7 A I Y X A 43—-5
(1995. 1. 23)

T*E#%/7ﬁ§i%ﬂbﬂ?%v
U~y F 7 - TN T X4

| IW(?&L
WEIGR TR0 A BB

DNA FSIR7 3 7 BEFHC BV TR, $5/55 — DRI LEOE Y v 7hib o T
ORI - BBNBLELNH D, FD L) LN ERAET DO
WHIROILELTIL Ty FTHIEDTELU S FTALINY = L2 B EM~ v F
YUPLEE 2, AETE, ZOLOOTIMILEIET L O@mn log n) WEWN 7 v 1)
AL, BEU, Landau-Vishkin 7k T X L1265 L O((k + log n)gn) W7 v) X
LERTe BB, miINIy—V R, nldFFAME, gREEFy v SR yoMT
bH5b,

Approximate String Matching with
Variable Length Don’t Cares

" Tatsuya Akutsu

Department of Computer Science, Guuma University
-3-1 Tenjin, Kiryu, Guuma 376 Japan
e-mail: akutsu@cs.gunma-u.ac.jp

This paper studies an approximate string matching problem. in which a pattern string
may contain variable length don’t care characters. A variable length don’t care char-
acter can match any substring whose length is in a specified range. This problem is
important for scarching DNA sequences or-amino-acid sequences. This paper presents
an O(mnlogn) time algorithm. and an O{(k + logn)gn) time algorithm. whaore m de-
notes the length of a pattem n denotes the long.)th of a tc\t dll(l 9 (lenotns the uuml)m
of variable length don’t cares. ‘

1 Introduction

Searching for DNA or amino acid sequences which are similar to a given pattern string
is very important in tholecular biology. In fact, alot of programs aiid algorithms have
been developed. Most of them are based ou alignment. of strings or approximate string
matching. However, they do iot seeni to be adequate in some cases. For example, the
DNA pattern TATA (known as TATA box) is a common prowmoter that often appears
after the pattern CAATCT (known as CAAT box) withiu 30 to 50 spaces [2, 5. To
find strings containing such a pattern, string matching with wvarieble length don’t cares
is required, where a variable length don't care character can match any substring whose
length is in a specified range. Moreover, exact matching is not sufficient but approximate
string matching is required, since the patterns can appear with some probability of error.
Thus this paper studies the problcm of approximate string matching with variable length
don’t cares.

Here, we bneﬂv 1ev1ew tho pl(‘kus works. E\d(‘t string matching with don't cares
was studies by Fisher and Paterson [3]. A lot of studies have been done for d.l)l)l()\llllrlt(‘
string matchmg [4]. Myers and Miller studied approximate string matching of regular
cxpressions [6], and Zhang, Shasha and Wang studied approximate tree mate hmg, with
variable length don’t cares [7]. These two works are close to our problem. However, in
their works, the range of the length of a substring matching to a don’t care cliaracter can
not be specified. Exact string matching with variable length don’t cares was studied by
Mauber and Baeza-Yates [5]. In their work, the range can be specified, but approximate
matching was not considered. We also developed an algorithin for approximate string
matching with don't cares [1]. However, variable length don’t cares can not be treated.

2 Descriptidﬁ of the problem |

First, we describe the k-differences problem [4], which is a conventional problem of

approximate string matching. Let T' =t ---t, be a text string and P = py---p,, be a
pattern string over an alphabet &, where we assume that |S| is hounded by a constant.
A difference is one of the following:

(A) A character of the pattern corresponds to a different character of the text,

(B) A character of the pattern corresponds to no character in the text,

(C) A character of the text corresponds to no character in the pattern.
If the minimum nimber of differences between the pattern string P and any substring
of the text string T ending at t;, is less than or equal to k., we say that P occurs at
position j of T with at most & differences. Then, the problem is defined as follows:
given a text string T, a pattern string P and a positive integer A (1 < k < m), tind all
positions of T where P occurs with at most & differences.
Example 1: P = bedefgh occurs at position 8 of T = abxdyeghij with differences 3 by
the following correspondence:

P b ¢ d e f g h
T a b x d y e g h 1 j
€] © (B)

Next, we introduce a variable length don't care character “+;_;", which matches any
substring of T with length 7 to j (0 < i < j). In approximate string matching with vari-
able length don’t cares, variable length don’t care characters may appear in . Then,
the problem is defined in the same way as the A-differences problem, where cach don't
care character must match a substring whose length is in" a specified range. Note that
errors for don’t cares are not allowed. In this paper. ¢ douot(w the uumlwl of variable
length don'’t cares.

