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Abstract. We prove that d-ary de Bruijn and Kautz digraphs can be embedded in (d + 1) pages.
From these results, the pagenumbers of binary de Bruijn and Kautz digraphs are determined to be 3.
Also we prove that the pagenumber of shuffie-exchange graph is 3.

1 Introduction

In this paper, we investigate embeddings of digraphs or graphs in structures called books. A book consists
of a line called the spine and some half-planes called pages, sharing the spine as a common boundary.

Although we define terminologies of bookembedding only for digraphs, those for graphs are similarly
defined. A bookembedding of a digraph G consists of the linear ordering of the vertices of G on the
spine and the assignment of arcs of G to pages such that there is no crossing of arcs on each page. The
pagenumber of G is the minimum number of pages of books in which G can be embedded. The width of a
page in a bookembedding is the maximum number of arcs that cross any line perpendicular to the spine
of the book. The pagewidth of a bookembedding is the maximum width of any page of the book. The
cumulative pagewidth of a bookembedding is the sum of the widths of all pages. ‘

The bookembedding problem has been motivated by several areas of computer science (see [2]). The
most famous one is the DIOGENES approach to fault-tolerant processor arrays, proposed by Rosenberg
[8]. Bookembeddings that use few pages, small pagewidth and small cumulative pagewidth correspond
to more hardware-efficient DIOGENES layout. We notice the problem from this point of view. That is,
we study efficient bookembeddings of networks.

Results on bookembeddings until now can be roughly divided into two categories. One is related to
bookembeddings of graph class of given genus ([9),[4],[5]). The other is related to bookembeddings of
special graph family. In this category, complete graph ([1]), complete bipartite graph ([6]), tree, grid, X-
tree, hypercube ([2]), butterfly-like graphs ([3]), binary de Bruijn graph and shuffle-exchange graph ([7])
have been studied. The pagenumbers of these graphs except for complete bipartite graph, hypercube,
binary de Bruijn graph and shuffle-exchange graph have been determined.

In this paper, we treat d-ary de Bruijn digraph, d-ary Kautz digraph and shuffle-exchange graph. In
{7], it has been shown that binary de Bruijn and shuffle-exchange graphs can be embedded in 5. pages.
We prove that d-ary de Bruijn and Kautz digraphs can be embedded in (d + 1) pagés. From these
results, the pagenumbers of binary de Bruijn and Kautz digraphs are determined to be 3. (Considering




the undirected versions, we get similar results for de Bruijn and Kautz graphs.) Also we prove that the
pagenumber of shuffle-exchange graph is 3. .

Let G and H be a digraph and a graph, respectively. The vertex set and arc set of G, the vertex
set and edge set of H are denoted by V(G); A(G), V(H) and E(H), respectively. Let Y C A(G). Then
(Y) stands for the subdigraph of G arc-induced by Y. For W C E(H), (W) stands for the subgraph of
H edge-induced by W. The underlying multi-graph of G is a graph obtained from G by replacing each
arc with the corresponding edge. Moreover replacing multi-edge of the underlying multi-graph of G with
single edge, the underlying graph of G is constructed. Let v € V(G). The set of arcs which are incident
from v is denoted by I'g(v). The set of integers {0, 1,. — 1} is denoted by Z4. A vertex ordering of
G is a bijection from V(G) to ZIV(G)[ A vertex ordermg of a graph is similarly defined.

In section 2, we define the vertex ordering of de Bruijn digraph and show some propertles of this
ordering. In section 3, we first introduce an isomorphic decomposition of de Bruijn digraph. Then we
prove that these isomorphic subdigraphs can be embedded in 2 pages under the vertex ordering defined
in section 2. At the end of the section, we show that d-ary de Bruijn digraph can be embedded in (d+1)
pages. In section 4, we apply the bookembedding of de Bruijn dlgraph to bookembeddings of Kautz
digraph and shuffle-exchange graph.

2 Vertex ordering of de BruijnAdigraph

The D-dimensional d-ary de Bruijn digraph B(d, D) is defined as follows.

{ V(B(d, D)) = {(vo, v1,..-,vp-1) | vi € Z4,0 < i < D}
A(B(d D)) = {((Uo,vla -avD—l)»(vla'--,vD—iyf)) I T € Zd}

Let v = (vg,v1,...,vp_1) € V(B(d, D)). If v; = o for all i € Zp, then we abbreviate v to (a)”.
We introduce some notations in order to define the vertex ordering of B(d, D).

o (vg,v1,...,vp-1) ® & = (vo,¥1,...,vp-1,2) forz € Zy.

o p((vo,v1,--.,UD=1)) = (V0,V1,.+.,UD-2) for D > L

o o((vg,V1,.-.,Up=-1)) = Up_1-

We define the vertex ordering ¢4, p recursively as follows.
Definition 2.1

1. pg1((@)) =i, 0<i<d.

