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abstract Given a partially defined Boolean function (pdBf in short) (T, F'), we investigate in this paper how
to find a Horn extension f : {0,1}" — {0,1}, which is consistent with (T, F), where T' C {0,1}" denotes a
set of true Boolean vectors (or positive examples) and F C {0,1}" denotes a set of false Boolean vectors (or
negative examples). Given a pdBf (T, F), it is known that the existence of a Horn extension can be checked
in polynomial time. As there are many Horn extensions, however, we consider those extensions f which have
maximal and minimal sets T(f) of the true vectors of f, respectively. For a pdBf (T, F), there always exists
the unique maximal (i.e., maximum) Horn extension, but there are in general many minimal Horn extensions.
We first show that a polynomial time membership oracle can be constructed for the maximum extension, even
if its DNF (disjunctive normal form) can be very long. Our main contribution is then to show that checking if
a given Horn DNF represents a minimal extension, and generating a Horn DNF of a minimal Horn extension
can both be done in polynomial time. We also can check in polynomial time if a pdBf (T, F) has the unique
minimal Horn extension. However, the problems of finding a Horn extension f with the smallest |T'(f)} , and
of obtaining a Horn DNF, whose number of literals is smallest, are both NP-hard.

I key words: partially defined Boolean function, extension, Horn function, knowledge acquisition.



1 Introduction

A basic problem in knowledge acquisition in the
form of Boolean logic (e.g., {3, 12]) can be stated
as follows: Given a set of data, represented as
aset T' C {0,1}" of binary “true n-vectors” (or
“positive examples”) and a set F C {0,1}" of
“false n-vectors” (or “negative examples”), es-
tablish a (fully defined) Boolean function (i.e.,
extension) f : {0,1}" ~ {0,1} in a specified
class C, such that T C T(f) and F C F(f),
where T'(f) (resp. F(f)) denotes the set of true
(resp. false) vectors of f. A pair of sets (T, F) is
called a partially defined Boolean function (pdBf)
throughout this paper.

For instance, a vector z may represent the
symptoms to diagnose a disease; e.g., z1 denotes
whether temperature is high (z; = 1) or not
(z1 = 0), and z2 denotes whether blood presure
is high (z2 = 1) or not (z; = 0), etc. Each vector
z in T corresponds to a case of symptoms which
caused the disease, while a vector in F describes
a case with which the disease did not appear.
Establishing an extension f, which is consistent
with the given data, amounts to finding a logical
diagnostic explanation of the given data.

In this paper, we consider the case in which
f is a Horn function {10). Horn functions play
an important role in artificial intelligence, logic
programming and so on, since the non-tautology
problem of a Horn DNF (disjunctive normal form)
(H-NON-TAU) in short) can be solved in poly-
nomial time [4], whereas non-tautology problem
(NON-TAU) of a general DNF is NP-complete.
As problem NON-TAU, which is the dual for-
mulation of satisfiability problem (SAT) of CNF
(conjunctive normal form), is very fundamental,
many problems related to Horn functions can be
solved efficiently. In terms of sets T'(f) and F(f),
a Horn function has an elegant characterization:
f is Horn if and only if F(f) is closed under in-
tersection of vectors (i.e., v,w € F(f) implies
vAw € F(f), where A\ denotes the component-
wise AND operation).

As there are in general many Horn extensions f
for a given pdBf (T, F'), we shall mainly consider
those extensions which have mazimal and mini-
mal T(f), respectively. We note here that most
of the papers on the representation by Horn the-

