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The unweighted k-edge-connectivity angmentation problem (UW-KECA for short) is described as follows: “Given a
graph G = (V. E), find an edge sct E’ of minimum cardinality such that G' = (V,E U E') is k-cdge-connccted.”
The paper proposes an O(|V}log |V| + | E|) algorithm for finding a solution E' to UW-(A + 1)ECA with the following
restriction (1) or (2): (1) A =4, G is A-edge-connected simple graph with [V]| > 6 and G’ is also simple; (2) 3 < A < 4,
G is A-edge-connected multigraph, and adding E' does not increase multiplicity of edges in G.
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1 Introduction

The unweighted k-edge-connectivity augmentation problem (UW-
LECA for short) is described as follows: "Given a A-edge-connected
graph G = (V, E), find an edge sct E' of minimum cardinality such
that G’ = (V, EUE') is A+§-edge-connected and A+6 = k.” We often
denote G’ as G + E', and E' is called a solution to the problem. Let
UW-LECA(*,**) denote UW-LECA with the following restriction (i)
and (i) on G and E', respectively: (i) * is sct to S if G is required to be
simple, and remaining * means G may be a multiple graph; (ii) ** is set
to MA if creation of new multiple edges in constructing G’ is allowed,
and is set to SA otherwise. As for UW-LECA, UW-LECA(* MA) has
mainly been discussed so far. See [3, 5,7, 11, 17, 18, 19, 20} for the
results.

The subject of the present paper is UW-(A + 1)ECA(*,SA) with
A = 3 or 4. This paper proposes an O{|V[log|V|+ |E]) algorithm for
cach of them.

As known related results, UW-EECA(S.SA) in which G has no
edges was first discussed in [6], where the problem more general
than UW-XECA(S,SA) is considered. An O(|V| + |E]) algorithm
for UW-2ECA(S,SA) can be obtained by slightly modifying the one
given in [3] for UW-2ECA(*,MA). As for UW-3ECA(*,SA), [20] pro-
posed an O(]V{ + |E]) algorithm for UW-3ECA(* MA), and showed
that if [V] > 4 then this algorithm finds an optimum solution to
UW-3ECA(*,SA). [13] proposcd the following two algorithms: (1) an
O(|V]log [V|+]E}) algerithm for solving UW-(A+1)ECA(S,SA}), where
X = 3, G is simple and |V| 2 5; (2) an O(|V|* + |E|) algorithm for
solving UW-(A+1)ECA(S,SA), where A = 3, G is simple and |V] > 6.
The early version of UW-4ECA(S,SA) has been reported in [12].

A central concept in solving UW-LECA is a t-component of G: a
maximal set of vertices such that G has at least t edge-disjoint paths
between any pair of vertices in the set {19]. A t-component whose
degree (the number of edges connecting vertices in the set to those
outside of it) is equal to the edge-conncctivity of G is called a leaf.
Although UW-(A+1)ECA(*,SA) with A = 3 or 4 can be solved almost
similarly to general UW-KECA(*, MA), the only difference is that the
augmenting step has to choose a pair of leaves, each containing a vertex
such that they are not adjacent in G. (Such a pair of leaves is called
a nonedjacent pair.) This requires addition of another characteristic
or a process in finding solutions by means of structural graphs. A
structural graph is introduced in [9] and is used as a useful tool that
feduccs time complexity in finding a solution to UW-KECA(* MA) in

7,11).

In addition to structural graphs, [13] adopts the operation, called
edge-interchange, in finding a solution, where it was introduced in
[17, 18} in order to reduce time complexity of [19]. A sct of two nonad-
jacent pairs of leaves is called a D-combination if they are disjoint. The
augmenting step in solving UW-(A+ 1)ECA(S,SA) in [13] is to repeat
both choosing a nonadjacent pair of leaves and enlarging a (A + 1)-
component by means of edge-interchange {or an analogous operation).
Hence obtaining an optimum solution requires finding maximum num-
ber of nonadjacent pairs such that any set of two distinct nonadjacent
pairs is a D-combination, and it is reduced to finding a maximum
matching of a certain graph R(G), called a_leaf-graph, constructed
from G. The main point of UW-(X + 1)ECA(S,SA) with A =3 or 4 is
that there exists a solution B’ if R(G) has a maximum matching M:
this is not always the case with UW-AECA(S,SA) for k > 6.

We can avoid obtaining a maximum matching, which is a time-
consuming process, except the case where the number of leaves is small.
A structural graph of G can be constructed in O(A?|V|log |V|/A+]|E|)
time by the results in [7]. Since it is a tree if A = 3 (or if A is odd in
general), finding a solution by edge-interchange operation can be done
in O(|V]) time. Based on these observations, an O(|V}log|V| + | E)
algorithm for solving UW-4ECA(S,SA) was proposed in [13]. On the
other hand a structural graph of G is a cactus if A = 4 (or if A is even
in gencral). [13] showed that finding a solution to UW-5ECA(S,SA)
can be done in O(JV|? + |E}) time.

The results of the present paper are stated as follows: (1) an
O(|V]log|V] + |E]) algorithm for UW-S5ECA(S,SA) with A = 4 is
proposed, reducing O(|V|® + |B]) time complexity shown in [13};
(2) O(JV|log|V| + |E]) algorithms for UW-(A + 1)ECA(*,SA) with
A = 3 or 4 are proposed by extending those algorithms for UW-
(A + 1)ECA(S,SA) with X = 3 or 4, respectively.

When A = 4, the procedure proposed in Section 7 finds an edge set
E; such that if it is not a solution for G then F(G + E}) is a tree or
a cactus that can be equivalently transformed into a tree. This can
be done in O(|V|log |V|+ |E]) time including construction of F(G +
E}). Since the resulting structural graph is a tree, the algorithm,

Figure 1: A simple graph G with A(G) = 3 and [LF(G)| = 4.

which is proposed in [13] for A = 3, finds a solution E} for G+ E; in
O({V]log [V] + | E|) time. We can show E, U E}' is a solution of G in
Scction 7. Hence we find a solution of G for UW-(A + 1)ECA(S,SA)
in O(|V]log |V| + |E]) time when A = 4.

2 Preliminaries

2.1 Basic Definitions

Technical terms not specified here can be identificd in 1, 4, 7, 16]. An
undirected graph G = (V(G), E(G)) consists of a finite and nonempty
set of vertices V(G) and a finite set of undirected edges E(G); an
edge e incident upon two vertices u,v in G is denoted by ¢ = (u,v)
unless any confusion arises. For disjoint sets S, S’ C V(G), we denote
(5,8%G) = {(v,v) € E(G)[u € Sandv € 5}, where it is often
written as (S, 8’) if G is clear from the context. We denote dg(S) =
1(5.5;G)]. This is called the degree of S (in G). If § = {v} then
dg({v}) is denoted simply as dg{v) and is the total number of edges
(v,v'), v’ # v, incident upon v. A path between vertices u and v is
often called a (u,v)-path. For two vertices u, v of G, let A(u,v; G), or
simply A(u,v), denote the maximum number of pairwise edge-disjoint
paths between u and wv.