2. Let D > 1. Assume that ¢4 p isAdeﬁned. For v € V(B(d, D)), let

{ e, ¥ o) ={w € Tpa,p)(v) | pa,0(v) < pa,p(w)},
0,, (V) = {w € Tpa,n)(v) | ¢4,0(w) < ¢a,p(v)}

Also let O;,’d 5 (v,4) be the i-th least clement of OF, _ (v) with respect to the ordering of p4,p. Simi-
larly, O, ,(v,4) is the i-th least element of Oy, ,(v). Let &(B(d, D)) = {()? € V(B(d,D)) | a €
Z4}. Now we define a bijection Ya,p41 from Zgp+r to V(B(d, D + 1)) as follows.
{ v®0(0;, ,(v,0(v) - j)), 0Zj<a(v), }
v V), i=oW), b, i veB(ED)),
Yd,0+1(dpa,p(v)+]) = v@®a(0f, ,(v,d = j)), o(v)<j<d,
v@o(0g, (vd=3j)), 0<j<d, f v¢®B(d,D)) and O}, ,(v)=¢

véBa'(Ow‘D(v d-3j)), 0<j<d, if vg ®(B(d, D)) and Ow,n(”) =¢

Then let w4, py1 = lb;,})-;-l'
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Figure 1: Configurations of the vertices of B(3,D) by v3,p for D = 1,2 and 3.

Example: For D = 1,2 and 3, configurations of the vertices of B(3, D) on the spine by p3 p are
shown in Figure 1.
From the definition of ¢4 p, the following proposition is clear.

Proposition 2.2 Let u,v € V(B(d,D)), D > 1.

wd,0-1(p(1)) < wa,0-1(p(v)) = va,p(v} < ¢d,p(V).

On the following three lemmas which contain two propositions, we prove only the first proposition.
Another proposition is similarly proved.

Lemma 2.3 Let D > 1. Let v € V(B(d, D)) such that v # (a)P for any a € Zy.

L O;d,D-l(p(v)) =¢=> O;J.D(v) =¢,
2. Ogspoi(p(v)) == O, ,(v) = ¢.
Proof. Let v = (vp,vy,...,up_1) such that v # (a)? for any o € Z;. Assume O;d'p_l(p(v)) =

¢. Then @ap_1{(v1,.-.,Yp-2:vp-1)) < wa,0-1((v0,v1,-..,vD-2)). Since v # (a)? for any a € Z,,
@d,p-1((v1,...,9p-2,vp-1)) < vda,p-1((v0,v1,...,VD~2)). From proposition 2.2,
¢4,0((v1,-,¥D-2,vp-1,2)) < pa,p((v0, 1, .., Up-2,vp-1)) for any & € Z.

That is OF,  (v)=¢. O

Pd.D
Lemma 2.4 Let v € V(B(d, D)) and pP~1(v) = (a).
L 9a,0(v) < pap((@)?) = O}, ,(v) = ¢,
2. 9a,0((a)?) < pa.n(v) = O, ,(v) = ¢.

Proof. We use induction on D. When D = 1, the proposition is clear. Suppose D > 1. Let v €
V(B(d, D)) and pP~1(v) = (a) such that ¢4 p(v) < @a,p((a)?). From proposition 2.2, ¢4,p-1(p(v)) <
wa,p-1({a)P~1). Suppose p(v) # («)®~1. By the induction hypothesis, OF, ,_ (p(v)) = ¢. Therefore
from lemma 2.3, O}, , (v) = ¢. Then let p(v) = (a)P~! and o(v) = vp_; # a. By the construction of

@a,p from @4 p-1, :
?a,0-1((0)?" 2@ vp_1) < ga,p-1((2)?7?).

From proposition 2.2,
2a,0(()°? ®vp-1) ® %) < p4,0((2)”"! @ vp-1), for any 2 € Za.

