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Abstract: For typical #P-hard problems on graphs, we have recently proposed an approach
to solve those problems of moderate size rigorously by means of the binary decision diagram,
BDD [12, 13]. This paper extends this approach to counting problems on linear matroids,
graphic arrangements and partial orders, most of which are already known to be #P-hard,
with using geometric properties. Specifically, we show that the BDD representing all bases of a
binary or ternary matroid can be computed in an output-size sensitive manner. By using this
BDD, the Tutte polynomial of the matroid and the weight enumeration of an (n, k) lincar code
over GF(2) and GF(3) can be computed in time proportional to the size of the BDD. Next, a
method of computing the Tutte polynomial of a linear matroid over the reals via the arrangement
construction algorithm in computational geometry is given. Computing the number of acyclic
orientations of a graph and the number of ideals in a partially ordered set is also discussed.

1 Introduction

Recently, the binary decision diagram, BDD, has
been used to solve combinatorial problems such
as computing the chromatic and flow polynomi-
als of a graph, the Jones polynomial of a link,
the network reliability, etc., efficiently [12, 13].
Detailed descriptions about these problems can
be found in {17]. This paper generalizes this
approach for linear matroids, graphic arrange-
ments and partial orders, and present efficient
algorithms for solving counting problems related
to them. »

Specifically, we first show that the BDD rep-
resenting all bases of a binary or ternary matroid
can be constructed in an output-size sensitive
manner by combining the top-down algorithm
in {12, 15] with the isomorphism testing of their
minors under the identity map. This can be used
to compute the Tutte polynomial of these ma-
troids and the weight enumeration of a linear
code on GF(2) and GF(3) in time proportional
to the size of this BDD.

Next, a linear matroid over the reals is inves-
tigated. This structure is combinatorially equiv-
alent to hyperplane arrangements which have



been intensively studied from the algorithmic
viewpoint in computational geometry [6]. By us-
ing the algorithm for hyperplane arrangements,
we show that the Tutte polynomial of m central
hyperplanes in the n-dimensional space can be
constructed in O(m™) time. Regarding n as a
parameter, this complexity is exponential, but
this would be inevitable since the problem of
computing the number of cells in the arrange-
ment is known to be #P-complete (see {17]).
When we restrict the arrangement to that
associated with a graph, the number of cells can
be computed efficiently by using the result in
[12]. For example, for a planar graph with n
vertices, it can be computed in O(2°(V™) time.
The number of cells in the graphic arrangement
is the number of acyclic orientations of the graph
[4, 7], which is also #P-hard [17], and this result
sheds light on the relation between the discrete
structure of graphs and the geometric structure
of arrangements. We also consider computing
the number of lower dimensional faces via BDD.
Each cell of the graphic arrangement cor-
responds to an acyclic orientation of the given
undirected graph. Given a partially ordered set,
this set is naturally associated with a cell in the
arrangement. The intersection of this cell with
the unit hypercube is known as an order poly-
tope (3, 17]. Its vertices correspond to ideals of
this partially ordered set, and the volume gives
the number of extensions of this partial order.
We here show that the BDD representing all the
vertices of the order polytope can be constructed
by the top-down algorithm, and, when a graph
has a good vertex elimination ordering, the BDD
can be made to be compact. For example, when
the partial order corresponds to a planar acyclic
graph with n vertices, the number of ideals of
the partial order can be computed in O(20(v™)
time. It is conjectured that this approach may
be extended to counting the number of linear ex-
tensions of the partial order, which is also a very
fundamental #P-hard problem [3].

