7 T

(1996. 5. 29)

BR/NAEESIIT HEENL2IF TN T XL EFDIEA
LB BT BE bt Xin He$
R TAE
_ L o Y
§ State University of New York at Buffalo

WE: SA6NAEET 7718 LT, MRNSAKELRDLBH 7N T) L% 2 DWE LA, 1 28
IS EATRER] O IBFFAEAT O(logn) BMO S > ¥ L7 VT XLT, Thid CRCW PRAM T, 70
£y EIE O(n+m) HTH B, 2 DOIXEITHERD Olog? n) BBORERT VT LT, Th
X EREW PRAM T, 70+t v 4+#id O(A%(n+m)/logn) THbBH, TITnl3THAEK, m (30D
¥, ARBARETH S, uﬂ%@ﬁﬂ%liﬂ&fﬂ@ﬂ%%&ﬁb FREWT I 7 EOT VT XLIC
WRTAHAIENTED, RICIOEREFIFAIL T Jiang 512 & o THEHA SN 7 shortest superstring
problem DH BNV I — a3 LT D5 NCEMTLVT) XL 2R LIz, SOT7VTY XLIME
BEDe> 01 LT o3 OEMEEERT 5,

= =R BFITNTIXN, FYFATVNI)VXN, TITTNT) XL, BANSNAES, QT NVTY

X L, Shortest common superstrings.

Fast RN C and NC Algorithms for Finding a Maxima] Set of Paths
with an Application

Ryuhei Uehara’, Zhi-Zhong Chent, Xin He$

t Tokyo Woman's Christian University
t Tokyo Denki University
§ State University of New York at Buffalo

Abstract: We present two parallel algorithms for finding a maximal set of paths in a given undirected
graph. The former runs in O(logn) expected time with O(n + m) processors on a CRCW PRAM.
The latter runs in O(log® n) time with O(A%(n + m)/logn) processors on an EREW PRAM. The
results improve on the best previous ones and can also be extended to digraphs. We then use the
results to design an NC' approximation algorithm for a variation of the shortest supelstnng problem
introduced by Jiang et «l. The approximation algorithm achieves a compression ratio of = for
any € > 0.

T+e

Key words: Parallel algorithms, Randomized parallel algorithms, Graph algorithins, Maximal path sets,

Yy X L 51—4

Approximation algorithms, Shortest common superstrings.

1 Introduction

The mazimal path set (MPS) problem is to find,
given an undirected graph G = (V, E), a maximal
subset F of E such that the subgraph induced by
F is a forest in which each connected component is
a path. In [3], Chen introduced this problem and
showed that parallel algorithms for it can be used
to design parallel approximation algorithms for the
famous shortest superstring problem (SSP). It is
worth mentioning that SSP has been extensively
studied due to its important applications in DNA
sequencing and data compression [1, 4, 10, 11].

In {3], Chen presented an NC' algorithm and an
RNC algonthm for the MPS problem. The for-
mer runs in Olog®n) time with O(n + m) pro-
cessors on a CRCW PRAM and the latter runs
in O(log? n) expected time with O(n + m) proces-
sors on a CRCW PRAM. In this paper, we present
two faster parallel algorithms for the problem. Our

first algorithm runs in O(log n) expected time with
O(n+m) processors on a CRCW PRAM. This algo-
rithm is faster and more efficient than Chen's RNC'
algorithm. Our second algorithm runs in O(log? n)
time with O(A%(n + m)/logn) processors on an
EREW PRAM, where A is the maxiinum degree
of the input graph. Compared with Chen's NC' al-
gorithm, this algorithm is faster, runs on a weaker
computation model, and is more efficient for input
graphs of bounded degree.