That is Of, [ (v)=¢. O A
We define the function gq,4,p from V(B(d, D)) to Zp4 as follows. If v = (a)?, then go4,p(v) = 0. If
pP=1(v) # (@), then gq,q4,p(v) = D. Otherwise go 4,p(v) = i iff pi~1(v) # ()P~ and pi(v) = ()P~



Lemma 2.5 Let u,v € V(B(d, D)).
L an) € 0an) < pap((0)P) = gaan(®) 2 gado(v):
2 ¢4,0((@)P) < ¢a,0(¥) < 4,0(v) = gad,0(¥) < gaa,n(v)-
Proof. We use mductlon on D. When D = 1, the proposition holds because ga,d, p((a)) =0 and
ga,d,p((x)) = 1 for T # a. Suppose D > 1. Let u,v € V(B(d,D)) such that 4 p(u) < gadp(v) <

4, p((a)P). If v = (a)P, then gq,q4,0(v) = 0, so the proposition clearly’ holds. Suppose v # (a)P. From
proposition 2.2, :

pa,p-1(p(1)) < 9a0-1(p()) < Ga,0-1((a)P)).

By the induction hypothesis, go 4,p-1(p(t)) > ga,4,0-1(p(v)). Since u,v # (@)?, ga.a D(u) = go,d,0-1{p(u))+
1 and ga,¢;p(V) = go,d,0- 1(p(v)) +1. Therefore ga,a,p(%) 2 ga,4,0(v). O

3 Bookembedding of de Bruijn digraph

We define T, (d, D) as follows.
Definition 3.1 Leta € Z,4.

{ V(Tu(d, D)) = V(B(d, D)),
A(Ta(d, D)) = {(u,v) € A(B(d, D)) | pP~'(u) = (a)}
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Figure 2: Ty(3,3)

Then To(d, D) is isomorphic to a directed tree obtained from a complete d-ary directed tree of height
D by deleting a complete d-ary directed tree of height (D — 1) and adding a loop to the root. Clearly,
A(Ti(d, D)) N A(T;(d, D))y = ¢ for 0 < i < j < d and Up<i<aA(Ti(d, D)) = A(B(d,D)). Thus the
following proposition holds.

Proposition 3.2 B(d, D) is decomposed to To(d, D),T1(d, D),...,Ty-1(d, D).

Let Vi(To(d, D)) = {v € V(Tu(d, D)) | ga,d,0(v) = i}. Then V;(Tu(d, D)) is the set of vertices whose
distance from the root are i. Also let . :

{ V" (Ta(d, D)) = {v € Vi(Ta(d, D)) | p4,0(v) < ¢a,0((2)?))},
V+(T (d, D)) = {v € Vi(Tu(d, D)) | ¢a,p{{)P)) < pa,p(v)} for 1<i<D.

Lemma 3.3

{J ~(Ta(d, D) = dla,
Vi (Ta(d, D))| = ¢ (d = a = 1).




Proof. By lemma 2.4, it is sufficient to show the case i = 1. From the definition of g p,

{ O, ((2)") = = {(@P @z |zEZ}, .
Opup((@P)={(@)P @z |ze{a+Lla+2,....d-1}}

Since V" (To(d, D)) = OF, _((@)?) and V{*(T.(d, D)) = of, ,((@)P), the proposition holds in the case

Pd,D
i=1.0
Let A;(Ta(d, D)) = {(u, v) € A(T (d, D)) | v € Vi(Tu(d, D))}
Also let

{ A7 (Ta(d, D)) = {(u,v) € A(To(d, D)) | v € Vi (Ta(d, D))},
A} (Ta(d, D)) = {(v,v) € A(Tu(d, D)) | v € Vi (Tu(d, D))} for 1<i<D.

Clearly, |47 (Ta(d, D))| = |V (Ta(d, D)) )| 2 and |4} (Ta(d, D))| = [V;* (Ta(d, D))|-

Lemma 3.4 Regarding pq,p as a vertes ordering of To(d, D) and assigning elements of Ai(Ta(d, D)), i =
0,1,...,D to two pages according to the parity of i, 2-page bookembedding of To(d, D) is constructed. In
this bookembedding, the widths of pages are dP~13 and dP~23, where f = max(a,d — o — 1).

Proof. We use induction on D. When D = 1, the proposition is clear. Suppose D > 1. Now
assume that the proposition is not true. Thus there exist (u, v), (z,y) € A(Ta(d, D)) such that (u, v) and
(z,y) cross on a page. Without loss of generality, we can set g4 p(u) < ¢4,p(2). Suppose p(v) = p(y).
Then (u,y) € A(To{d,D)). But this is impossible because any vertex of T,(d, D) has in-degree of 1.
Therefore p(v) # p(y).