For a set X, C V(G), let G[X] denote the subgraph having X as its
vertex set and {(x,v) € E(G)|u,v € X} as its edge set. G[X] is called
the subgraph of G induced by X (or the induced subgraph of G by X).
Deletion of X C V(G) from G is to construct G[V(G) — X], which is
often denoted as G — X. If X = {v} then we often denote G — v for
simplicity. Deletion of @ C E(G) from G defines a spanning subgraph
of G, denoted by G — Q, having E(G) — Q as its edge set. If Q = {e}
then we denote G — e, For a set E’ of edges such that B' N E(G) = 6,
let G + E’ denote the graph (V(G), B(G) U E). If E' = {e} then we
denote G +e.

Let S € V(G)U E(G) be any minimal set such that G — § has more
components than G. S is called a separator of G, or in particular a
(X,Y)-scparator if any vertex of X and any one of Y are disconnected
in G-S. If X = {u} orY = {v} then it is denoted as a (u,Y)-separator
or a (X, v)-scparator. A minimum (X,Y)-separator Sof Gisa (X,Y)-
separator of minimum cardinality. Such S is often called a (X,Y)-cut
if § C E(G). It is known that a (u,v)-cut § has |[§] = A(x,v;G).
A minimum separator § of G is a separator of minimum cardinality
among all separators of G, and if S C E(G) then |S] is called the
edge-connectivity (denoted by A(G)) of G; particularly we call such
S C E(G) a minimum cut (of G). G is said to be k-edge-connected
if M(G) 2 k. A k-cdge-connected ponent (k-comp t, for short)
of G is a subset S C V(G) satisfying the following (a) and (b): (a)
A, v;G) > k for any pair u,v € S; (b) S is a maximal set that
satisfies (a). Let I'g(k) denote the set of all k-components of G. Ina
graph G with M(G) = X, a (A + 1)-component S with dg{S) = A +1
is called a leaf (A + 1)-component of G. It is known that A(G) > k if
and only if V(G) is a k-component. Note that distinct k-components
are disjoint sets. Each 1-component is often called a component. Let
[z] (=}, respectively) denote the minimum integer not smaller (the
maximum one not greater) than z.

A cactusis an undirected connected graph in which any pair of cycles
share at most one vertex. A structural graph F(G) of G with A(G) = A
is a representation of all minimum cuts of G. We use the term "nodes
of F(G)" to distinguish them from vertices of G. F(G) is an edge-
weighted cactus of O(|V]) nodes and edges such that each tree edge
(an edge which is a bridge in F(G)) has weight A(G) and each cycle
edge {an edge included in any cycle) has weight A(G)/2. Particularly if
) is odd then F(G) is a weighted tree. (Examples of G and F(G) will
be given in Figs. 1 and 3.) Each vertex in G maps to exactly one node
in F(G), and F(G) may have some other nodes, call empty nodes, to




which no vertices of G are mapped. Let ¢(G) C V(F(G)) denote the
set of all empty nodes of F(G). Note that any minimum cut of G is
represented as cither a tree edge or a pair of two cycle edges in the same
cycle in F(G), and vice versa. Let p: V{(G) — V(F(G)) —¢(G) denote
this mapping. We use the following notations p(X) = {p(v)|v € X} for
X CV,and p~Y) = {u € V|p(u) € Y} for Y C V(F(G)). p{{v})
or p~'({v}) is written as p(v) or p~!(v). respectively, for notational
simplicity. For v € V(F(G)), if summation of weight of all edges that
are incident to v in F(G) equals to ), then v is called a leaf node
(that is a degree-1 vertex in a tree or a degree-2 vertex in a cycle).
It is shown that' F(G) can be constructed in O(nm) time [9] or in
O(Xnlog(n/A) + m) time [7}, where 1 = |E(G)] and n = [V(G)].

For two vertices v,v’ of a tree T', any vertex u such that both a
(u,v)-path and a (u,v')-path exist is called a common ancestor of v
and v', Suppose that all vertices of T are numbered in the order they
arce visited in a depth-first scarch starting from a vertex that is not
a leal. Let dfn(v) denote this number for each v of T. The vertex
v with dfn(v) = max{dfn(u)lu is a common ancestor of v and v'} is
called the lowest common ancestor (of v and v') [2].

Lemma 2.1 [5] For distinct two scts X,Y € V, we have

AX)+d(Y) = d(X = Y)+d(Y = X)+2[(X = V,Y = X)| and (2.1)
dAX)+d(Y) = d(XNY)+d(XUY)+2(V - XUY, X nY)|. (2.2)

2.2 A-Components and Leaf-Graphs [13]

Let A(G) = A > 0. Let X, X; be distinct (A + 1)-components
of G. The pair {X;, X3} arc called an adjacent pair (denoted as
X1xX3) if any two vertices w € X; and w' € X, are adjacent in
G, or called a nonadjacent pair (denoted as X;¥X,) otherwise. Let
LF(G) = {X|X is a leaf of G} and V' = {v]v represents a leaf of G}.
Let L(v) denote the (A + 1)-component corresponding to v € V' and
let u denote a representative of L{v), where u € L(v), and we choose
w from L(v) whenever necessary. Let R(G) = (V', E’) be defined by
E' = {(v,v')|v,v' € V' and L{v)XL(v')}, and it is called the leaf-graph

of G.
Property 2.1 R(G) is simple.

Let L;, i = 1,2,3,4, be distinct leaves of G. A set of two non-
adjacent pairs {{L1, L2}, {L3, L¢}} is called a D-combination if they
are disjoint (that is, {L,, L2} N {L3,Ls} = @). In general, for 2t
distinct leaves Ly, @ = 1,...,2t with ¢ > 2, of G, ¢ nonadjacent pairs
{L1, L2}, ..., {Lat—1, L2¢} are called a D-set of G if any two of them are
disjoint. Let Lyx{Lz, L3} denote that both LyxLs and LyxLs hold.
A D-combination {{Ly, Ly}, {Ls, Ls}} is called an I-combination (de-
noted as {Ly, Lz} Z{Ls, L}) if one of Lix{Ls, Li} and Lox{Ls, Ly}
holds. We first show some basic results on R(G) and leaves of G.

Proposition 2.1 Suppose G is simple. Either |[Lj =1 or |L| > A+2
holds for VL € LF(G).

Proposition 2.2 Suppose G is simple. If {Ly,L2} € LF(G) is an
adjacent pair then |Ly| = |L,| = 1.

