denote the length
of the shortest superstring of S. Define [S| =
I, 1si]. The overlap graph of S is the arc-
weighted digraph OG(S) = (V, 4, ov), where
V= {1,2,---,n},A= {(1?3) 01 S"#JS
n}, and ov(3, j) = ov(si, s;). For a path p = i,
€1, 11, -+, ek, i in OG(S), the weight of p is
ZF_,0v(e;) and is denoted by w(p).

Fact 1 [20] Let p = ip, €1, i1, -, €n—1, in_1
be a Hamiltonian path with maximum weight
in OG(S). Then, w(p) = |S| - opt(S) and s;, 0
8i; 0---o0s;, _, is a shortest superstring.

By Fact 1, we can find a shortest super-
string by computing a Hamiltonian path with
maximum weight in OG(S). Unfortunately, it
does not seem that there is an efficient algo-
rithm for computing a Hamiltonian path with
maximum weight in OG(S). However, Turner
showed that the following sirnple sequential al-
gorithm finds a Hamiltonian path with weight
at least]ﬂ:f.fiﬂ in OG(S) [20]

Algorithm GREEDY

Input: OG(S) = (V, A4, ov).

1. Initialize B to be the empty set.

2. While the digraph (V, B) is not a Hamilto-
nian path in OG(S), perform the follow-
ing: Add to B the largest arc e such that
BU{e} is a DPS in OG(S) but BU {e'}
is not a DPS in OG(S) for all arcs e’ with
ov(e) < ouv(e’). (Note: we here assume
that the arcs of equal weights in OG(S)
are linearly ordered.)

3. Output the digraph (V, B).

For a weighted complete digraph D, let
OptPath(D) be the maximum weight of a
Hamiltonian path in D.

Fact 2 [20] Algorithm GREEDY finds a

Hamiltonian path with weight at
OptPach!OGfsn in OG(S)

least

Fact 3 [20] Even if the input to GREEDY is
changed to an arbitrary weighted complete di-

graph D, GREEDY finds a Hamiltonian path
in D with weight at least %}—)g—t-h—(gz,

By Fact 1 and Fact 2, GREEDY achieves
a compression ratio of % To the best of our
knowledge, % is still the best known compres-
sion ratio. Thus, it seems very difficult to de-
sign an NC approximation algorithm for SSP
with a better compression ratio. To design
an NC approximation algorithm for SSP, one
way seems to be parallelize GREEDY. How-
ever, Czumaj et al. proved that computing the
output of GREEDY is hard for P [5]. Conse-
quently, a complete different approach seems
to be necessary. In [5), Czumaj et al. gave an
NC approximation algorithm for SSP with a
compression ratio of Z—%I for any € > 0. Here,
we present an NC approximation algorithm
for SSP with a compression ratio of 34 for
any € > 0.

Algorithm 2

Input: OG(S) = (V, A, ov).

1. Letc¢=14%.In parallel, for each arc e € A,
set lev(e) = [log, ov(e)] if ov(e) > 1, and
set lev(e) = 0 otherwise.

2. Compute MazLev = maz{lev(e) : e €
Al
3. Set B = 0 and CurLev = MazLev.
4. While CurLev > 0, perform the following
steps:
4.1. Construct an unweighted digraph
D = (V,E) by setting E = BU{e €
A : lev(e) = CurLev}.
4.2 Compute an MDPS Fin D with B C
F and then update B to be F.
4.3 Decrease CurLev by 1.

5. Output the digraph (V, B).

Lemma 7. Algorithm 2 finds a Hamiltonian
path with weight at least szfﬂ_;h_ééﬁill in
OG(S).
Proof. The proof is very similar to that of
Lemma 3 in [5]. Let poy: be the output of Algo-
rithm 2. Since OG(S) is a complete (weighted)
digraph, pou: is certainly a Hamiltonian path
in OG(S). We next show that w(pout) >
OpiPath{0G(S))

3+¢ :

Define a weighted digraph H = (V, A, wy)
by setting wy(e) = cev(e) if ¢ is on pou: and
setting wgr(e) = ov(e) otherwise. Let > be a
total order satisfying the following condition:
If either wgr(e) > wy(e'), or wy(e) = wy(e')
and e is contained in poy: but €’ is not con-
tained in pou:, then e > ¢’. When e > ¢/, we
say that e is larger than ¢'.