Case 1. p(u) # pl(a):

If p(v) = p(u), then there is no crossing of (u,v) and (z,y). Suppose p(v) = p(z). Then (u,z) €
A(T,(d, D)). This contradicts the fact that (u,v) and (z, y) are on the same page. Thus p(v) # p(u) and
p(v) # p(z). Similarly, p(y) # p(u) and p(y) # p(x). Therefore p(u), p(v), p (z) and p(y) are all distinct.
Then the fact that (u,v) and (z,y) cross on a page implies that (p(u), p(v)) and (p(z), p(y)) cross on a
page in the 2-page bookembedding of T, (d, D ~ 1). This contradicts the induction hypothesis. \

Case 2. p(u) = p(z):

As shown in the case 1, p(v) # p(z) and p(y) # p(u). By proposition 2.2 it is sufficient to cons:der
the following three subcases. That is, (u,v) and (x,y) can not cross in the other three subcases.

(a) ¢a4,0-1(p(¥)) < pa,0-1(p(v)) < pa,0-1(p(v))-
(b) #a.0-1(p(v)) < pa,p-1(p(0)) < 04,0-1(p(¥))-
(©  ean-1(p(v)) < ¢a.0-1(p(¥)) < pa.n-1(p(u))-

The subcase (a) implies ¢q p(¥) < v4,p(%) <-p4,p(T) < Ya, D(t’;). But this contradicts lemma 2.4. Then
we consider the subcase (b). Now (p(u), p(v)), (p(u), p(y)) € A(Ta(d, D — 1)). By the construction of
¢a,p from ¢gp-1,
¢4,0(p(u) @ 7(p(¥))) < a,0(p(u) & 7 (p(v)))-
But p(u)®o(p(y)) = = and p(u)®o(p(v)) = u. This contradicts the assumption that ¢4 p(u) < ve,p(z).
Similarly, the subcase (c) contradicts the assumption. Therefore T, (d, D) can be embedded in 2 pages.
From lemma 2.4 and lemma 2.5, it is easily checked that the pagewidths are

max max(|V;™(Ta(d, D))}, [Vi* (To(d, D)) and max max(|V;” (Ta(d, D)), [Vi* (Tu(d, D)))).

By lemma 3.3, the widths of pages are determined. O ‘ .
In Figure 3, we show the 2-page bookembeddings of T,(3,3) for @ = 0,1 and 3, whete the loops are
omitted.
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Figure 3: The 2-page bookembeddings of T,,(3,3) for & = 0,1 and 2.

Theorem 3.5 B(d, D) can be embedded in (d + 1) pages where the pagewidth and cumulative pagewidih
are (d — 1)dP-! and 1dP-%(3d3 - 2d? + 4d — d(d mod 2) — 4), respectively.

Proof. In the 2-page bookembedding of To(d, D), let Y1(To(d, D)) and Y2(Tu(d, D)) be the sets of
arcs assigned to each page. Also let Ap(Ty(d, D)) C Yi(Tu(d, D)). Then pP~1(v) = () for any vertex
v € V((Y2(Ta(d, D)))). Now let U; = {v € V(B(d,D)) | pP~(v) = i}. From the construction of ¢4,p,
the vertices of U; are continuous on the spine with respect to ¢g p. Thus elements of ¥3(To(d, D)),a =
0,1,...,d — 1, can be assigned on one page without crossing. Therefore B(d, D) can be embedded in
(d + 1) pages. The pagewidth follows lemma 3.4. The cumulative pagewidth is obtained by computing

Lo<acamax(a,d — o — 1)dP-1 4 (d—-1)dP-2. O

Corollary 3.6 B(2,D) can be embedded in 3 pages where the pagewidth and cumulative pagewidth are
20-1 gnd 5. 202 respectively.
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Figure 4: The 3-page bookembedding of B(2,4).

4 Bookembeddings of Kautz digraph and shuffle-exchange graph

4.1 Kautz digraph
The Kautz digraph K(d, D) is defined as follows.
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Figure 5: The 3-page bookembedding of K(2,3).

V(K(d, D)) = {(vo,v1,...,vp-1) | vi € Za41,0 < i < D,v; # vj41,0<j< D -1}
A(‘K(diD)) = {((00’1’1’ ey 'UD—I)s ('Uh ey ”D—liz)) l z € Zay1, T# "D—l}

Theorem 4.1 K(d, D) can be embedded in (d + 1) pages where the pagewidth and cumulative pagewidth

are d0 and 1dP~1(3d? + 4d + (d mod 2)), respectively.