Proposition 2.3 dpy(v) > max{|V'| - (A + 1),0} for anyv € V'.

Proposition 2.4 Suppese A =3, LetY = {L, L3, Ly, Ly} C LF(G).
where all elements are distinct. Then (1) Y contains at least one
nonadjacent pair; (2) if {L1,L3} is a nonadjacent pair and we have
a pair {Ls, Lg} C LF(G) — Y then there is another nonadjacent pair
{Wy, Wz} C {Ls, Ly, Ls, Le}.

2.3 Examples

Let G = (V, E) with |[V| 3 X + 2 and A(G) = X be any given simple
graph for A = 3,4. Let OPT(M) or OPT(S) denote the cardinality
of an optimum solution to UW-() + 1)ECA(*,MA) or to UW-(A +
1)ECA(S,SA) for G, respectively. For A = 3, we give an example such
that OPT(S)=OPT(M)+1. Fig. 1shows a graph G with |LF(G)]| = 4.
R(G) are shown in Fig. 2. A structural graph F(G) of G is shown
in Fig. 3. {{u1,13), (u2,u)} is a solution to UW-4ECA(*,MA), while
E' = {(u1,us), (w2, us), (u3,14)} is a solution to UW-4ECA(S,SA) and
OPT(S)=3=0PT(M)+1.

Uy

Figure 2: The leaf-graph R(G) of G in Fig. 1.
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Figure 3: A structural graph F(G) of G in Fig. 1, where all edge-
weights are 3 and are not written. In this case leaves L; in LF(G)
the graph G shown in of Fig. 1 arc represented as nodes v; of F(G)
for i = 1,...,5: it may happen that F(G) has a node to which no
corresponding leaf of LF(G) exists.

3 Maximum Matchings of Leaf-Graphs

One of requirements in finding an eptimum solution to UW-(A+1)ECA
with A > 11is to obtain a largest D-set. Hence, in this section, the car-
dinality of a maximum D-set is investigated by considering a maximum
matching M of R(G).

Let M denote a maximum matching of R(G) in the following dis-
cussion unless otherwise stated, where we assume that A(G) = A with
A > L Put V(M) = {u,v|(z,v) € M}.

Proposition 3.1 [13] |M] satisfies one of the following (1) and (2):
(1) if A is odd and |[V'| = 2X then
virel -1 <Ml < (viizzh
(2) otherwise
max{0,min{|V'] = A, [[V'|/2]}} < M| < (IV')/2).
Corollary 3.1 [13] Suppose [V'| = 2) and A = 2m + 1. If |M]

LUV'l/2] ~ 1 then G = (V, E) is a complete bipartite graph with V ;
XUY, XnY =0, |X|=[V|=X and E = {(z,y)lz € X,y € Y}.

Proposition 3.2 If [V'| = X then 1 < [M]| < {|V']/2]).

4 Augmentation by Edge-Interchange

We explain an operation called edge-interchange which was originally
introduced in (17, 18] for an cfficient augmentation. It is also used
in [12, 13, 15, 14]. Let LF(G) = {¥1,...,Y,} denote the class of all
leaves of G and choose y; € Y; as a representative of ¥;. Let

Y = {ulY; € LF(G)}, ¢>2,

and let 7 = [q/2]. We denote V(e) = {u, v} for an edge e = (x,v) and
V(F) = U,er V(e) for an cdge set F. '
We can easily prove the next proposition.

Proposii.ion 4.1 If there is an attachment F for G such that V(F) =
Y C S for some S € Pgyr(A+ 1) then S = V(G).

4.1 Attachments

We have dg(Y:) > A and A(y;, 95 G) = A for Vy,y; €Y (i # 7). A
edge set F is called an attachment (for G) if and only if the following
(1) through (4) hold:

1) V() v,
(2) FNEG) =6,
(3) V(e) # V(c') (Ve,e' € Fie #£e'), and



v v = U2

Hi=1s

(2)

Figurc 4: Theedges e,¢’ and fi. 1 < i € 48 (1) w2y # v22i (2) v21 = 1220

(4) F has at most one pair f, f' such that [V(f)nV(f) =1ifqis
odd, and has no such pair otherwise.

Let F be any attachment for G. For cach ¢ = (u,v) € F, G+ F has
a new (X + 1)-component, denoted by afe.G + F), containing V{c).

We will show that we can find a minimum attachment Z{(A 4 1) =
{€1.+.. ¢} such that A(G + Z(A + 1)) = A + L. where r = [q/2].
Although there are two cases: 7 = 1 and r > 2, we discuss only the
latter case in the following. (Note that if r = 1 then we immediately
obtain the desired attachment F.)

4.2 Finding a minimum attachment

Suppose that there are an attachment F for G and vertices v;; €
Y - V(F), 1 <4,j < 2, where vy, vy3, vg; are distinct, and if up; is
equal to one of the other three then we assume that 1y, = vy (sce
Fig. 4). We use the following notations:

if va1 # vz

- - ’ (v21.v22)
L=G+F e={m.m), ¢ —{ if 2y = vp2

(v12.v21)
ale) = afe, L+ {e,e'}), ale') =ale', L+ {e,e'}),

fi = (1, v0), f2 = (n12,22), f3 = (var.v22)e o = (n12,0m),

where we set fy = f3 and ¢’ = fa = fy if v33 = vpa.

N a(f,',L“l"(f vf})
a(fi) = { alfi, L+ {/;,f:})

(Note that e,e'. f; € E(L),1 £ i £ 4.) We have Case I: a(e) Na(e') =
0; Case II: af{e)na(e’) # @ (that is, ae) = a(e')). For Case I, we will
show that there are two edges f, f' with V{f)UV(f') = V(e)UV(e)
such that

Vieyuvie) Calf, L+ {f, D =alf,L+{L1']

That is, we can add two edges so that one (A+1)-component containing
V(e)UV(e') may be obtained. Finding and adding such a pair of edges
f.f' is called edge-interchange (with respect to V(e;) UV (e2)).

Suppose that a(e) Nale’) = 8. Note that vy # vz in this case.
Let K be any fixed (c(e). a(e’))-cut of L + {e,e'}, and let B;, 1 <
i < 2, denote the two sets of L + {e,e’} such that B U B; = V,
By =V — By, K = (B1, By; L + {e.€'}), a(e) C By and a(e') C Ba.
K] = A = A(vy,v2; L") for Yo; € B, 1 < i < 2, where L” denotes L,
L+e L+4e or L+{ee}. Kisa (vy,vz)-cut of L. Suppose that f
and f' satisfy cither (i) or (ii):

@) f=h, f'=fnor (i) f=ff=fi
where {f, f'}NE(L)=0.