ory (e.g., [3, 5, 11, 12]) are based on model the-
ory, in which finding a Horn representation f of
a given model (T'(g), F(g)), where g is a Boolean
function and the sets T'(g), F(g) of vectors are
explicitly given, is their primary target. For ex-
ample, the problem of finding the best Horn ap-
proximation of model (T'(g), F(g)), i.e., finding
the Horn function with the minimum F(f) un-
der constraint F(f) D F(g), has received some
attention [12], and it is known [12, 13] that ob-
taining an irredundant DNF of such f is at least
as difficult as computing the DNF of the dual h*
of a positive (i.e., monotone) Boolean function A.
The latter problem is a well-known open problem
[2, 6], for which the recent result of Fredman and
Khachiyan [7] shows that there is an O(me°g™))
time algorithm, where m is the total length of
DNFs for both h and h*. We emphasize that our
problem setting is different from model theory
in that the input (T, F') is only partially defined.
However, the above problem of best Horn approx-
imation is very close to the problem of finding a
maximal Horn extension. We also note that, al-
though the problem of finding a best approxima-
tion in terms of T'(g) is a bit artificial (since T'(g)
is not closed under ihtersection), finding its coun-
terpart (i.e., a minimal Horn extension) is quite
a natural problem in our framework.

It is known [3] that the existence of at least
one Horn extension of a given pdBf (T, F) can
be checked in polynomial time. After preparing
necessary notations and definitions in Section 2,
and introducing canonical Horn DNF in Section
3, we proceed to maximal and minimal Horn ex-
tensions. In Section 4, by using an argument sim-
ilar to the one used in model theory, we show that
there exists the unique maximal Horn extension
fmax (i.e., maximum), and provide a polynomial
time membership oracle for fy,ax. In Section 5,
Con-
trary to the case of maximum Horn extension,
there are in general many minimal Horn exten-

we investigate minimal Horn extensions.

sions. Our main contribution is to show that the
minimality of f,, which denotes the function rep-
resented by a Horn DNF ¢, can be checked in
polynomial time. Based on this, a minimal Horn
extension of a pdBf (T, F) can be generated in
polynomial time, and the uniqueness of a mini-
mal extension can also be checked in polynomial



time.

To derive the above main results, we first show
that any minimal Horn extension can be repre-
sented by a canonical Horn DNF, though the con-
verse is not true. The nontriviality of finding a
canonical DNF representing a minimal Horn ex-
tension may be exemplified by the existence of a
canonical DNF that satisfies local minimality but
does not represent a minimal Horn extension. To
overcome this, we reduce the minimality condi-
tion to the equivalence f, = f,-, where ¢ is a
given Horn DNF and ¢* is a DNF derived from
¢ and (T, F). Although this does not immedi-
ately give a polynomial time algorithm, since p*
is not Horn, we then derive a series of lemmas,
with which condition f, = f,« can be eventu-
ally decomposed into a polynomial number of H-
NON-TAU problems, each of which can then be
solved in polynomial time.

Finally, we show in Section 6 that the problems
of computing a Horn extension f with the min-
imum |T(f)|, and of finding the shortest Horn
DNF (i.e., having the smallest number of liter-
als) that represents a Horn extension are both
NP-hard. It is still not known whether there is
a polynomial total time algorithm to generate all
minimal Horn extensions of a given pdBf (T, F).

2 Preliminaries

A Boolean function (or a function in short) is a
mapping f : {0,1}" — {0,1}. If f(z) =1 (resp.
0), then z is called a true (resp. false) vector
of f. The set of all true vectors (resp. false
vectors) is denoted by T'(f) (resp. F(f)). De-
note, for a vector v € {0,1}*, ON(v) = {j |v; =
1,7=12,...,n} and OFF(v) = {j|v; =0, =
1,2,...,n}. Two special functions with T(f) =
and F(f) = 0 are respectively denoted by f = L
and f = T. For two functions f and g on the
same set of variables, we write f < g if f(z) =1
implies g(z) = 1 for any = € {0,1}", and f < g
iff<gand f#g.