Obviously, if the arcs in H are sorted in
nondecreasing order using >, then given H as
input to both Algorithm GREEDY and Al-
gorithm 2 (in place of OG(S)), the two algo-
rithms work in the same way. Thus, by Fact 3,
Algorithm 2 on input H finds a Hamiltonian
path of weight at least w. On the
other hand, the weight of the Hamiltonian
path found by Algorithm 2 on input H is less
than ¢-w(pour) because wy(e) < c-ov(e) for all
e € A. Therefore, ¢ - w(pout) > QIW_P;T‘MEI >
Qgg_llgt__(____(__gm“?)l since wy(e) > ov(e) for all
e € A. Recall that ¢ = 1+ §. We now have
w(pous) > OptPatQEOG(S)) — OptPa;:EEOG(S))_

Lemma8. Algorithm 2 runs in O(logn -
log; /3 |S]) time using O([SI*) processors

on an ARBITRARY CRCW PRAM or in
O(log® n - log; 4 ¢/3|S]) time using O(IS +
n%) processors on an EREW PRAM.

Theorem 9. There is an NC approximation
algorithm for SSP with a compression ratio
of ﬁ_—é for any € > 0. It runs in O(log*n -
10g; 4./31S]) time with O(|S|*) processors
on an ARBITRARY CRCW PRAM or in
O(log® n-log; 4.¢/3 |S|) time with O(|S*+n®)
processors on an EREW PRAM.

4 Finding a maximal set of
induced paths

In this section, we present an NC' algorithm
for finding a maximal set of induced paths in
a given undirected graph. The extension to di-
rected graphs is straightforward and is hence
omitted here.

Hereafter, a graph is always undirected and
simple. Let G = (V,E) be a graph. For a
vertex v € V, Ng(v) denotes the set {u :
{v,u} € E} and dege(v) denotes the cardi-
nality of Ng(v). For U C V, the subgraph
of G induced by U is the graph (U, F) with
F ={{u,v} € E:u,v €U} and is denoted by
G[U]. A set U of vertices in G is called an in-
duced path set (IPS) if G[U] is a forest in which
each connected componet is a path. A mazi-
mal induced path set (MIPS) in G is a path set
that is not properly contained in another IPS.

A hypergraph H = (V, E) consists of a set V'
of vertices and a collection E of subsets of V'
called hyperedges. The dimension of H is the
maximum size of a hyperedge in E. Clearly, an
ordinary graph is a hypergraph of dimension
2. An independent set in H is a subset U of
V that does not contain any hyperedge of E.
A mazimal independent set (MIS) in H is an
independent set that is not properly contained
in another independent set.

Algorithm 3

Input: An n-vertex graph G = (V, E).

QOutput: An IPS IV in G such that for all v €
V -~ U, UU{v} is not an IPS in G or
INg(v)NU| > 2

1. Initialize U to be an MIS in G.

2. Compute Vi, the set of all v € V — U such
that UU{v} is an IPS in G and |[Ng(v) N
Ul=1.

3. Construct K = (Vi, Ex), where Ex con-
sists of all {v;, va} such that {v;,v:} € E
or Ng(vi) N Ng(va) NU # 8.

4. Compute an MIS [in K

5. Add the vertices in I to U.

6. Compute V{, the set of all v € V§ — I such
that U U {v} is an IPS in G and |Ng(v) N
Ul=1.

7. Construct X' = (V{, Ek+), where Eg: con-
sists of all {vy, vo} such that {v;, v} € E
or NG(’Ul) N NG(?)Q) nU # @

8. Compute an MIS I’ in K'.

9. Add the vertices in I’ to U.

10. Qutput U.

In addition to the notations used in Algo-
rithm 3, let U; be the content of the variable
U at the end of step i for 1 <7 < 9. Obviously,
Uy=--=Us CUs=---=Ug C Us.