2 Preliminaries

2.1 BDD of a Boolean function

An OBDD represents a Boolean function of m
variables z,...,z, by a labeled acyclic graph
with a single source (root) and two sinks (0-node
and 1l-node). Each node besides the sinks has
two edges emanating from it, one is labeled as

0O-edge and the other 1-edge. The sink nodes are
labeled as 0 and 1, and are called the 0-node and
1-node, respectively. All the directed paths from
the source to the sinks have the same number of
edges, and the level of a node is defined to be
the number of edges of directed paths from the
source to the node. The level of the source is 0,
and that of the sink is m. Nodes in the (1 — 1)-
th level (i = 1,...,m) correspond to a variable
z;. Bach directed path from the root to the 1-
node corresponds one-to-one to an assignment
of z; to the label of the edge, emanating from
the node of z; on this path (i = 1,...,m), with
which the function value is 1. The size of OBDD
is the total number of nodes, and varies by the
ordering of variables. We denote the Boolean
AND, OR, NOT by A, V, Z;, respectively.

We now give an example of BDD. Let G =

x1=x2 x3

(11

b (1,1,0)

(d) (e)

Figure 1: (a) K3, (b) an OBDD-like complete
binary tree representing all the spanning trees,
(c) the QOBDD representing all the spanning
trees, (d) the graphic arrangement for K3, and
(e) the order polytope for an acyclic orientation
of K3 in the bottom left in (d) where vertices
correspond to ideals @, {v3}, {va, v3}, {v1,v2, v3}



(V,E) be a simple connected undirected graph
with a vertex set V and an edge set E. For each
edge e; in F, we associate a Boolean variable
z; (i = 1,...,|E]). Then, consider a Boolean
function representing all the spanning trees, i.e.,
it becomes 1 when edges e; with ; = 1 form
a spanning tree, and 0 otherwise. In Fig.1, (a)
is a complete graph K3 of 3 vertices, and (b)
is a binary tree representing all the spanning
trees (this is an OBDD when the 0-node and
1-node are shared). In (c), all the isomorphic
subtrees are shared, and is a canonical OBDD,
called QOBDD. (d) explains a graphic arrange-
ment for K3, and (e) is an order polytope for
an acyclic orientation of K3, both mentioned in
the introduction. For these two, we will explain
them in more detail later.

Given the BDD of a Boolean function f, the
number of truth assignments which make f =1
can be computed in time proportional to the size
of BDD (in the above example, the number of
spanning trees).

As for the construction of BDD, the following

is shown in [15].
Lemma 1 [15] The BDD of a Boolean func-
tion f of m variables can be computed in a top-
down fashion in time proportional to the size of
BDD times some polynomial of m if the equiv-
alence can be checked for two subfunctions ob-
tained from f by setting the values of some vari-
ables to 0,1 in polynomial time in m.

2.2 Tutte polynomial of a matroid

We will consider a linear matroid M on a fi-
nite set E. For matroids, see [4, 11, 16]. The
most typical linear matroid is that over the re-
als. Given a set F of m vectors aj,ay,...,an,
in R", linear independence among these vectors
induces a linear matroid M(E) of vectors in E.
The rank function p: 2F — Z of M(E) is defined
by p(4) = dim({a:i | a; € 4}) (A C E). The
linear matroid M(E) of vectors a; € E can be
regarded as that of the arrangement of hyper-
planes hy = {z | a;-z =0} (1 = 1,...,m) in the
dual R™.

The Tutte polynomial T(M; z,y) of matroid
M on E is a two-variable polynomial. By the
rank function p, it is defined by

T(Miz,y) = 3 (5= 1Py — 1)},
ACE

There exists a recursive formula for the Tutte

polynomial based on the deletion/contraction of

an element from a matroid. From the recursive
formula, the Tutte polynomial of a matroid can
be computed by using the BDD representing all
bases of the matroid. In (12}, the case for graphic
matroids is described, and also note that Fig.1
is such an example with spanning trees as bases.