Boolean variables zi,...,z, and their nega-
tions Zj,..., &, are called literals, where we call
literals z1,...,z, positive, and literals Z;,..., &,
negative. A term t is a conjunction of literals
such that at most one of z; and Z; appears for

each ¢. We call that a term t absorbs a term ¢’
if t > ¢/, where terms t and t' are considered as
functions here. For example, a term zj absorbs
a term zgz. A term t is called an implicant of
a function f if t < f. An implicant t of a func-
tion is called prime if there is no implicant t' > t.
A disjunctive normal form (DNF) ¢ is a disjunc-
tion of terms. It is well known that a DNF ¢
defines a function, which we denote f,, and any
function can be represented by a DNF (however,
such a representation may not be unique). Some-
times in this paper, we do not distinguish a DNF
¢ from the function f, it represents. For exam-
ple, a term t is also considered as the function
fi. The number of literals in a DNF ¢ is denoted
by |¢|. In this paper, we shall exclusively deal
with DNF expressions but all the results can be
translated into the results for CNFs by dualizing
the involved concepts.

A term is called positive if it contains only
positive literals, Horn if it contains at most one
A DNF is called positive if it
contains only positive terms, and Horn if it con-

negative literal.

tains only Horn terms. For example, a DNF ¢ =
123V 245V 156 is positive, and ¢ = 157V 24V 267
is Horn. (Here, for simplicity, a positive literal x;
is denoted as 7 and a negative literal Z; as 7.) A
Boolean function is called positive (or monotone)
if it can be represented by a positive DNF, and
Horn if it can be represented by a Horn DNF.
We sometimes call a Horn DNF representing a
Horn extension of a pdBf (T, F) as a Horn DNF
of (T, F). It is known [9] that, if f is Horn, then
all prime implicants of f are Horn. It is impor-
tant to know that NON-TAU for a Horn DNF
¢ (H-NON-TAU) can be solved in linear time in
] [4]. Based on this, conditions such as f, = fy
and f, < fy can be checked in O(|o||4]) time for
given Horn DNFs ¢ and ¢ [9]. Also, for a term
t (not necessarily Horn), condition ¢ < f,, can be
checked in O(|y]) time [9].

A partially defined Boolean function (pdBf) is
defined by a pair of sets (T, F') satisfying 7' N
F = 0, where T, F C {0,1}*. A function f is
an ertension (or theory) of pdBf(T,F) if T C
T(f) and F C F(f), and a Horn eztension if f
is in addition Horn. A Horn extension f of a
pdBf (T, F) is called minimal (resp. mazimal) if
there is no Horn extension f' satisfying f' < f



(resp. f' > f), that is, set T'(f) is minimal (resp.
maximal). Furthermore, a Horn extension f of
a pdBf (T, F) is minimum (resp. mazimum) if
there is no Horn extension f’ such that |7°(f")| <
[T()] (resp. [T(f)] > T(£)]).

3 Canonical Horn DNF

Call the componentwise AND operation A of vec-
tors v and w as the intersection of v and w. For
example, if v = (0101) and w = (1001), then
vAw = (0001). For a set X C {0,1}", the set
of vectors C(X) is called intersection closure if it
is the minimal set that contains X and is closed
under intersection.

Proposition 3.1 [5] A function f is Horn if and
only if F(f) = C(F(f))- a

Now we consider the following problem, and
note that it can be solved in polynomial time.

Problem H-EXTENSION
Input: A pdBf (T, F).
Question:

(T, F)?

Is there a Horn extension f of

Definition 3.1 For a pdBf (T, F) and a vec-
tor v € T, the set of terms R(v) is defined by
R(v) = {Ajeconi i}, if OFF(v) = 0; R(v) =
{(Njecon(w =i) Z1 | 1 € I(v)} if OFF(v) # 0 and
I(v) # 0; otherwise, R(v) = 0, where

Frw)={we F|w>v}
I(v) = (Nyer+(eyON () N OFF(v).

By convention, we define I(v) = OFF(v) if
F*(v) = 0. A DNF g is called a canonical Horn
DNF of (T, F) if ¢ is given by

P = V ty, where t, € R(v), (1)

€T
i.e., by selecting one term from each R(v), v €
T. Remark that the canonical Horn DNF is not
defined if R{v) = 0 holds for some v € T'. a

For example, let T = {v(!) = (11000),v® =
(10010)} and F = {w® = (11011),w® =
(10011)}. Then F*(v(V) = {wM}, F+(x®@) =
{w®, W@} 1(wW) = {4,5} and I(v?) = {5}.