Example 2: P = bed #3_5 gi occurs at position 11 of T = abo(lc(-ccgln) with (hﬁowu(0
2 by the following correspondence:

P b ¢ d * % *x x g i
T a b e d ¢ ¢ ¢ ¢ g h i j
(A ©)

P = x3_j4ab can not occur at any position of T = dl) Wlth any differences since errors
for *3_4 are not allowed.

3 A 51mple algorithm and its 1mprovement

3.1 A 51mple algorithm

A simple O(mn) time algorithim based on the dynautic programming techuigue is well
known for the conventional approximate string matching problem [4]. Here we briefly
overview the.algorithm. It computes the matrix D[i, j]. where D[i, j] shows the minimmmn
number of differences between py -« p; and any substring of T ending at ¢;. D[i, j] is
determined by

D[i,j] = min(D[i — 1,j] +1, D[i._j— 141, Dli—1.j =1+ 1=d(pity))

where d(p;,t;) = 1if p; = t; and (p;,t;) = 0 otherwise. Since the above expression can
be evaluated in O(1) time aud the size of the matrix is O(mn), the simple algorithin
works in O(mn) time.

Example 3: Let P = CAAG and T = GCCAGAT. Then the following table shows
the values of D[¢, j]’s.

W W N - oD
W= o oln
w0 o0

A G
0 0
1 1
0 1
11
2 1

Q>0
AW N = O
N =1
NN O

‘

We can solve our problem executing the simple algorithm g+ 1 times in tlie following
way. Let pn,; (1 €7 < g) denote the i-th don’t care character in 2. The i-th exccution is

done for the subpattern po,_,+1°*+ Pmi—1 and T, where the matrix is re-initialized using
the result of the (i —1)-th execution. The follo“ mg procedure describes the modified
algorithm. : :

Procedure SimpleMatch(P. T, k)
begin. ,
forj-(]to n doD[O _]](—0
for i =0 to m; — 1 do D[i,0] « i
for i = my to m do D[i.0] « oo:
for i=1tom do
if p; = x,_, then

begin
for j =0 to n do D[i,j] « oo;
for j =0 to n do ' (#)
forh=j+ptoj+qdo #) -
if h < n and D[i — 1, j] < D[i.h] then D[i,h] « D[i — 1.] (#)
end
else

for j’=1to n do
Dl[i, j] + min(D[i — 1,j] + 1. D[l J—1]+1 D[1—1 J—1]+1——()(p,)
for j =0 ton do :
if D[m, j] < k output "Match at j”
end ‘ '

The correctuess of the algorithm is almost trivial. The time complexity is O(gn?). since
O(n?) time is required per execution of part (#)if ¢ —pis O(n). - o
3.2 Improvement

The siiple dynamic prograiming algorithin can be improved if we modify the order of
updating D[i, h]'s in part (#). In the simple algorithm, the values of D[i — 1, j]'s are
used from j = 0 to n. In the improved algorithm, the values of D[i — 1, j]'s are used in
ascending order that is, t.he values of Dli —1,4]'s are used in the following order

D[I——lir]<D[l—17r(1]< SD[i—yl.Tr('n)],"

where 7 (i) means a permutation of (0.1,- -+, n). Then, only D[i.h]'s such that D[i, h] =
oo need be updated. Moreover, the following property holds (sce Fig. 1).

Proposition 1: Only a consccutive part of D[i,h]’s is updated by cach Dfi — 1, j].
Thus, using an adequate sorting algorithm (c.g. O(n) time bucket sort, or O(nlogn)
time merge sort) and using an adequate data structure (e.g. balanced binary trees) for

maintaining intervals with D[, j] = oo, we get the following theorem.

Theorem 1: The k-differences problem with variable length don’t cares can be solved
in O(mnlogn) time.