The original definition of the Tutte polyno-
mial by Tutte is expressed as the summation
over all bases of a matroid. To describe this, we
need more definitions. Let B be a base of ma-
troid M. For ¢ € E — B, a minimal dependent
set of B U {e}, including e, is uniquely deter-
mined, which is called the fundamental circuit
of e with respect to B. Fore € B, {¢' € E |
(B—{e})u{e'} is a base} is called the fundamen-
tal cutset of e with respect to B. Given an or-
dering ey, eg,....e;m of elementsof £, e; € E—B
is called externally active if its fundamental cir-
cuit with respect to B consists of e; with j < 1.
e; € Bis callgd internally active if its fundamen-
tal cutset with respect to B consists of e; with
7 < 4. Then, for B, the external activity r(B)
is the number of external active elements, and
the internal activity s(B) is the number of in-
ternal active elements. Then, for this ordering,
the Tutte polynomial is given by

T(Miz,y)= 3. o Bly®)
B:basesof M

The Tutte polynomial of a matroid has many
meanings. For example, T(M;1,1) is the num-

_ ber of bases of M, T(M; 2,1) the number of in-

dependent sets of M, and 7'(M;1,2) the num-
ber of spanning sets of M (see [4, 17]). With
the arrangement of hyperplanes such that all
the hyperplanes pass the origin, a linear matroid
M over the reals is associated in a straightfor-
ward way. An arrangement is central if their
hyperplanes have non-empty common intersec-
tion, and our arrangement is central. In this
case, T(M; 2,0) gives the number of regions of
this central arrangement, and further interpreta-
tion in terms of arrangements for the coefficients
of the characteristic polynomial is given [7] (see
also (4, 17]).

3 Binary and Ternary Matroids

The computation of the Tutte polynomial is #P-
hard in genecral, but it has so many applica-
tions not only in graph theory but also statis-
tical physics, knot theory, code theory, etc. See
[17]. The Tutte polynomial of a matroid can be



computed via the BDD of its bases, and hence
it is worth while devising an output-size sensi-
tive algorithm to construct the BDD, which is
practically available for matroids of moderate
size. In order to adopt the top-down algorithm
for the BDD mentioned in Lemma 1, we need
an efficient procedure for testing isomorphism
between minors under the identity map, which
corresponds to the equivalence check of subfunc-
tions of BDD representing all bases. This sec-
tion is devoted to such procedures for binary and
ternary matroids.

3.1 Binary matroid

A matroid is called binary if it can be repre-
sented as a linear matroid over GF(2). Given
two matroids M(E) of m vectors ay,...,am, in
GF(2)" and M/(E) of m vectors af,...,a, in
GF(2)", we will consider how to determine if
M(E) and M/(E) are isomorphic under the iden-
tity mapping or not.

Let B be a base of M(FE), and compute the
coefficients §;; that satisfy

a; = Z Bija;

i€B

(j € E - B).

We may suppose here that B is also a base of
M'(E). Otherwise, M'(E) is not isomorphic to
M(E). Then we obtain the coefficients f; such
that

o ;o
aj =) Bijai

€8

(j e E-B).

The following well-known theorem directly gives
an efficient procedure for the isomorphism test-
ing.

Theorem 1 The binary matroids M(E) and
M/(E) are isomorphic if and only if fi; = B;
holds for each1 € B and j € E — B.

3.2 Ternary matroid

A matroid linearly representable over GF(3) is
called a ternary matroid. Suppose we are given
two matroids M(E) of m vectors ay,...,am in
GF(3)" and M/(E) of m vectors ai,...,a;, in
GF(3)*. We will discuss how to detect the iso-
morphism between M(E) and M'(E).

Let B be a base of M(E), and define the
coefficients f;; and fj; similarly to the case of
binary matroids. The following theorem is help-
ful for the isomorphism testing. See [11, §10.1]
for the proof.

Theorem 2 The ternary matroids M(E) and
M/(E) are isomorphic if and only if there exists
an appropriate mapping a : E — {1, -1} such
that a(i)fi; = a(j)B}; holds for each i € B and
j€E—B.