Thus we have R(v/)) = {z122%4, 712225} and
R(w™) = {z;24%5}. Therefore, o) = 22034 V
z124%5 and @) = 2129F5V 212475 are all canon-
ical Horn DNFs of the above (T, F'). Construc-
tion of Horn DNFs in this manner can be found
in various literature in learning theory [1], model
theory [11] and Horn approximation {15].

Lemma 3.1 [3] Any canonical Horn DNF ¢ of a
given pdBf (T, F') represents a Horn extension of
(T, F), and (T, F) has no Horn extension if there
is no canonical Horn DNF. 0

Since the existence of a canonical Horn DNF
can be easily checked in polynomial time, we es-
tablish:

Theorem 3.1 Problem H-EXTENSION can be
solved in O(n|T||F]|) time, and if a pdBf (T, F)
has a Horn extension, one of its canonical Horn
DNFs can be obtained in O(n|T||F|) time. O

4 Maximum Horn Extension

Theorem 4.1 If a given pdBf (T, F) has a Horn
extension, its maximal Horn extension is unique.

Proof. By Proposition 3.1, F(f) of any Horn ex-
tension f of (T, F) is closed under intersection.
Let us define fmax by F(fumax) = C(F). Since
C(F) is the unique minimal set that contains F
and is closed under intersection, this fyax is the
unique maximal Horn extension of (T, F). 0O

Unfortunately, there may not be any compact
DNF representation of fax, since it is known [11]
that there is a pdBf (T, F) for which the size of
any DNF ¢ of fiax is exponential in n, |T'| and
|F|. However, we can do better if we do not stick
to the DNF representation. Note that fiax is
defined by set C(F), and hence v € C(F) holds
if and only if

A w ="v.

weF+(v)

As this condition can be checked in polynomial
time in n and |F| for a given v, we can build an
oracle that answers membership queries for fuax
in polynomial time.



5 Minimal Horn Extensions

5.1 Checking the minimality of a Horn
DNF

Problem MINIMAL-H-EXTENSION
Input: A pdBf (T, F) and a Horn DNF ¢.
~Question: Is ¢ a minimal Horn DNF of (T, F) ?

We show via a series of lemmas that this prob-
lem can be solved in polynomial time. The proofs
for some results are omitted due to the space con-
straint; see [14] for details.

For a pdBf (T, F), a vector v € T and a Horn
DNF ¢ of (T, F), define

I(piv) = {1€I()|[{Ajeconw zi) %1 < fo}s
R(pjv) = {t€ R(v)[t< f,}
(= {(Ajeonw) zi) 2|1 € I(p;v)}).

Since it is easy to see that every minimal Horn
extension ¢ can be represented by a canonical
Horn DNF, I(p;v) # ¢ and R(yp;v) # @ hold for
all v € T. The set I(y;v) can be constructed in
linear time in |¢|, by using the forward chaining
procedure [8]. We start with the next necessary
and sufficient condition.

Lemma 5.1 Let ¢ be a Horn DNF of a given
pdBf (T, F). Then ¢ is minimal if and only if
fo = fy holds for every canonical Horn DNF
given by

Y=\t t.€ R(p;v). m
V€T

It is known that there is a canonical Horn DNF

¢ that is not minimal but satisfies the local min-
imality (i.e., every DNF 3 obtained from g by
replacing one of its terms t, by t,, € R{p;v)\{t.}
for any v € T with |R(p;v)| > 1 satisfies fy, =
fo)- This may suggest that problem MINIMAL-
H-EXTENSION is not trivial. The condition in

Lemma 5.1 can be rewritten as follows.