Proof. Now K(d,D) is a subdigraph of B(d + 1, D) and A(K(d, D)) C Up<a<aAp(Ta(d + 1,D)).
From the (d + 2)-page bookembedding of B(d + 1, D), it is realized that K'(d, D) can be embedded in
(d+1) pages. In this bookembedding of K (d, D), the pagewidth are maxo<qo<a(|V (A (d, D)NVy (To(d+
1,D))|,|V(K(d,D)) N Vg(Ta(d + 1, D))|). Here

VD—(Ta(d+ lvD)) = {(xavla"'va-l) IZ € Za'l v; € Zd+l’ 1< i< D},

Vi (To(d+1,D)) = {(y,v1,.--,vp-1) | y € {@+1,...,d}, v; € Zyy1, 1 <i < D}.
Thus [V(K(d, D)) N Vg (Ta(d + 1, D))} = dP~'a and |V(K(d, D)) N V{ (To(d + 1,D))| = dP~1(d - a).
Therefore the pagewidth is d°. The cumulative pagewidth is obtained by computing ¥, <a<d max(a,d—
a)dP-1. O

Corollary 4.2 K(2,D) can be embedded in 3 pages where the pagewidth and cumulative pagewidth are
20 and 5201, respectively.

4.2 Shuffle-exchange graph
The shuflle-exchange graph .S (D) is defined as follows.

{ V($(D)) = {(vo,v1,--,vp-1) | vi € Z, 0< i < D},

E(S(D)) = {{(uo;ul;---1“D—1)’(v0qvls- ) -y'UD—l)} | Ui41(mod D) = Vi(mod D) for0<i< D or

uj=vjfor0<j<D~-1and up_y #vp-1.
Edges defined by the first condition are called shuffle-edges. Also edges defined by the second condition

are called exchange-edges. The set of shufﬂe-edges and exchange-edges of S(D) are denoted by E,(S(D))
and E.(S(D)), respectively.

Theorem 4.3 S(D) can be embedded in 3 pages where. the pegewidth and cumulative pagewzdth are 202
and 5-2P-3, respectively.

Proof. We employ @2 p as the vertex ordering of S(D). If {u,v} € E.(S(D)), then p(u) = p(v)
s0 |p2,0(¥) — @2,0(v)] = 1. Let H be a graph obtained from S(D) by identifying vertices u, v for all
{u,v} € E(S(D)). Then H is isomorphic to the underlying multi-graph of B(2,D — 1). Thus we can
assign the shuffle-edges of S(D) to 3 pages without crossing according to the 3-page bookembedding of
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Figure 6: The 3-page bookgmi}eddiug of S(4).

B(2,D - 1). In this 3-page bookembedding of (Es(S(D))), the pagewidth and cumulative pagewidth are
similar to those of the 3-page bookembedding of B(2,D - 1).

Fori = 0, 1, let P; be the page to which the shuffle edges corresponding to elements of Ap(T;(2, D~-1))
are assigned. Also let E.;(S(D)) = {{u,v} € E.(S(D)) | pP~1(u) = i}, for i = 0,1. Now we assign
elements of E,,.‘VV(S(D)) to P; for i = 0,1. Clearly, crossings of edges do not occur. Also the pagewidth
and cumulative pagewidth are changeless. Therefore the proposition holds. O

5 Conclusion

We have shown that d-ary de Brmjn and Kautz dlgra.phs can be embedded in (d + 1) pages and shuffle-
exchange graph can be embedded in 3 pages. For binary de Bruijn digraph, binary Kautz digraph
and shuffle-exchange graph, these bookembeddings are optimal with respect to the number of pages,
which follows from the nonplanarity of these networks. That is, the pagenumbers of these networks
have been determined to be 3. For d > 2, it remains unknown whether (d + 1) pages are necessary for
bookembeddings of d-ary de Bruijn and Kautz digraphs.

In this paper, we treat de Bruijn and Kautz networks as dlgraphs The de Bruijn and Kautz graphs
are the underlying graphs of these digraphs, respectively. Thus it is clear that d-ary de Bruijn and
Kautz graphs can be embedded in (d + 1) pages. In these undirected versions, we can let the pagewidth
and cumulative pagewidth be slightly smaller than the directed versions because de Bruijn and Kautz
digraphs contain double arcs. The cumulative pagewidths of our bookembeddings of binary de Bruijn
digraph (graph) and shuffle-exchange graph are smaller than those of the bookembeddings obtained in
[7], respectively.
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