Dli-1,~-]

x] x+1 xl

~

Dl[i,-]) T~a
]xlxlooo Ix x+1|-o-lx+1 xlxlo-o x

Figure 1: Intervals updated by D[i — 1. J].

4 A Landau-Vishkin type algorithm
4.1 Landau-Vishkin algorithm_

Landau and Vishkin have developed an O(An) time algorithm for the conventional ap-
proximate string matching problem [4]. which is much faster than the simple algorithm
for k = o(m). Their algorithm computes the same information as in the matrix DJi. j]
of the simple dynamic programming algorithm, using the diagonals of the matrix. A
diagonal d of the matrix consists of all D[i. j]’s such that j —i=d.

For a number of differences e and a diagonal d, L{d, e] denotes the largest row i such
that D[i,j] = ¢ and j — i = d. In the case of Example 3, L[3,0] = 0, L[3,1] = 3 and
L[3,2] = 4. Note that the valuc of D[i.j] such that j — i = d grows monotonically as i
grows. Thus, for the & differences problem, we need only compute the values of L[d, e]'s
such that e < k. Since the number of diagonals is O(n), the number of L[d, e]'s required
to be computed is O(kn). Moreover, Landan and Vishkin showed that L{d. ¢]'s could
be computed in O(An) time using the suffix tree.

4.2 Modification ,

Landau-Vishkin algorithm can be modified for approximate string matching with vari-
able length don’t cares. For that purpose, we employ a similar approach as in scction
3: Landau-Vishkin algorithm is executed g + 1 times, where L[d, ¢]'s are re-initialized
based on the result of the previous execution. Although details such as the method for
re-initialization are a little complicated, the modification is straightforward, where the
technique described in subsection 3.2 is used too. Thus details arc omitted in this paper.
Here we briefly analyze the time complexity. Since Landau-Vishkin algorithm is
executed g + 1 times, it takes O(ghn) time. Morcover, O(gnlogn) time is required
for re-initialization, because O(nlogn) time is required for re-initialization before each
execution of Landau-Vishkin algorithm. Thus we obtain the following theorem.

Theorem 2: The k-differences problem with variable length don't cares can be solved
in O((k + log n)gn) time.

Note that if (kK + logn)g = o(m), this time complexity is o(smn). In most practical

cases, g is very small (e.g. 1) and & is much smaller than m. Thus the algorithm is
expected to be much faster than the simple algorithm in such cases.

5 - Conclusion

V\/e have shown an O(mn logn) time algorithm and an O((k +logn)gn) time algorithm
for approximate string matching with variable length don’t cares. Although e have not

yet succeeded, we Dbelieve that O(log i) factor can be removed using more. sophisticated
technlque or data struc rule How ever it is much more mtowstuq., to (lowlop much fdstm
cxlg,outhms

Acknowledgement

This research was partially supported by the Grant-in-Aid for Scientific Research on Pri-
ority Areas, ”Genome Informatics”, of the Ministry of Education, Scicnce and Culture
of Japan. :

References

[1] T. Akutsu, “Approximate string matching with don’t care characters,” Proc. 4th
Symp. Combinatorial Pattern Matching, Lecture Notes in Computer Science 807,
pp. 240-249, 1994. -

[2] C. Branden and J. Tooze, Introduction to Protein Structure, Garland Publishing,
1991.

[3] M. Fisher and M. Paterson, “String matching and other products.” Complezity of
Computation, SIAM-ACM Proceedings 7, pp. 113-125, 1974,

[4] G. M. Landau and U. Vishkin, “Fast parallel and serial approximate string match-
ing,” J. Algorithms, Yol. 10, pp. 157-169, 1989.

[5] U. Manber and R. Baeza-Yates, “An algorithm for string matching with a sequence
of don’t cares,” Information Processing Letters, Vol. 37, pp. 133-136. 1991.

[6] E. W. Myers and W. Miller, “Approximate matching of regular expressions,” Bulletin
of Mathematical Biology, Vol. 51, pp. 5-37, 1989.

[7] K. Zhang, D. Shasha and J. Wang, “Approximate tree matching in tlie presence of
variable length don’t cares,” J. Algorithms, Vol. 16, pp. 33-66, 1994.