Lemma 5.2 Let ¢ be a Horn DNF of a given
pdBf (T, F). Define

(p* = VvET t;a
t = Njcon) i Njeripw) Tis
where t;, = t, if I(p;v) =0 (i.e., OFF(v) = 0).
Then ¢ is minimal if and only if f, = f,~ holds.
[}

)

Note that ¢* is not Horn, and therefore check-
ing if f, = f,+ may not be obvious. For a term
t, in a canonical Horn DNF ¢ =V, 7 t,, define

I(p;v) = I(p;v) \ {k}, (3)

where Z;, is the negative literal in ¢, (if ¢, has
no negative literal, let I(p;v) = I(p;v) = 0).
Then we define a term d;(t,) for i € I(p;v), and
a formula d(¢,) as follows.

di(t/,,) = x;t, (4)
{ Viektga dilts) if 1(g;v) # 0

1 otherwise.

d(t.)

For example, if ¢, = 1234 and I(p;v) = {4,5,
6,7}, then I(p;v) = {5,6,7} and d(t,) = 123
4(5V 6V 7). It is easy to see that T(d(t,)) =
T(t.) \ T(t}), since t; = /\jeON(v) Tj /\jel(«p;v) z;.
Hence for any t, in ¢, d(t,) < fe- holds if and
only if t, < f,» holds. Thus d(t,) < f, holds for
all ¢, in ¢ if and only if f, < f,~ holds. The last
condition is equivalent to f, = f,» since f, >
fe+ is obvious from definition. This proves the
following lemma.

i

Lemma 5.3 Let ¢ = V,crt, be a canonical
Horn DNF of a given pdBf. Then f, = f,» holds
if and only if

di(tll) S f&P' (5)

holds for all ¢, in ¢ and i € I(p;v). O

Now we consider how to check condition (5) in
polynomial time. Let ¢ =V 7 t, be a canonical
Horn DNF. For a term ¢, in ¢ and i € I(p;v),
define

di(ty) = zity (N 75)

JEOFF(\I ()
Wilpiv) = {w € T | T(d](t.)) N T(t;,) # 0}. (6)

Lemma 5.4 Let ¢ = V,cpt, be a canonical
Horn DNF of a pdBf (T, F). Then for every
w € Wi(p;v), where v € T and i € f(go;v), the
following two properties hold:

(i) ON(w) € ON (v) U I(4;v),

(i) I(p;w) C I(p;v) \ {i}.

Proof. Recall that



d; (tu) = zito (A\jeo PPN I(0i0) T5)
= Ajeontmu(iy T Njeorrantmuir & (7)
tw = Njeonw) Ti Njet(pmw) -

If there existsan ! € ON(w)\(ON(v)Ui(gp; v)) (=
ON(w)N(OFF(v)\ f((p; v))), then the negative
literal Z; appears in df(¢,) and the positive literal
z; appears in t}; hence T(d}(t,)) NT(t}) = 0,
contradicting the definition of W;(p;v). This
proves property (i).

Next, to prove (ii), assume the contrary, i.e.,
there exists an index | € (I(p;w) \ I(p;v)) U {i}.
The following three cases are possible.

(a) I = 4: Then T(d!(t,)) N T(t},) = @ holds,
since d} (t,) contains z; and t}, contains Z;, which
is a contradiction.

(b) I € ON(v) N I(p;w): Then T(d}(t,)) N
T(tX,) = 0 again holds, which is a contradiction.

(c) I € OFF(v) N I{p;w): Clearly, I €
(OFF () \ I{p;v)) N I(p;w). Then ! € I(p;w)
implies (Ajcon(w) Zj) Z1 £ fp, and therefore, by
property (i),

( Azi))@ < fo 8)

JEON(v)UI(pv)

Now ! € OFF(v) \ I{y;v) implies (A;con () Z5)
# £ f,. However, since (/\jeON(v) z;)Zn < fo
for all h € I{p;v), and

T((/\jGON(w)UI(sa;v) 'Tj) )
=T((Ajeon(w) Tj) 1)
\T((/\jEON(v) wj)(\/hel(w;v) ih) il))

we have (Ajcon(uur(pw) i) &1 & fp, which is a
contradiction to (8). a

Lemma 5.5 Let ¢ = V,crt, be a canonical
Horn DNF of a pdBf (T, F'). Then for everyv € T
and i € [(p;v), di(t,) < fp» holds if and only if
d}(ty) < fo+ holds.

