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Average Competitive Ratios of On-Line Spanning Trees
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We study the average competitive ratio of on-line spanning trees with the same
distribution of points in the Euclidean plane. We show a distribution of n points such
that the average competitive ratio of on-line spanning trees by any on-line algorithm
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cannot be less than :—;lnn -3

1 Introduction

The cost of a tree is defined to be the sum of its edge lengths. The minimum spanning
tree of a set of points in the Euclidean plane is a spanning tree of the point set such that
its cost is not greater than the cost of any other spanning tree of the same point set,
where the length of each edge connecting two points is the Euclidean distance between
the two points. The Euclidean distance between two points z and v is denoted by |u, v|.
We assume that each point is supplied one by one. Each point is connected to one of
the points supplied already when it is supplied and it is not on any edge. When the
new point is on an edge that has been already added, the edge is divided into two edges
at the new point. Each connection should not be changed once it has been chosen, but
the case where a new point is supplied on an edge is an exception. For example, if a
point v is supplied on an’ edge (v;,v,) that has been already chosen, then (v;,v) and
(v,vs) are new edges and (v, v,) is not an edge any more. We assume that we do not
know what points will be supplied in advance. The on-line spanning tree problem is to



construct a spanning tree in the Euclidean plane from a sequence of points under these
assumptions so that its cost is as small as possible. A logarithm in basis 2 is denoted
by log, and a logarithm in basis e is denoted by In.

The competitive ratio of a spanning tree constructed by an on-line algorithm is the
ratio of its cost to the cost of the minimum spanning tree of the same point set. It
has been shown that the worst case competitive ratio of any on-line algorithm for the
on-line spanning tree problem is at least 1 logn [2]. It has been also shown that a lower
bound on the worst case competitive ratio for the on-line Steiner tree problem in the
Euclidean plane is lo‘gc’lo"n (1].

The average competmve ratio of spanning trees with an identical set of n points
constructed by an on-line algorithm is the average of the competitive ratios taken among
n! different orders of supplying the n points in the set. It has been unknown whether
the average competitive ratio of the on-line spanning tree problem is also Q(logn). In
this paper we show a distribution of n points such that the average competitive ratio
by any on-line algorithm cannot be less than éln n -—%. That is, a lower bound on the
worst case of the average competitive ratios for the on-line spanning tree problem is

Qlogn).

2 Average Competitive Ratios

Let S, be the collection of sets with n points in the Euclidean plane. The cost of the
minimum spanning tree of a point set S is denoted by OPT(S). The set of sequences
of the points in a set S is denoted by m(S). The cost of a spanning tree constructed
by an on-line algorithm A for input (v;,vs,- -, v,) supplied in this order is denoted by
A(vy, v, -+, vn). The average competitive ratio of an on-line algorithm A for a set S
with n points is defined to be ¥ ycn(s) A(g)/(n! OPT(S)). The worst case of average

competitive ratios of an on-line algorithm A is defined as the following function I:I(A, n):

1 Zqu(S) 4( )
R(An) = sup (=55

We first consider the following on-line greedy algorithm G: Whenever a point is
supplied, it is connected to the nearest point among the points that have been al-
ready supplied. Assume that as shown in Figure 1, n points are supplied in the order
V1, V2, "+, Vs a3 an input to the on-line greedy algorithm G. The Euclidean distance
between v; and vy is 1, and the length of an arc connecting v, and v, is less than 1 + €
for an arbitrary small €, where all of vy, v, -+, v, are on the arc as shown in Figure
1. The cost of the minimum spanning tree of the set of these points is between 1 and
1+e¢. On the other hand, the cost of the spanning tree constructed by the on-line greedy
algorithm G for the input sequence, vy, v, -, v, is given as follows:

lv1, vo| + |v1, v3] + |vi, va] + |vs, vs| + v, ve] + |va, v7] + - -
1 1 1 1

1 1
>1+§+Z+Z+§+§+§+"'

If n = 2% + 1, the right hand side of the formula above is equal to 1 + 1k. For this
example, any on-line algorithm cannot be better than the on-line greedy algorithm, from



N

...............

Figure 1: An input sequence of n points.

the inequality above a lower bound on the worst case of competitive ratios of any on-line
algorithm A is (log n)/(1 +¢) for each n. This simply obtained fact coincides with the
corresponding result about the steiner tree problem given in [2].

We now consider average competitive ratios for the on-line spanning tree problem.
Our first result is a lower bound on the worst case of average competitive ratios of the
greedy on-line algorithm G.

Theorem 1 For the on-line greedy algorithm G, R(G,n) > flnn-1.

Proof. Let S be a set of n points uniformly distributed on a very gentle arc (i.e., a
small part of a circle with a very large radius). Then the length of any part of the arc
is nearly equal to the Euclidean distance between its end points (see Figure 2). Then
any part of the arc may be regarded as an almost straight line, but no three points on
the arc are on any straight line.