The next proposition shows a property of edge-interchange.

Proposition 4.2 (13, 17. 18] If a(e)Na(e’) = a(f1)Na(f2) = 8 then
a(fs)Nalfy) #0, that is. alfs) = a(fs)-

Such a pair f3, fy of Proposition 4.2 are called an edge-interchange
pair of L.

flci<?
ifaci<4

Corollary 4.1 [13] Let fi, fy be the two edges of Proposilion {.2,
L' = L+ {fs,fs} and f be either f5 or fy. Then L' = f has no
A-cut separating V(f3) from V(fs). Thatis, if L' — f hes a A-cut K
separaling a veriez of V(f3) from another one of V(f,) then K sep-
arates {u} from {v} UV(f') and V(f') is not separated by K, where
Vi) = {uro} and {) = {fa- o} - {F).

If A > 0 then repeating edge-interchange finds a sequence of edges,
e1,... e (r = [g/2] 2 1), as follows:

Viej-1)NV(e;) =0, 2<j<r—1,

if ¢ is even,

[}
Vier2)NVer) = { {yg-1} if g is odd,

and, for each ¢;, 1 < i € 7 — 2, there is an edge e} = (y;, ) with
y;j € Yj and gy € Yy such that e; and ¢; arc an edge-interchange pair,
where Go = G. and Giy1 = Gi+ €i41, 0 € i < r = 1. The details
are given in the statement of algorithms shown later. For notational
convenience, we denote

€; = (y2i—1, y2i) With y2i1 € Yaie1 NY and y2; € Y NY
for1<i<r=[q/2],
where if g is odd then we set Y41 = Y1,

Proposition 4.3 [13, 17, 18] Z(A+ 1) = {e1,...,¢.} is ¢ minimum
attachment such that M(G') = A+ 1, where G' = G+ Z(A +1).

From Corollary 4.1, another important property of cdge-interchange
is obtained.

Proposition 4.4 [13, 17, 18] G; has a leaf containing a(e;, G;) if and
only if the number of leaves of Gi~y is three.

Remark 4.1 [13] Let f, f' be the two new edges to be added to L =
G + F such that

VNV =0,V(f)UV(f') = {m1,v12,92,v22} and

v €Y ~V(F), 145 <2

as in Proposition §.2. Suppose that we are going to check whether
a(f,Gi+{f, ') 0alf',Gi+ {f.f'}) = @ or not. A mazimum flow
algorithm can be used. Note that we have only to apply the algorithm
10 G+ {f,['} (not to G;+ {f,['}) or to G+ {g.9'}. Thus this can
be done in O(¢(|V|,|E] + 2)) time, and we assume that a mazimum
flow algorithm for H can be done in ¢(|V|,|E|) time. [10] introduced
a sparse graph G"' = (V, E") for a given graph G = (V, E) such that
the following (1) through (3) hold for any u,v € V:

(1) Mu,v; G") = X if Mu,v;G) 2 X;
(2) AMu,v; G") = Mu, v; G) if Au,v; G) < A;
(3) B C E and |E"| < A(IV] - 1).

[10] showed that G" can be obtained in O(|V|+|E|) time. By utilizing
the results in [{], above checking operation can be done in O(A|V])
time.

4.3 Edge-interchange operation on a structural
graph if A is odd

The subject has been discussed in [13], and the results are summarized

in the following.

Let f,f' be the two new edges such that V(f) N V(f') = 6, and
V(fYUV{f') = {v13,v12, 21,22} as in Proposition 4.3. Suppose that
we are going to check whether a(f, Gi+{f, f'N)Na(f', Gi+{/, f'}) = 8
or not. We will show that, if A = A(G) = 3 (or odd, in general), finding
Z(X + 1) of Proposition 4.3 can be done in O(|V]) time by using a
structural graph F(G), which is a tree in this case, where we assume
that F(G) has already been available. Clearly F(G) also has g leaf
nodes and may be considered as F(Go). By executing a depth-first
scarch starting from a node that is not a leaf node, we can assign all
leaf nodes vy,...,vg of F(G) as 1,...,q in the order they are visited,
where we assume that g > 4. Let dfa(v;) denote this number assigned
to v; and let T denote the depth-first tree that is treated as a directed
trec or an undirccted tree interchangeably. When the search returns
from a node v to its parent = we obtain a value min(v), where min(v)
is the minimum of dfn(v") among all leaf nodes v’ in the subtree rooted
at v of T (sec Fig. 5), where we set min(v) = 0 for any leaf node v.
The values dfn(v) and min(v) for all nodes v of F(G) can be obtained
in O([V(F(G))}) time, which is O(|V]). Let v',v"” be any leaf nodes of
T with dfn(v') < dfn{v"). We trace back from v" toward the root of
T up to the first node w such that dfa(v') > min(w). Then w is the
Jowest common ancestor of v’ and v”, and the (v',v")-path of T can
be obtained.

Let f = {a,b) and f' = (c,d) for simplicity, where {a,b,c,d} =
{911,012, 121,722 }. Let Pay (Peq, respectively) be the path between a
and b (between ¢ and d) in F(G;) (i = 0 initially). Note that (f, Gi+
(LD Na(f,Gi+ {f. f}) = 8 if and only if V(Pap) N V(Pea) = 0.
The checking operation consists of two procedures: the first one is to



min(w) = dfn(v')

Figure 5: A schematic explanation of leaf nodes and their lowest com-
mon ancestors.

detect whether V(Pqp) N V{Ped) = @ or not; the second one shrinks
V(Pa) U V(P.q) into a node in order to construct F(G; + {f, f'}) =
F(Gi41) whenever V(Pap) N V(Pea) # 0. These two procedures can
be combined into one procedure, but, for case of understanding, we
explain them separately.

We provide a characteristic vector C of length [V] and a stack §. We
first find Py which consists of a path Py, from a to w plus another
one Py from w to b, where nodes are kept from a to w and then
from w to bin S. We sct C(v) = 1 if only if v € V(Pq). Similarly
we continue finding Peq. In this second scarch, however, we check
whether C(v) = 1 or not, for cach visited node ». Once there is a node
@ with C(v) = 1 then V(Py;) N V(Pey) # 9§, and after Peq is found,
we proceed to the second procedure. Otherwise we will end up with
resetting C(v) = 0 by popping cach v € V(Peq) out of S.

In the second procedure the two paths Pg and Pq are shrunk into
a node z so that F(G; + {f, f'}) may be constructed, similarly to [11]
and we add two virtual edges (¢, z),(d,z) to F(G; + {f. f'}). Hence
edges in these two paths are not visited again by the subsequence
searches.