Proof. The only-if-part is immediate since
d}(ty) < di(ts) by definition. To prove the if-
part, note that df(t,) < f,- holds if and only
if

Gty< Vot (9)

weW;(p;v)

holds. This implies that the index set of t, =
Njeon(w) i Njerpmw) Tj satisfies

(ON(w) U I(p;w)) N (OFF(v) \ I(p;v)) = 0.

Thus by the definition (7) of d}(t,) and t},, we
have

d: (tv) < V‘(lﬁEW,‘((p;’l') t'rn
if and only if d,‘(t,,,) < VwEW,(Lp;v) ty

w*

(10)
This proves the if-part. }

By property (ii) of Lemma 5.4, checking condi-
tion d(t,) < f,+ can be simplified, i.e., df (t.) <
for is equivalent to df(ty) < Vyeq, tw, Where
Qv = {w € T[{(p;w)| < [I(¢;v)]}. In other
words, it is not necessary to know W;(p;v) of
(9). Thus, combining Lemmas 5.2, 5.3 and 5.5,
we have the following lemma.

Lemma 5.6 Let ¢ = V,cpt, be a canonical
Horn DNF of a pdBf (T, F'). Then ¢ is a minimal
Horn DNF of (T, F) if and only if

Gt <V 4
WEQ,

(11)

holds for all v € T and i € I(p;v), where Q, =
{w e T|(p;w)] < I(p;v)}}- =

Theorem 5.1 Let ¢ = V, rt, be a canon-
ical Horn DNF of a pdBf (T,F) with T =
{oM 0@ WUTDY where |[I(p;v®)] <
[I(@;v)] for i < j. Then ¢ is a minimal Horn
DNF of (T, F) if and only if

&} (tyn) < Vjeqr2,..1-1) tatids

12
i€ Iy, 1=1,2,...,|T]. (12)

Proof. By Lemma 5.6, ¢ is a minimal Horn
DNF of (T,F) if and only if (11) holds for
all v € T and i € I(p;v®). Then, since
{v“),v(z), e ,’U(l—l)} _:_) Q,U(l) and tv(l) Z t:(,), we
can conclude that (12) holds for all ¥ and 1.
Conversely, assuming that (12) holds for all v(¥)
and 7, we prove (11) by induction on I. In case
of I =1, (12) implies df(¢t,n,) = L for all i €
I(p;v ™M), and hence (11) holds. Let df(t,m) <
V"'EQ,,U) t¥ holdfor!=1,2,...,l*-1andallz €
I(p;vM). By (ii) of Lemma 5.4, this is equivalent
to df (t,n) < Vaew,(ppm) ty- Furthermore, by
(10), we have di(t“(l)) S VwEW,'((p;v(”)t:l)‘ This
is also equivalent to d;(t,n) < VwEQ"(,) ty,, and
hence V¢ f .,y dilt,m) < VwEQu(,) ty,. Thus



Ty =ty V (Viefwn,m) di(t,n))
< t:u) v (VwEQ"(,) t:v) < V]E{l,z,...,l} t:ur
Hence, (12) implies
det <\ tw< Vo e
je{1.2,....I* -1} je{1.2,...,01* -1}
and (11) holds for v = v} by W;i(p;v))
Quu € {1,2,...,I*—1}.

Note that relation (12) can be checked in poly-
nomial time, since the right-hand side of (12)
is a Horn DNF. In other words, MINIMAL-H-
EXTENSION can now be solved in polynomial
time by the following algorithm.

Algorithm CHECK-MINIMAL
Input: A pdBf (T, F) and a Horn DNF ¢.
Question: Is ¢ a minimal Horn DNF of (T, F') ?

c
O

Step 1: Check if f, is a Horn extension of
(T, F). If not, output “no” and halt.