Lemma10. Uy is an IPS in G.

Lemmall. For all v € V — Uy, Ug U {v} is
not an IPS in G or |Ng(v) N Ug| > 2.

Lemma 12. Algorithm 3 is correct and runs
in O(log® n) time with O(n?) processors on an

EREW PRAM.

We now use Algorithm 3 to design an NC al-
gorithm for finding an MIPS in a given graph.

Algorithm 4

Input: An n-vertex graph G = (V, E).

Output: An MIPS U in G.

1. Use Algorithm 3 to find an IPS U in G such
that for all v € V — U, U U {v} is not an
IPS in G or |[Ne(v)NU| > 2.

2. Set W to be the set of those vertices v €
V — U such that U U {v} is an IPS in G.
(Comment: After this step, [Ng(w)NU| =
2 and deggyy(u) = 1 for all w € W and
all u € Nog(w)NU.)

3. While W # 0, perform the following steps:

3.1. Construct a hypergraph H =
(W,Eg U EY) of dimension 3 as
follows. Ex consists of all subsets
{wy,ws} of W such that at least
one of the following (1), (2), and
(3) holds: (1) {wi, w2} € E; (2)
there is some u € U such that u €
N (w1)NNg(wz) and deggru)(u) = 1;
(3) GIU U {wy,ws}] has a cycle in
which both w; and wy; appear. Ey
consists of all subsets {w;, wa, ws} of
W such that no W’/ € Ey is prop-
erly contained in {wy, wp, w3} and at
least one of the following (a) and
(b) holds: (a) there is some u € U
such that © € Ng(wi) N Ng(ws2) N
Ng(ws) and degg)(u) = 0; (b)
GIU U {wq,wq,w3}] has a cycle in
which all of w;, ws, and ws appear.

3.2 Compute an MIS S in H. (Comment:
It will be shown that each connected
component of G[UUS] is either a cycle
containing at least 4 vertices in S or
a path.)

3.3. Let Cy, ---, Cy be the connected
components of G[U U S] that are cy-
cles. For each 1 < ¢ < k, in parallel,
choose two vertices z; and y; in Cj
such that z; € S, y; € S, and the two
possible paths from z; to y; in C; both
contain a vertex in S — {z;, % }.

3.4. For each 1 < i < K, let w1, uig
be the two neighbors of z; in C; and
let v;,1, v;,2 be the two neighbors of
y; in C;. Set X = UlSiSk((NG(zi) U
Neg(u; 1) U Ng(ui2)) N W) — S and
Y = Uicick((Ne(w) U No(vi1) U
Ng(vi2))nW) - S.

3.5. If |X| < |Y], add the vertices in S —
{z1,-+-,z1} to U and then set W =
{weX-(XNY): Uu{w}is an
IPS in G}; otherwise, add the vertices
inS—{y1,---,yx} to U and then set
W={weY - (XNnY):Uu{w}is
an IPS in G}.

4. Quiput U.

Let t he the number of executions of the

while-loop in Algorithm 4. In case t = 0, Al-
gorithm 4 is clearly correct. Thus, we may as-
sumet > 1. For 1< j <t let W;, U;, H;, S;,
X;, and Y; denote the contents of the vari-
ables W, U, H, S, X, and Y after the jth
execution of the while-loop, respectively. For
convenience, let Wy and Up denote the con-
tents of the variables W and U at the end of
step 2, respectively. Clearly, for 1 < j < t,
W; CW;_1,Uj—1 CUj,and U; CU; 3 US;.

Lemmal3. U; is an MIPS in G.
Lemma 14. t = O(logn).

Theorem 15. An MIPS in an n-vertex graph
G can be found in O(log® n) time with O(n?)
processors on an EREW PRAM.