If V(Pap) N V(Pea) = @ then only one more combination, say (a,c)
and (b, d), will be checked. Hence each edge of E(Pay) U E(Peq) are
visited at most twice in the first procedure, and similarly in the second
procedure. Therefore, edge-interchange operation for all leaf nodes
v1,...,0, can be done in O(|V]) time since amortizing time spent to
scarch all virtual edges is O(|V]).

5 Solving UW-4ECA(S,SA) with A =3

It is shown in Section 4 that repeating edge-interchange constructs
Z(A +1). Adding Z(A + 1) to G, however, may create multiple
edges. Hence we have to choose nonadjacent leaves of G during edge-
interchange. This is done in this section by combining the results given
in Sections 3 and 4. The main point in this and the f{ollowing sections
is that there exists a solution E' if R(G) has a maximum matching M.
{13] has already solved the problem, and the results are summarized
in the following.

Let G = (V, E), with |V]| 2 5 and A(G) = 3, be any given simple
graph. Let LF(G) = {Li|l i < q} and V' = {vy,..., 2.} (¢ = [V']),
I = {1,...,q}. An edge set E’ of minimum cardinality such that
G + E' is a simple graph with (G + E') = XA+ 1 (X = 3,4) is called a
solution.

The following Propositions 5.1 and 5.2 are obtained for general A,

Proposition 5.1 [13] Let SOL be a solution for G and M be a maz-
imum matching of R(G). Then

V'l - 1M]| < |SOL). (5.1)

Proposition 5.2 [13] Suppose that G is A-cdge-connected. If g = 2
then the following (1) or (2) holds.

(1) If InXLy then |M| = 1, E' = {(uy,u2)} is a solution, and
OPT(S) = OPT(M) = 1.

(2) If LyxLy then |M| = 0, there is a vertez x € V such that B’ =
{(u1,z), (u2,3)} is a solution, and OPT(S) = 2= OPT(M) +1.

Proposition 5.3 [13] If ¢ = 3 then there are distinct edges €1, ez such
that E' = {e1, €2} is a solution, and OPT(S) = OPT(M) = 2.

Proposition 5.4 [13] Suppose that ¢ > 4. and let J = {1,2,3,4},
Vs ={Ls1, L2, L3, Ly} and Ly = {L;]j € J}.

(1) If Vy consists of a D-combination then V; can be partitioned into
a D-combination, say {{L].L5},{L3,L}}}, such that G' = G +
{(uf. uy). (u3,ul)} is a simple graph having a §-component S that
contains every L; € Ly, where uj € L}, j€ J.

(2) If V; does not consist of a D-combination then there are three
distinct cdges ey, e, e3 such that G' = G + {ey,€2,€3} is a simple
graph having a §-component S that conlains every Lj € Ly.

By combination Propositions 5.1 and 5.4, we obtain the following
Corollary 5.1.

Corollary 5.1 [13] If q = 4 then the following (1) or (2) holds.
(1) If Vs consists of a D-combination then OPT(S)= OPT(M) = 2.

(2) If V5 docs not consist of a D-combination then OPT(S) = 3 =
OPT(M) + 1. ]

Bascd on these results, we propose an O(]V]log |V{+|E}) algorithm
GS3 for solving UW-4ECA(S,SA) for G with A(G) = 3.

Algorithm G§3
/* Input: a simple graph G = (V, E) with A(G) =3 */
/* Output: a solution E' */
begin
1. comstruct a structural graph F(G) of G: V' «— {all leaves of F(G)};
construct R(G) = (V', E'); LF' — LF(G); E' —®;
3. if |LF'| > 7 then
begin
choose nonadjacent pairs Dy = {L;.La}. D2 = {La, L4}
with Dy N Dy =@ and DU D, C LF;
goto Step 6
end;
4. if 5 <|LF'| <6 then
find a maximmum matching M of R(G)
else /* |[LF'| < 4 */ goto Step §;
5. Dy e {Ly, L2} ((v1,v2) € M and L; = L(x;) for i = 1,2);
Dy = {La, Ly} ((v3,v4) € M — {(v3,22)} )5
and L; = L(v;) fori = 3,4 );
/* edge-interchange is going to be done */
6. find a D-combination {{L}, L4}, {L}, L{}}, whose union is Dy U Do,
such that two edges fy = (u},u3), fo = (u3, u) with v} € L},
7 =1,2,3,4, satisfy that G + {f1, f2} is a simple graph having
a 4-component S with L} € §,1=1,2,3,4;
construct F(G + {f1, f2}) by shrinking S into one vertex z;
F(G) — F(G+ {fu, 1)) + {(vh,2), (v 2)}:
7. LF' — LF — (L}, L}};
R(G) « R(G) — {v}. vy} (with L} = L(x;) for i = 1,2);
E' — E'U{f1}; goto Step 3:
8. Find a solution E” for G” = (V, E U E') by using Propositions 5.2
and 5.3 and Corollary 5.1; E' — E'UE”
end.

o4

Theorem 5.1 [13] The algorithm GS3 correctly finds a solution E' to
UW-{ECA(S,54) for any given G with M\(G) = 3 in O(|V|log |V|+|E])

time.

6 Solving UW-5ECA.(S,5A) with A =4

In this section, let G = (V, E), with [V| > 6 and A(G) = 4, be any given
graph. [13] has already proposed an O(|V|* +|E}) algorithm for the
problem. The results are stated in this section, and then an improved
algorithm will be given in the next section. The discussion proceeds
almost analogously to the previous section; there are, however, some
differences.

Proposition 6.1 (18] Let M' = {{vai—y,vz:}]l i < |M']} C M and
suppose |M'| > [A/2]+1. Then one of the following (1) and (2) holds.

(1) There are indices i,7 with 1 < 1,7 < |M'| and i # j such that
{Lai-1, Lo} Laj-1, L2}, where Lj = L(v;) for v; € V'.
(2) For each (vai—1,vz) € M', G' = G + {(u2i-1,u2)} is @ simple

graph having a (X +1)-component X, with Lp; .y U Ly € X, such
that X is not a leaf (X + 1)-component.

In the subsequent Scctions 6.1 and 6.2, we consider a solution in
the case with |LF(G)| < 6, and then we propose an algorithm G54 in
Section 6.3 by handling the case with [LF(G)| > 7.

6.1 Solutions when |LF(G)| < 6
|M] = ||LF(G)I/2]

The following Propositions 6.2 through 6.6 consider the case where

|LF(G)| € 6 and |M| = ||LF(G)}/2].

and



Proposition 6.2 [13] If LF(G) = {Li,L2} and LiXLy (that is,
|M| =1) then {{uy,u2)} is a solution for G, showing that OPT(S) =
OPT(M) = |M|. If LF(G) = {L;.Lg,L;;} and LyXLy then

(1M| = {3/2) = 1 and) there is a solulion {e),e;} for G such that
V({e1.e2}) € Ly U Ly U L3, showing that OPT(S) = OPT(M) =
|M] 4+ 1.