L . , , : 1 N
i ~1

L

Figure 2: A set S of n points on an arc.
From the definition of R, we have |
o L
R(G,n) > = G(q).
B en(s)

Suppose that & — 1 points have been already supplied. Let Si_; be the set of these
k —1 points. The kth point is now being supplied. It is equally probable to be one of
the other n — k + 1 points in S. We denote the distance between v in S — Si_; and its
nearest point in Sk_; by p(Sk_1,v). The expected distance between the kth point and
Sk—l is

B(Sikr) = ( > p(sk_l,m) J(n—k+1).

vES—Sk_,
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From the definition of R(G,n), the following equality is immediate:

R(G.n) i 25 ,(esknl P()Sk 1)

k-1

We first prove that for any Si_i, p(Sk-1) > (n — k +1)/(4k(n — 1)). Suppose that
Sk—1 = {v1,v2,---,vk—1} and the sorted order of these points on the arc from left to
right is vy, vy, -+, v,

Suppose that in S — Si_; there are s; points before vy, s points after vx_|, and s;
points between v;_; and v; for each 7 (1 <7 < k — 1) (see Figure 3).
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Figure 3: The point distribution in S.

Then apparently, %, s; = n — k + 1. Since v is randomly chosen from S — Si_i,
the probability that vx appears between v;—; and v; is ;=557 for each ¢ (1 < ¢ < k),
where for ¢ = 1 and ¢ = k we mean that v; appears before v; and after v,_;, respectively.
Suppose that v, appears between v;..; and v; (again for i = 1 or k it means before v;
or after vx_;, respectively). Then the expected length between v, and its nearest point
in Sx_; is larger than s;/(4(n — 1)) unless s; = 0. If 5; = 0 the expected length is 0.
Hence, we have

S 2":1 S; S; _ 1 232
k1) ~dn—1ln—k+1 dn-Ln-k+1) ="
Since . . . '12
sf+s‘;+...+szzk(sl’“”*'““k) AR
k k
we have

P(Sk-1) > (n —k + 1)/(4k(n’ - 1))

Let S*~! be the collection of sets with k points chosen from S From the mequahty
shown above we have :

R(G,n) = L5y g8k P(Sk_x))
1
k

=7
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3 Comparison with Other On-Line Algorithms

In this section we show that for any input sequence of points, no on-line algorithm is
more than twice as good as the on-line greedy algorithm.

Theorem 2 For any input sequence of points, the competitive ratio of a spanning tree
constructed by the on-line greedy algorithm is not greater than twice the competitive ratio
of a spanning tree constructed by any on-line algorithm.

Proof. Let A be an on-line algorithm for the on-line spanning tree problem. Let
(vo,v1,va," -+, vU,) be an input sequence of n + 1 points in the Euclidean plane. Suppose
that ay,ay,:--,a, are the edges constructed by A in this order, where the following
modification is used. For each ¢ (2 < ¢ € n), if v; is on an edge already constructed
by A, then a; is an edge with the null length and the edge already constructed remains
unchanged. Let gy, 92, ..., gn be the edges constructed by the on-line greedy algorithm G
in this order, where we also apply the same modification as described for ay,as, -, an.
Apparently the cost of any spanning tree by an on-line algorithm is equal to the cost of
the corresponding modified one. We denote the length of an edge ! by |/|.

We classify set {1,2,...,n} into two classes, N and Z as follows. If |a;| # O then
i € N, and otherwise : € Z. From the definition of the on-line greedy algorithm, for
each i € N, |a;] > |g:|. Hence, we have

> lail = 3 gl

€N iEN

If i € Z and v; appears on an edge already constructed by 4, say a;, then i > j. Let
. 3 . . . . . k .
iy, Viy, --; Vi, be all the points on a; and j < 4 < -+- < ik Then |g;| > T2, |g;;], and

we have
o lad = > lail.

iEN i€z
Hence, we have

23 lai = 3" lail.
=1 =1
a

Consider an input sequence vy, vs, - -+, v, as shown in Figure 4. If |v),v;| is much
smaller than the distance between v; and v3, then for this input sequence the competitive
ratio of a spanning tree constructed by the on-line greedy algorithm trends to twice the
competitive ration of a spanning tree constructed by an on-line algorithm such that for
each ¢ (i =1,2,--+), viy; is connected with v;. From this example we can say that the
assertion of Theorem 2 is critical.

From Theorem 1 and Theorem 2 the following theorem is immediate.

Theorem 3 For any on-line algorithm A for the on-line spanning tree problem,

R(A,n) > -;—lnn - %
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Figure 4: A comparison by an example of an input sequence.

4 Conclusion

It has been known that the worst case competitive ratio of the on-line greedy algorithm
is O(logn) [2]. In this paper we showed that the worst case of average competitive
ratios of spanning trees with identical point sets by the on-line greedy algorithm is also
©{logn). It is still open whether the worst case of average competitive ratios of steiner

|
trees with identical point sets is Q(B—g‘—"-—fo'g'—n)
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