We now consider how to perform the isomor-
phism testing based on Theorem 2. Suppose
that ((5,5) | § € B, € E~B, i # 0} = {(i,5)
i€ B,je E~B,f;# 0}. Because otherwise,
M(E) and M(E) are not isomorphic. Construct
a graph H = (E, F) with vertex set E and edge
set ' = Fy U F_ defined by

Fy={(i,j)|i€ B,j € E— B,B;=pi; #0},
F_={(,5)|i€B,j € E-B,Bj=~p,#0}

Let H®° = (E°,F_) be a graph obtained from
H by contracting Fly. Then we have the follow-
ing theorem, which gives an efficient procedure
to detect the isomorphism. Recall that the bi-
partiteness of a graph can be checked in linear
time.

Theorem 3 The ternary matroids M(E) and
M'(E) are isomorphic under the identity map-
ping if and only if the graph H® thus constructed
s bipartite. k

Proof: Suppose M(E) and M'(E) are isomor-
phic. According to @ : B — {1, -1} of The-
orem 2, we partition E into E; = {e € E |
ale) = 1} and E_ = {e € E | afe) = -1}
Then each edge of Fy connects two vertices in
the same side of Ey or E_, whereas the edges of
F_ connect E; and E_. Hence the contraction
of F. from H yields a bipartite graph.
Conversely, suppose H® = (E°, F_) is a bi-
partite graph with a bipartition of E° into EY
and E°. We put a(e) =1 if e € E corresponds
to a vertex in E}, and afe) = —1 otherwise.
Then it is clear that o(i) = «(j) if (4,7) € F4,
whereas a(i) = —a(j) for (i,5) € F_. There-
fore a(i)fi; = a(j)Bi; holds for every (i,j) €
F, which together with Theorem 2 implies that
M(FE) and M'(FE) are isomorphic. )

4 Linear Matroid over the Re-
als and Arrangements

In the previous section, we have shown that for
binary and ternary matroids, the BDD of all
bases can be constructed in an output-size sen-
sitive manner by the isomorphism test described



there. But, this generally seems hard for linear
matroids over flelds except GI'(2) and GF(3).
For linear matroids over the reals, we can com-
pute the Tutte polynomial directly by a different
method based on its geometric structure.

Let M = M(FE) be a linear matroid of set E
of vectors a; (i =1,...,m) in R™. Throughout
this section, we regard n as a constant. Using
the definition by the rank function directly, the
Tutte polynomial can be computed by treating
all the subsets, but this takes at least Q(2™)
time. By using the original definition of the
Tutte polynomial, we can compute it by enu-
merating all the bases, and computing the ex-
ternal and internal activities of each base. All
the bases can be enumerated efficiently by the
reverse search [2], and then the activities can be
found in O(m) time by regarding n as a constant.
Summarizing this, we obtain the following.

Theorem 4 The Tutte polynomial of the ma-
troid M can be computed in O(mT(M;1,1)) time
where T'(M; 1, 1) gives the number of bases of M.

In this paper, we omit the proof of this theo-
rem due to the space limitations, and instead we
will concentrate on the use of the arrangement
(6] to compute the Tutte polynomial.

Consider the arrangement of m hyperplanes
hi ={zx | a;-z =0} (+ = 1,...,m) in the
dual R™. Each hyperplane h; passes the origin,
and this arrangement is central. We construct
its face lattice by the incremental algorithm [6].
Note that since this is a central arrangement in
the n-dimensional space, its combinatorial com-
plexity is O(m™~1), and not ©(m™).

A subset S of E is called a flat (or closed or
a subspace) of this linear matroid M(FE) if the
addition of ¢ € E — S to S increases the rank by
one. These flats form a lattice (e.g., see [11, 16]).
From the face lattice of the arrangement, the lat-
tice of flats of M(E) can be constructed directly
in O(m™!) time and space. We will show that
from this lattice of flats the Tutte polynomial
can be computed efliciently.