Proposition 6.3 [13] Suppose |[LF(G)| > 4 and {Ly, Ly, L3. Ls} €
LF(G). If (v1,w4) € E with wi € L; for i = 1,4 then both of the
following §-cuts (S,5) and (T, T) do not ezist: a 4-cul (S,5) with
LyULy C S and LyULg € S: a f-cut (T, T) with L;UL; CT and
LyULyCT.

A minimum cut is called an cdye-increasing cut (EI~cut for short)
with respect to a pair {Ly, Lz}, {La, Ly} if the pair {L1,L;} and
{L3, L4} is_an I-combination and if (S,S) with Ly UL, C S and
LzuL, C S is a minimum cut.

Proposition 6.4 [13] Suppese |LF(G)| > 4, {L1,L2,Ls, L4} C
LF(G), and L;XLi+1 for i = 1.3. Then the following (1) or (2) holds.

(1) If G has no El-cut with respect to a pair {Ly, L2}, {L3, Ls} then
there is a set {ey,e2} such that G + {ey, ez} has a S-component
containing {v € L;]1 < i < 4}: thercfore if |LF(G)| = 4 then
OPT(S) = OPT(M) = |M].

(2) Otherwise, there is a sct {e1, 3, €3} such that G+ {ey.ez,¢3) has
a 5-component conlaining {u € L;|1 < i £ 4}, and adding at most
two edges to G does not create such a 5-component: thercfore if
|LF(G)| = 4 then {ey, €3, €3} is a solution for G, and OPT(S) =
OPT(M) +1= [M|+1.

Proposition 6.5 [13] Let LF(G) = {L:]1
|5/2] = 2 and) there exists a solution {e;|1
that OPT(S) = OPT(M) = |M]| + 1.

Proposition 6.6 [13] Let LF(G) = {Li|1 < i < 6}. Then (M| =
LLF(G)|/2] = 3 and) there is a solution {&;]1 < i & 3} for G, showing
that OPT(S) = OPT(M) = |M|.

< i < 5). Then (|M| =
< i < 3} for G, showing

6.2 Solutions when and
[M]=ILF(G)|/2] -1

The following Proposition 6.7 is obtained when [LF(G)] < 6 and

IM| = [ILF(G){/2} - 1.

ILF@)} < 6

Proposition 6.7 [13] Let LF(G) = {Lijl < i £ I.} If2 <
ILF(G)| = & < 6 and |M| = ||LF(G)|/2] — 1, then there is a solution
{eill <i < |LF(G)} - |M]} for G, and OPT(S) = OPT(M)+1.

6.3 An algorithm GS/ and its time complexity

In this subsection, we propose an algorithm GS4 which finds a solution
E’ for G with A(G) = 4, and show its correctness and time complexity.

Algorithm G§4
/* Input: a simple graph G = (V, E) with A(G) =4 */
/* Output: a solution E’ for G */
begin

construct R(G) = (V', E"); LF' — LF(G);
E @, E" —0;
if |LF'| > 7 then
begin
if [LF'|# 8 then k 3
else k — 4;
find a matching M’ = {(v2i1,v2)[1 <i < k}
with {L(v)|v € V(M')} C LF’;
/* use Proposition 6.1 in the following */
if there are two edges e1 = (u1,u2),e2 = (u3, u4) such that
e1,e2 € M and {L1, Ly} Y{La. Ly} then
begin
Dy «— {L1,L2}; Dy « {L3, Ls}; goto Step 6
end

EESES

else
begin
choose an edge f2 = (u3, uq) with (v, vq) € M';
A~ {L3,L,}; goto Step 7
end
end;
5. if2 < [LF'| < 6 then goto Step §;

construct a structural graph F(G) of G; V' « {all leaves of F(G)};

Figure 6: Replacing a cycle whose length is three in F(G).

/* edge-interchange is going to be done */
6. Find a D-combination {{L}, Ly}, {L}, L{}}, whose union is Dy U D,
such that two edges f; = (u,,u,) fz = (w3, ug) with u} € L,
7 =1,2,3.4, satisfy that G + {j, f2} is a simple gmph havmg
a 5-component S with L1 € S5, i=1,2,3,4;
A = {Ly, L}
LF' — LF' = &; R(G) — R(G) - A; E' — E'U{f,}; goto Step 4;
8. Find a solution E” for G" = (V, EU E') by using Propositions 6.2
through 6.7; E' — E'U B
end.

~

We can prove the following theorem similarly to Theorem 5.1: the
increase in time complexity is caused mainly because we have to handle
a structural graph F(G) that is a cactus when A(G) = 4.

Theorem 6.1 The algorithm GS{ correctly finds a solution E' to
UW-5ECA(S,SA) for any given G with \(G) = 4 in O(|V|* + |B])
time.

In Scction 7, we will reduce the time-complexty of GS4 from
OV + |E]) to O(IV}log [V] + | E]).

7 Edge-interchange operation on a struc-
tural graph when A =4

When A = 4, the procedure to be proposed in this section finds an
edge set B such that if it is not a solution for G then F(G + E}) itself
is a tree or is a cactus that can be equivalently transformed into tree.
This transformation can be done in O(|V|log |V]+|E]) time including
construction of F(G+ E}). By utilizing the resulting structural graph,
the algorithm proposed in Section 4.3 finds a solution E for G + E)
in O([V]) time. We can show E] U E/ is a solution for G. Hence we
find a solution for G in O(}V|log[|V) time when A = 4.

In this section we assume A = 4. Let F(G) = (N, A) be a structural
graph of G. Note that LF(G) = {p~}(n)}n is a leaf node}. For any
cutvertex u € G and each component S of G ~ u, S U {u} is called a
u-block of G.

We obtain the following proposition for a structural graph.

Proposition 7.1 Let C be any cycle of F(G) whose length is ezactly
three, and V(C) = {ny,na,n3}. A graph F' = (N’, A’) remains to be
a structural graph of G, where N' = NU {z}, 4' = AU {(ny, )|} <
k < 3} — E(C) with each (ny,z) having weight X and z is an empty
node with z ¢ N (see Fig. 6).

(Proof) Omitted. [s]

By Proposition 7.1, we can obtain a structural graph F which has
no cycle of length three in O(|N]) = O(|V]) time, since F(G) is a
cactus. In the rest of this section, we assume F(G) has no cycle of

length three.
Now, we consider how to find a solution to UW-5ECA(S,SA) with

MG) = 4 in O(|V]log|V] + |E]) time. The proposed procedure is
based on the next proposition.