Step 2: Construct a canonical Horn DNF ¢ =
Ve tv such that fy < fo. If fy < f,, then
output “no” and halt; otherwise (i.e., fy =
fo), rewrite 1 as @.

Step 3: Sort all vectors in T to have T =
{vW, 5@ w0TDY - where [I{p;0™)] <
|I(; 00| for i < j.

Step 4: Output “yes” if (12) holds for ¢; oth-
erwise, “no”. Then halt. O

By analyzing the time complexity of each step, it
is not difficult to obtain the next theorem.

Theorem 5.2 Given a pdBf (T, F) and a Horn
DNF ¢, problem MINIMAL-H-EXTENSION can
be solved in O(|F||e| + n|T||e| + n|T|?) time
by algorithm CHECK-MINIMAL, where T, F C
{0,1}" and |p| denotes the number of literals in
@. O

5.2 Unique minimal Horn extension

Lemma 5.7 Let ¢ = V,crt, be a minimal
canonical Horn DNF of a pdBf (T, F). Define

te Vi,

veT

tI, = /\ :L‘j/\fﬁj, veT,

JEON(v) jel(v)
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where tf, = t, if [(v) = 8. Then (T, F) has the
unique minimal Horn extension (which is f,) if
and only if f, = f,+ holds. i}

Note that this lemma corresponds to lemma
5.2, and all other lemmas, theorems and algo-
rithms in Subsection 5.1 are valid, even if * and
I(p;v) are replaced by t and I(v), respectively.
(Recall that ¢, and I(v) become t; and I(p;v),
respectively, if ¢ represents fyux.) Therefore, we
have the following theorem.

Theorem 5.3 Deciding if a pdBf (T, F) has an
unique minimal Horn extension can be done in
O(n|T|(|F| + n|T|?)) time. O

5.3 Generating a minimal Horn exten-
sion

To generate a minimal canonical Horn DNF of a
given pdBf (T, F'), we first construct a canonical
DNF ¢, and then recursively check if (12) holds
for ¢ or not. If yes, output ¢ and halt. Oth-
erwise, find a counterexample to condition (12);
ie.,

w € Tt N\T(\ t,0) (13)
1e{1,2,...,I*~1}

for 7 € i(cp;v“"), and update ¢ to ¢’ such that
¢'(w) = 0 and ¢’ < ¢. Formally, it can be writ-
ten as follows.

Algorithm FIND-MINIMAL

Input: A pdBf (T, F).

Output: A minimal canonical Horn DNF ¢ of
(T, F) if (T, F) has a Horn extension; otherwise,
“no”.

Step 1: If (T, F) has a Horn extension, con-

struct a canonical DNF ¢ =V crt,; other-
wise, output “no” and halt.

Step 2: Sort all vectors in T to have T
{o®) @) WUTDY ) where |I(p;v)]
[I(p; 0] for 4 < 3.

IN M

Step 3: Check if condition (12) holds for the
current . If yes, output ¢ and halt. Oth-
erwise, take the minimum [ = [* for which



(12) does not hold, and find a counterexam-
ple w satisfying (13). Based on this w, de-
fine Rvu) = {tv(”} for | = 1,2,...,1* - 1;
R, = {t € R(p;v")|t(w) = 0} for | =
*,0* +1,...,|T|, and reconstruct a Horn
DNF ¢ by

o=\ tuw;

wDeT

tun € Ry, (14)

where ¢,y € R,n is chosen arbitrarily if
|R,n| > 2. Return to Step 2. [}

Theorem 5.4 Given a pdBf (T, F), where T,
F C {0,1}", a minimal canonical Horn DNF ¢ of
(T, F) can be generated in O(n|T|(|F| + n|T|?))
time if (T, F) has a Horn extension. m}

6 NP-hardness results

Theorem 6.1 Computing a minimum Horn ex-
tension (i.e., with the smallest |T'(f)]) of a pdBf
(T, F) is NP-hard, even if F = 0. a

Theorem 6.2 Computing a shortest Horn DNF
¢ (i.e., with the smallest |p|) of a pdBf (T, F) is
NP-hard O
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