Now, fix an ordering of elements of E like
€1,€9,...,em. First, we discuss the data struc-
ture representing flats for this ordering. We rep-
resent the lattice of flats in a standard way of
representing lattices. Each flat is represented by
a sorted list (array) of its elements with respect
to this ordering. Furthermore, for each subset S
of E consisting of at most n — 1 elements, we as-

sociate a flat oS that is minimal with respect to
set inclusion among flats containing S, and for
each S a pointer to ¢S in the lattice is provided.
o is the closure operator.

In our algorithm, we check all subsets of E

consisting of n elements for bases of the matroid.
Suppose we have a subset B = {ej), €i2)s- -,
eimy} With 1 < i(1) < i(2) < ... <i(n) < m
which is a base of this matroid. Define B; to be
{e,-(l), ey ei(j)} (] = 1, ce ,n).
Lemma 2 (a¢) An element ey € E — B with
i(j) <4 <i(j +1) for somejin {1,...,n -1}
s ezternally active with respect to the base B if
and only if ey € o Byjy.

(b) An element ey € E — B with i(n) < i’ <
m is externally active.

Lemma 3 An element e;;y € B 1s internally
actwe if and only if all the elements ey in E~B
with ¢ > i(j) are in o(B — {e;;)})-

From these lemmas, we can compute the exter-
As for
the external activity, for each j =1,...,n -1,
we count the number s; of clements ey with
i(j) < v < i(j + 1) which are contained in
o By(;y- Then, (m —i(n})) + ;‘;11 s; is the exter-
nal activity. Note that by considering intervals
(i(7),1(j + 1)), each externally active element is

nal and internal activities as follows.

" counted exactly once. As for the internal activ-

ity, for each j = 1,...,n, we count the number
r; of elements ey in o(B ~ {e;;y}) with ¢ > i(j).
Then, e;(;) is internally active if r; = m - i(j).

Thus, both activities can be computed by
counting the number of elements of flats within
some interval like (i(5), (5 +1)). By representing
clements of flats in a sorted array Al by the
ordering, this counting can be done in O(logn)
time by binary search. If for each flat ¢S we
have an array A2 of length m such that the '-th
entry of this array stores the number of elements
ey in 0§ with j' < 7, this counting can be done
in a constant time with O(m) space.

Lemma 4 (o) If the array Al 1s used for each
flat in representing the lattice of flats, the exter-
nal and internal activities of B can be computed
in O(logm) time, with O(m™~!) space in total.

(b) If the array A2 is used for each flat in
representing the lattice of flats, the external and
internal activities of B can be computed in a con-
stant time, with O(m™) space in total.

We can gencrate all n-element subsets of E



in O(m™) time. Finally, to compute the Tutte
polynomial by the original definition by Tutte,
we have to count the number of terms with the
same external and internal activities. Noting
that the summation of these numbers is bounded
by the number of bases, and hence is O(m™), this
can be done in O(m™) time by counting them in
a batched way at the end. We thus obtain the
following theorem.

Theorem 5 The Tutte polynomial of a linear
matroid M of m vectors in R™ can be computed
in O(m™logm) time and O(m™ 1) space or in
O(m™) time and O(m™) space, when n is re-
garded as a constant.

5 Graphic Arrangement

In the previous section, by virtue of geometric
structures of arrangements, we show that the
Tutte polynomial can be computed in time linear
to the number of bases in the worst case. How-
ever, this is not the best algorithm at all in some
cases. For example, when all a; (1 = 1,...,m)
are generic, the matroid M(E) is a uniform ma-
‘troid Up,n of m elements and rank n, and hence
the Tutte polynomial is very easily computed.
Testing whether all vectors a; are generic has
connection with a well-known problem of testing
whether a given arrangement is nondegenerate
in computational geometry. (For instance, given
n lines in the plane, testing whether there are
three lines meeting at a common point is hard
to solve o(n?) time, and it is mostly considered
that Q(n?) time would be necessary to solve this
decision problem.) O(m™~1) is the size of the ar-
rangement and the size of the lattice of flats, and
one may be tempted to consider that Q(m"1)
is a lower bound to this computation problem.
However, by restricting the arrangement, we
can obtain a better bound than Q(m"~!) via
BDD. In fact, we have demonstrated that there
exists an output-size sensitive algorithm for con-
structing the BDD of binary and ternary ma-
troids in section 3, and from this BDD the Tutte
polynomial can be computed in time propor-
tional to the size of the BDD. For linear matroids
over the reals, there is not known any efficient
algorithm, like for binary and ternary cases, for
testing the isomorphism of two linear matroids
under a given map, and this also implies that,
for some restricted arrangements related to bi-
nary and ternary matroids, counting problems