Proposition 7.2 Let C be any cycle of length at least four in F(G),
1y, ny be nonadjacent nodes in V(C). Let N; be the union of those
n;-blocks of F(G) none of which contains V(C)— {n:}. Then, for any
n} € Nj for j = 1,2, p~" (n})Xp ™" (n}).



~

Figure 7: A situation of Proposition 7.3, where the numbers next to
nodes are given by NUM_F.

(Proof) F(G) — N; U N, has exactly two connected components Ny
and Ny. Let V! = {v e p~t(n')jn' € Ny} for i = 1,...,4. G has two
Acuts Ky = (WU VS,V UV]) and Ky = (VU V[, JUV)), crossing
cach other in G. By the proof of Proposition 4.2{sce [13]), we have
(W}, V4 G) = @, showing that p~ ! (n])Xp =} (n}). o

We can obtain the following corollary from Proposition 7.2.

Corollary 7.1 For any ny,ny € N, if p™ (ny)xp~"(nz) then, for any
cycle C of F(G), there is an elementary path P between ny and ny in
F(G) contains at most one edge of C.

We first show the following procedure NUM_F which assigns a num-
ber to cach leaf node in F(G).

Procedure NUM_F;
begin
1. Assingn colors to edges of F(G), with the same color to all cdges

means that max{y(n){n € Nb) < min{y(n)jn € N¥}. On the other
hand we have min{y(n)|n € N*} > max{y(n)ln € N} by the method
assigning B(n) and the definition of y(n), a cntradiction. ]

Any pair of leaf nodes n;,n2 mentioned in Proposition 7.3 is called
an admissible pair of F(G).

We show the following procedure EDGE_FIND_E which finds a edge
set E} which is cither a solution or a edge set by whose addition, one of
structural graphs of the resulting graph is a tree. where the procedure
is based on Algorithm Aug.l in [11}.

Procedure EDGE_FIND_E
/* Input: a simple graph G = (V, E) which A(G) is even */
/* Output: a subset E} of cdges */
begin

—

2. Assign the number 8(n') to cach leaf node n' in F(G) by NUM_F;,
3. E, = {(v;,1)}{n1.m,} is an addmissible pair of F(G),
1< B(m) < [9/2], vi € p7 (no) for i = 1.2, and (v, 5} € A};
end

Proposition 7.4 If any cycle of F(G) has length at least four, then
F(G + E,) is a tree. If has any cycle of length three then it is changed
to an equivalent irce by repeated application of Proposition 7.1.

(Proof) Omitted.

We can casily prove the following proposition.

Proposition 7.5 Let (S,5) be any A-cut in G, and (N1, N;; F(G)) =
{f1, 12} be the cut representing (S, 5). Assume that Ny contains no
more leaf nodes than Ny. Then for any leaf node n, € Ny, N; has a
leaf node ny with f(n2) = B(n1) + [g/2)(modg).

Proposition 7.6 Let X be a leaf of G with B(p(X)) = [q/2]. Let Y;
(Ya, respectively) be the leaf of G such that B(p(Y;)) = 1 (B(p(Y2)) =

of cach clementary cycle and different colors to separate cycles; g). If, for some (u,v) € E,, a (A + 1)-component S containing {u,v}

2. Choose any node n of F(G);
3. Execute a depth first search, starting at n and assigning the

of G + E,is a leaf then q is odd, z € X, y € Y; and XxY;, where
z € {u,v}, and {i,j} = {1,2).

number #(n') to each leaf node n' in the order of first visit by the

depth first search, in the following manner:

in any node v is visited first by way of a cycle edge e = (u,v)
of color C(e) then visit any other adjacent node w and

the edge (v, w) of color different from c(e), before visiting the
other edge (v,u’) of color C(e).

end;

Clearly NUM_F runs in O(|V]) times.

Proposition 7.3 Let C be any cycle of F(G) whose length is at least
four, and Ni and N; be the components in F(G) - {(a,b), (c,d)},
where (a.b),(c,d) € E(C) and the four vertices a, b, ¢ and d are
all distinct (see Fig. 7). Then there is at least one pair of leaves
ny € Ny, ny € Ny such that (B(ny) + |g/2]) = B(n;)(modq) and
p7H(m)Xp " (n2), where q is the total number of leaves of F(G).

(Proof) Let N; be the sct of all leaves in N} fori = 1,2. Assumea,c €
Nj, b,d € Ny and |N,| < | N.| without loss of generality. We have three
possible cases: (i) M = {1,...,p'}U{p,...,q} with 1 < p' <p < q,
(i)) M = {p,...,q} with 1 < p < ¢, or (iii) N} = {1,....p'} with
1<p' < q. Forany n € Ny, let

7(n) = (B(n) + (g — p) + 1)(modq). for (i) and (ii);

7(n) = B(n).

Note that {y(n)ln € M} = {1,...,]M]}.

Suppose p~!(n1)xp~*(ny) for any pair n; € Ny and n, € N, with
7(n2) = 7(m1) + |g/2). Clearly, ny € N, since |[N;| < [Na2f. By
Corollary 7.1, it suffies to consider the case under the length of C is
four.

For any z € {a,b,¢,d}, let N be the set of leaf nodes in N — B,
where B, is the z-block containing V(C) — {z}. We may assume that
N° has a leaf node n with y(n) = 1 without loss of generality. Let
M?* = {y(n)|n € N*} for any z € {a,b,c.d}. Then M® = {i[1 <
i <IN}, M© = {i]|N°]| +1 < i < |N%| + |N€|} Tt follows from
an assumption and Corollary 7.1 that {n|n’ € N° y(n') + Lq/ZJ =
7(n)} € N® and {n]n' € N¢ (n') + le/2] = ~4(n)} € N9 This

(Proof) Assume that the (A + 1)-component S is a leaf. Clearly,
(5,5:G) = (8,8;G + E,). Let (Ny, Ny; F(G)) be cither a bridge or
a cutpair of F(G) representing (S, 5; G). From Proposition 7.5, there
must exist a pair of leaf nodes ny,nz such that n; € Ny and B(ny) =
B(n1) + |9/2)(modg). For any such pair, we have p=3(n;)xp~1(n;)
in G, otherwise (S, 5:G) is no longer a A-cut of G + E. If either g is
even or B(n;) # [q/2] then p~(n,) is a (A + 1)-component in G + E,
since E; has no edge included upon a vertex in p~(n;), contradicts
the fact that S is a leaf since p~(n) C S. a]

Next corollary is contraposition of Proposition 7.6.

Corollary 7.2 If either (q is even) or (g is odd and u,v ¢ X) then
the (A + 1)-component S of G + E! is not a leaf. :

We obtain the following proposition from Proposition 7.3.

Proposition 7.7 If [LF(G+E!)| 2 7 then E' = ELUE" is a solution
for G, where EJ is a solution for G + E!,.