Acknowledgment The author is grateful to
Professor Artur Czumaj for pointing out an
error in an earlier version of this paper.

References

1. A. Aggarwal, Parallel Complexity of Comput-
ing a Maximal Set of Disjoint Paths, Inform.
Process. Lett., vol. 41, pp. 149-151, 1992.

2. A. Aggarwal and R. Anderson, A Random
NC Algorithm for Depth-First Search, Com-
binatorica 8 (1988) 1-12.

3. A. Blum, T. Jiang, M. Li, J. Tromp, and M.
Yannakakis, Linear Approximation of Short-
est Superstrings, in: Proc. 23th ACM Symp.
on Theory of Computing (ACM, 1991) 328-
336.)

4. R. Cole, Parallel Merge Sort, SIAM J. Com-
put. 17 (1988) 770-785,

5. A. Czumaj, L. Gasieniec, M. Piotrow, and
W. Rytter, Parallel and Sequential Approxi-
mation of Shortest Superstrings, in: Proc. 4th
Scandinavian Workshop on Algorithm The-
ory, Lecture Notes in Computer Science, Vol.
824 (Springer, Berlin, 1994) 95-106.

6. E. Dahlhaus, M. Karpinski, and P. Kelsen,
An Efficient Parallel Algorithm for Comput-
ing a Maximal Independnet Set in a Hyper-
graph of Dimension 3, /nfirm. Process. Lett.
42 (1992) 309-313.

7. J. Gallant, D. Maier, and J. Storer, On Find-
ing Minimal Length Superstrings, Journal of
Computer and System Sciences 20 (1980) 50-
58.

8. M.R. Garey and D.S. Johnson, Compters and
Intractability: A Guide to the Theory of NP-
Completeness (Freeman, New York, 1979).

9. A.V. Goldberg, S.A. Plotkin, and P.M.
Vaidya, Sublinear-Time Parallel Algorithms
for Matching and Related Problems, J. of Al-
gorithms, vol. 14, pp. 180-213, 1993.

10. M. Goldberg, Parallel Algorithms for Three
Graph Problems, Congressus Numerantium,
vol. 54, pp. 111-121, 1986.

11. M. Goldberg and T. Spencer, Constructing a
Maximal Independent Set in Parallel, STAM
J. Disc. Math., vol. 2, pp. 322-328, 1989.

12. A. Israeli and A. Itai, A Fast and Simple
Randomized Parallel Algorithm for Maximal
Matching, Inform. Process. Lett. 22 (1986)
77-80.

13. A.Israeli and Y. Shiloach, An Improved Max-
imal Matching Parallel Algorithm, Inform.
Process. Lett. 22 (1986) 57-60.

14. R.M. Karp and V. Ramachandran, Parallel
Algorithms for Shared Memory Machines, in:
J. van Leeuwen ed., Handbook of Theoretical
Computer Science Vol. A (Elsevier, Amster-
dam, 1990) 868-941.

15. M. Li, Towards a DNA Sequencing The-
ory (Learning a String), in: Proc. 31th IEEE
Symp. on Foundations of Computer Science
(IEEE, 1990) 125-134.

~16. H. Peltola, H. Soderlund, J. Tarhio, and E.

Ukkonen, Algorithms for Some String Match-
ing Problems Arising in Molecular Genetics,
in: Proc. 2nd IFIP Congress (1983) 53-64.

17. J. Storer, Data Compression: Methods and
Theory (Computer Science Press, 1988).

18. J.Tarhio and E. Ukkonen, A Greedy Approx-
imation Algorithm for Constructing Shortest
Common Superstrings, Theoretical Computer
Science 57 (1988) 131-145.

19. S.-H. Tengand F. Yao, Approximating Short-
est Superstrings, in: Proc. 34th IEEE Symp.
on Foundations of Computer Science (IEEE,
1993) 158-165.

20. J.-S. Turner, Approximation Algorithms for
the Shortest Common Superstring Problem,
Information and Computation 83 (1989) 1-20.