on them such as counting the number of cells
may be solved in o(m™™1) time.

We here show that for the arrangement as-
sociated with an undirected graph, called the
graphic arrangement, this is the case, and this
consideration relates the discussion so far with
problems of partially ordered sets.

For an undirected G = (V, E) with vertex set
V = {v1,...,vn}, consider a set of m = |E| hy-
perplanes in R™ defined by z; = z; for each edge
(vi,v;) € E. The arrangement of these hyper-
planes is called the graphic arrangement of G. In
Fig.1(d), the graphic arrangement of Kj is de-
picted. Since it is essentially a two-dimensional
arrangement, we show it by viewing the whole
arrangement from z; = 29 = T3 = oo to the
origin, or by cutting it with =y + zo + z3 = 0.
As is readily seen, each cell of this graphic ar-
rangement corresponds to an acyclic orientation
of G one-to-one. Concerning the number of cells
of this arrangement, the following is known.

Lemma 5 [4, 7] In the graphic arrangement,
the number of cells is given by T(M(G);2,0)
where M(G) is the graphic matroid of G.

In [12], it is shown that the BDD. for this
graphic arrangement can be computed by us-
ing the graph structure, especially efficiently for
graphs having a good vertex elimination order-
ing, from which we obtain the following.

Theorem 6 [12] In the graphic arrangement of
a stmple planar graph with n vertices, the num-
ber of cells can be computed in O(200V™) time.

By extending the results in 7] for formulae
to count the number of lower-dimensional faces
in the arrangement, we can further obtain the
following whose proof is omitted here.

Theorem 7 The number of (n—k)-dimensional
faces of the graphic arrangement of a simple pla-
nar graph with n wvertices can be computed in
0(290V)) time for fized k.

Thus, as far as computing the combinatorial
complexities of the arrangement is concerned, it
can be done with much less time than the total
size of the arrangement, when for example it is
a graphic arrangement of a planar graph.

6 Computing the Number of
Ideals of a Partial Order

Consider a partial order < on a finite set V. We
denote this partially ordered set by (V,=<). An



ideal of this partially ordered set is a subset U of
V such that, foranyv € Uandu X v,v € U. An
empty set and the whole set V are ideals. The
ideals play an important role in decomposing the
partially ordered set.

For (V, %), we can define a polytope by {z |
z = (z,) € RY, Ty < zyp foru X v, 0 <z <
1}. This polytope is called an order polytope.
The vertices of the order polytope is a 0-1 vector.
Each vertex corresponds to an ideal one-to-one,
i.e., the complement of the characteristic vector
of an ideal is a vertex.

Let G = (V, E) be an acyclic graph corre-
sponding to the partially ordered set (V, <) (G
should be made to the Hasse diagram.) Con-
sider the graphic arrangement for the unoriented
graph for G. Then, the order polytope is the in-
tersection of a cell of the graphic arrangement
corresponding to the orientation of G and the
unit hypercube [0,1]Y. See [1, 3, 17].