(Proof) Clearly, MG + E') = A + 1. We only show that |E'| is
minimum. Let ¢' be the number of leaves of G + E!. By Proposition
7.6 and Corollary 7.2, if the (A + 1)-component S containing {v,v}is
not a leaf in G for any (u,v) € Ej, then ¢ = ¢ — 2|E!|; otherwiseq' =
7 - (2|B;| - 1). By Theorem 6.1, [E}| = [¢'/2]. Hence |E'| = [9/2}
in each of two cases, a

If [ILF(G)| 2 7 and |LF(G + E)] < 6 then we select [(7— |LF(G +
E,))/2] edges in Ej, delete the edges from E’, and denote the resulting
edge set as E,'. Clearly, [LF(G + EV)| is seven or cight. We find a
solution for G + E;' by using Algorithm G54 in Section 6.3. This is
done in O(|V]) time. Hence, if |[LF(G)| > 7 and |[LF(G + E!)| < 6
then we find a solution for G in O([V]log|V| + | E}) time. We obtain
the following proposition which can be shown similarly to the proof of
Proposition 7.7.

Proposition 7.8 If[LF(G)| > 7 and |LF(G+E})| < 6 then E/UE!"
is a solution for G, where E}" is a solution for G + EI.

Construct a structural graph F(G) of G; V' « {all leaf nodes of F(G)



IF |LF(G)| < 6 then we find a solution for G in O(|V}]log|V|+|E])
time by using Algorithm GS84 since Algorithm GS4 does not have Step
5 in this case.

From the above discussion, we can obtain the following theorem.

Theorem 7.1 There is an algorithm that correctly finds a-solution E'
to UW-5ECA(S,SA) for any given G with A(G) = 4 in O(|V]log [V]+
|El} time.

8 UW-(\+1)ECA(*,SA) with A = 3,4

We will show that UW-(A+1)ECA(*,SA) with A = 3 or 4 can be solved
by the algorithms propesed in Section 6 and 7, slightly medifying them
for handling G that may be a multiple graph.

Proposition 8.1 Suppose LyxL; for Ly, Ly € LF(G). Then the fol-
lowing (1) or (2) holds:

(1) if Ta(A+ 1) 2 3 then |Lh]IL2| < [M2];
(2) if IC(A + 1) = 2 then |Ly||Ls| € X

(Proof) First, we consider the case (1). Suppose [L1]|L2| > [A/2]+1.
If A = 2m (= 2m—1, respectively) then |Ly]|Lz] 2 m+1 (2 m). Since
LyxLa, the definition of an adjacent pair implies that G has [Ly||L]
edges between Ly and Ly. We have dg(L;) = A (i = 1,2), and

L1 ULy V = LyUL) =22 = 2Ly}l Lal € A= 1,

which contradicts the fact that G is A-edge-connected.

Next, we consider the case (2). If we assume |Ly[|Lz] > A then
dg(Li} > A (i = 1,2), contradicting the fact that L, and Lz are leaves
inG. o

Next, we consider a solution to UW-(A+1)ECA(*,SA) with A = 3.4.
Clealry we obtain the following poposition.

Proposition 8.2 If there is a solution for G then there does not exist
e leaf L € LF(G) with L = {u} and {(uv,")|u’ € V - {u}} C E.

Proposition 8.3 Suppose A = 3,4, |LF(G)| > 3 and LyXL; for a
pair of leaves Ly, Ly € LF(G). Let G' = G + {{uy,u3)} with w; € L,
i=1,2 and suppose G' has a leaf (denoted by L') with Ly UL, C L'.
Then the following (1) or (2) holds:

(1) in case [Pg(A + 1)] > 4 and |LF(G)| > 3, we have L'Yg L3 for
any Ly € LF(G) ~ {L1, L2};

(2) in case |Tg(A +1)| = |[LF(G)] = 3, we have L'xg L3 if and only
ifA=4, Ly = {u} and X = {(x,v')]u’ € V = {u}} C E.

(Proof) We have |L'| > 2 since Ly U L, € L'. First, we consider (1).
|L'||Ls] 2 2, so if X = 3 then, by Proposition 8.1(1), clearly L'Xg:Ls.
We assume A = 4. Suppose L'xg+L3. Since |[I'g(A+1)] > 4, G’ has
more than three vertices. Hence, by Proposition 8.1(1), since |L/| 2 2
and L'xg-Ls, we have |L'| = 2 and |L3| = 1. This means |L;} = 1
(i =1,2). Let Z = L; U Ly then (Z,%;G) is a 4-cut since L' is a
leaf. dg(Li) = dg(L2) = 4, [(2,2:G)] = 4 and |Li| = 1 (i = 1,2),
so (u1,uz) € E, with u; € L; for i = 1,2, exists and LixLa, which
contradicts the supposition with LyX.La.

Next, we consider (2). Then A = 4 since if |Tg(A+ 1)} is odd then it
does not hold that de(X) is odd for any X € Tg(A+1). We will show
only necessity since clearly sufficiency holds. Suppse [Tg(A +1)] =
ILF(G)| = 3 and L'xc:La. Then E = {(us,u;), (uhuj)l i< i< 3}
in G, and T (A+1) = {L', L3}, where u;,u! € L; and u;,uj € L;. By
Proposition 8.1(2), |L']|La] < 4 holds. Hence |L'} > 2 and [L3] < 2. If
we assume |Ls| = 2 then |L'| = 2, dg(L1) = da(L2) = 4, |(Z,Z;G)| =
4for 2 =Ly ULy, and |Li| =1 (i = 1,2). Hence there is (u1,u2) € B
with u; € L; for i = 1,2 and LyxL3, contradicting a supposition.
Hence L3 = {u} and {(z,v")|u' € L'} = {(v,u")}' € V- {u}} C E
since LF(G') = {L', L3} and L'x¢ L. a]

If G is a multiple graph without leaves L mentioned in Proposition
8.2 then, by using Proposition 8.3, the discussion similar to Sections 3,
5 and 6 when G does not has the leaf L of Proposition 8.2 is possible.
(It should be mentioned that the proof of Proposition 5.2 requircs
some modification in handling UW-(A + 1)ECA(*,SA): the result is
the same.) Hence we obtain the following theorem.

Theorem 8.1 The algorithm GS3 (GS4, respectively) can be used in
finding a solution to UW-(A + 1)ECA(*5A) with A\(G) = 3 (with
AG) = 4) in O(|V|log|V| + | B) time.

The paper has proposed an O(|V|log|V}| + |E|) algorithm for solv-
ing UW-4ECA(*5A) with M(G) = 3 (UW-5ECA(S,SA) and UW-
SECA(*SA) A(G) = 4). The paper is a first step toward UW-
EKECA(S,SA) and UW-KECA(*,SA), which are left for future research.
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