The number of ideals of (V, %) can be com-
puted via BDD. To do this, we have to first
construct the BDD representing all ideals, or
all vertices of the order polytope. The Boolean
function f representing all vertices of the order
polytope can be described as follows ((u,v) € E
implies v X u): f = A(yuyep(@w V %) This is
not monotone, and a technique to construct the
BDD of monotone functions [8] cannot be used.
However, each clause of this formula consists of
two literals, and this enables us to test the equiv-
alence of subfunctions of this function.

For U C V, consider two subsets U; and U,
of U such that there is not a pair of u € U
and v € U — U withu v (I = 1,2). Let f
be a subfunction obtained by setting z, = 1 for
v €U andzy, =0forvelU-U (I =1,2).
Let V! be a subset of vertices in V — U from
which to a vertex in U; there is a directed path
in G (I =1,2). Let V}? be a subset of vertices in
V — U to which from a vertex in U — Uj there
is a directed path in G (I = 1,2). Define V| =
V- (UUVrUV®) (I =1,2). Then, we have the
following whose proof is omitted.

Lemma 6 The subfunctions fi and fy are equiv-
alent if and only if V! =V} and V? = V0 (and
hence V1 = V;).

To use this lemma to check the equivalence
between two subfunctions, we have to check the
whole V2, V!, V, V. However, some of ver-
tices in these sets are contained in them by tran-

sitivity. In this regard, only “boundary vertices”
around U determine these sets. Let us define this
concept rigorously.

Consider an ordering of vertices in V into
¥1,V2,...,Vn. The i-th elimination front V; is a
vertex subset consisting of vertices v; with [ > 4
such that v, is adjacent to some vertex v; with
J < 1. Then, the following holds.

Lemma 7 Let W be the i-th elimination front.
IfVinW =VENW, then VR =V} (h=0,1).

Hence, the equivalence check can be done by
checking the equivalent of partitions of the elim-
ination front W into three sets VP NW, VinWw
and the remaining elements. The number of dis-
tinct partitions of an N-element set into at most
three sets is at most 3. Combining these with
Lemma 1, we have the following.

Theorem 8 When the underlying acyclic graph
(Hasse diagram) G has an ordering of vertices
such that the size of any elimination front is
bounded by N, the BDD representing all ideals
of this partially ordered set can be constructed in
O((n? logn)3N) time.

A planar graph has a good vertex ordering
(12, 15] by the planar separator theorem, and we
have the following. For graphs having a good
vertex ordering, similar results hold.

Theorem 9 When the underlying acyclic graph
(Hasse diagram) G is a simple planar graph with
n vertices, the number of ideals of this partially
ordered set can be computed in O(2°(V™) time.

7 Concluding Remarks

The results of this paper bridge many combina-
torial structures and geometric ones algorithmi-
cally via the Tutte polynomial and BDD. This
gives rise to the following open problems.

(1) As in the case for graphic matroids [12],
analyze the size of BDD of all bases of binary
and ternary matroids. Since this paper shows
that for these two classes of matroids the BDD
of all bases can be constructed in an output-size
sensitive manner, the size of this BDD becomes
a more important parameter.

(2) Show if the isomorphism test among other
matroids can be done efficiently or not, say for
transversal matroids, lower-truncated transver-
sal matroids such as the union of graphic ma-
troids [9]. This may be applied to the system
reliability analysis of a generic matrix and com-



puting the network reliability maintaining high
connectivity [13].

(3) Is there any further meaning of the Tutte
polynomial and BDD for the arrangement in low
dimensions? We here show that the number of
lower dimensional faces can be also computed
from the BDD. As mentioned in this paper, the
BDD and Tutte polynomial can judge the non-
degeneracy of the arrangement, and there would
be more meanings connecting these.

(4) Is the BDD approach applicable to com-
puting the number of linear extensions of a par-
tially ordered set? This problem has attracted
many researchers and randomized fully polyno-
mial approximation schemes have been devel-
oped. See [1, 3, 5, 10, 17]. Our approach counts
the exact value for moderate-size problems, and
should be compared with such approximation
~ schemes for practicality.
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