Our RNC algorithm for the MPS problem has a
similar structure to that of Israeli and Itai's RNC'
algorithm (I&I algorithm, for short) for the maxi-
mal matching problem [6]. Namely, given a graph
G, both the I&I algorithm and our algorithm pro-
ceeds in stages; in each stage, their main jobs are
to compute a random matching M in a certain sub-
graph of G and to delete (from G) some edges inci-
dent to the vertices matched by M. In the 1&I algo-
rithm, the expected number of edges deleted in each

stage is a constant fraction of the number of edges
in G [6]. However, our algorithm does not have this
property. Instead, we define a potential function ¢
and prove that in each stage, ¢(G) decreases by a
constant fraction on average. This is the key for us
to obtain the desired time bound. Our NC algo-
rithm for the MPS problem is obtained by carefully
derandomizing the RNC' algorithm. An immediate
consequence of the results is that the parallel ap-
proximation algorithms for SSP given in [3] can be
made faster.

In {7], Jiang et al. introduced an interesting vari-
ation of SSP. Let § = {s1,---,8,} be a set of n
strings over an alphabet &. A superstring-with-
flipping of S is a string s over T such that for each
i, at least one of s; and its reverse is a substring
of s. The amount of compression achieved by a
superstring-with-flipping s of S is |S| — |s|, where
|s| is the length of s and |S| is the total length of
the strings in S. Define SSPr to be the following
problem: Given a set S of strings, find a short-
est superstring-with-flipping of S. Like SSP, SSPp
is NP-hard [7] and it is of interest to design ap-
proximation algorithms for SSPp. In [7], Jiang et
al. presented a polynomial-time approximation al-
gorithm for SSPy that produces a superstring-with-
flipping whose length is at most 3 optimal. They
also pointed out that there is a greedy algorithm
for SSP that produces a superstring-with-flipping
by which the amount of compression achieved is at
least optimal [7]. At present, no better sequen-
tial approximation algorithins for SSPp are known.
Also, no parallel approximation algorithm for SSP ¢
has been given previously. Here, using the ideas in
our parallel algorithms for the MPS problem, we
give an NC' approximation algorithm for SSP r that
produces a superstring-with-flipping by which the
amount of compression achieved is at least 5—41-;; op-
timal for any € > 0.

Recall that the EREW PRAM is the parallel
model where the processors operate synchronously
and share a common memory, but no two of them
are allowed simultaneous access to a memory cell
(whether the access is for reading or for writing
in that cell). The CRCW PRAM differs from the
EREW PRAM in that both simultaneous reading
and simultaneous writing to the same cell are al-
lowed; in case of simultaneous writing, the proces-
sor with lowest index succeeds.

For lack of space, we will omit the proofs of most
facts, lemmas, theorems. and corollaries from this
extended ahstract.

2 The RNC algorithm

In this section, we present an RNC' algorithm for
the MPS problem for undirected graphs. At the end
of this section, we will also mention how to modify
it for digraphs.

We start by giving several basic definitions. Let

G be an undirected graph. The vertex set and edge
set of G are denoted by V(G) and E(G), respec-
tively. The neighborhood of a vertex v in G, denoted
Ng(v), is the set of vertices in G adjacent to v;
dg(v) = |Ng(v)| is the degree of v in G. Vertices of
degree 0 are called isolated vertices. For F C E(G),
let G[F] denote the graph (V(G).F). A subset M

-of E is a matching in G if no two edges in M have

a common endpoint. A matching is mazimal if it is
not properly included in any other matching. We
use V(M) to denote the set of all vertices » such
that v is an endpoint of some edge in a matching
M. By a path, we always mean a simple path. Note
that a single vertex is considered as a path (of length
0). A set F of edges in G is called a path set if G[F]
is a forest in which each connected component is a
path. Intuitively speaking, if F is a path set, then
G|F] is a collection of vertex-disjoint paths. A maz-
imal path set (MPS) in G is a path set that is not
properly contained in another path set. The MPS
problem is to find, given G, an MPS in G.
_Throughout this paper, uuless stated otherwise,
G always denotes the input (undirected) graph, A
denotes the maximum degree of G, and »n and m
denote the numbers of vertices and edges in G, re-
spectively. As the input representation of G, we
assume that V(G) = {0,1,---.n—1} and that each
vertex has a list of the edges incident to it. Thus,
each edge {¢, j} has two copies - one in the edge list
for vertex i and the other in the edge list for vertex

Je

2.1 Description of the algorithm

The top-level structure of our RNC' algorithm is
described by the following pseudo-code:

1. F:=¢; ¢:=G;

2: for each vertexi € G’ do R[] := i

3: while G’ has at least one edge do begin
4: remove all isolated vertices from G’;

5 M := FIND MATCH(G', R);

6 F:=FUM,;

7. UPDATE(G',R, M)

end;

®

The algorithm maintains an array R for which the
following is an invariant: For each vertex ¢ in G/,
Rli] = i if dgipy(i) = 0, and R[] = j if dypy(4) = 1,
where j is the other vertex of degree 1 in the con-
nected component of G[F] containing i. Note that
we have the invariant before the first execution of
the while-loop of the algorithm.

Let us simply explain what subroutines FIND -
MATCH and UPDATE do. FIND MATCH re-
twrns a random matching M in G’ such that each
connected component of G[F U M] contains at most
one edge in M. UPDATE updates the array R so
that the invariant is kept, and deletes those edges e
from G’ such that e € M or F U {e} is not a path
set. Thus, by a simple induction on the number of

iterations of the while-loop in the algorithm, we can
show the correctness of the algorithm.

FIND_MATCH is the heart of our algorithm.
Given G' and R, FIND_MATCH performs the
following steps:

F1. In parallel, for each i € V(G'), choose a neigh-
hor #(i) at random. Let L be the list of the
pairs (i,t(7)) for the vertices i in G'.

F2. In parallel, for each j € V(G'), if there are two
or more pairs (2, t(7)) in L with ¢(i) = j, then
choose one of them arbitrarily and delete the
rest from L.

F3. Let S be the set of those edges {i.j} in G’
with (¢,j) € L or (j,i) € L. Let H be the
graph (U, S), where U is the set of endpoints
of edges in S. (Comment: For each vertex ¢
in H,dg(i)=1o0r2.)

F4. In parallel, for each i € U, randomly select an
edge incident to 7 in H.

F5. Set M’ to be the set of those edges e € S such
that e was selected by both its endpoints in
step F4.

F6. For each i € V(M'), select i if R[i] = 1, and
randomly select one of i and R[i] if ¢ < R[i].

F7. Set M to be the set of those edges e € M’ such

that both endpoints of e were selected in step
F6.

F8. Return M.

It is not difficult to see that M is always a
matching such that each connected component of
G[F U M] contains at most one edge in M. Note
that steps F1 through F5 have previously been used
in the I&I's algorithm for maximal matchmg [6, 8].
Following [8], we say that a vertex i in G’ is good if
Y jeNg (i) 2oy 2 3+ and say that an edge in G’ is
good if at least one of its endpoints is good Then,
we have the following lemmas:

Lemma 2.1 [6, 8] At least half the edges in G’ are
good.

Lemma 2.2 [6] For each good vertex i in G’,
Pr{i € V(M')] is no less than a positive constant.
Lemma 2.3 For all vertices 7 in G/,
Prli e V(M) |ie V(M) > L.
Corollary 2.4 For each good vertex iinG', Prfi €
V(M)] is no less than a positive constant. Con-
sequently. for each good edge {¢,j} in G', P1fi €
V(M) or j € V(M)] is no less than a positive con-
stant.

Next, let us turn to UPDATE. Given G', R, and
M, UPDATE perforus the following steps:

Ul. Remove the edges in M from G'.
U2. In parallel, for each edge {i,j} € M, perform
the following steps:
U2.1. If Rli] = i and R[j] = j, then set
R[i] = j and R[j] =.

U2.2. If R[i] =4 and R[j] = k # j, then first
set R[i] = k and R[k] = i, uext remove
J and all its incident edges from G’, and
finally remove the edge {i, k} from G’ if
it is in G".

U23. I Rli| = k # i and R[j] = | # J,
then first set R[k] = ! and R[l] = k,
next remove #, j, and all their incident
edges from G’, and finally remove the
edge {k.1} from G’ if it is in G".

It is easy to verify that UPDATE really updates
the array R so that the invariant is kept and that
UPDATE vreally deletes those edges e from G’ such
that e € M or F U {e} is not a path set.

2.2 Complexity analysis

In this subsection, we prove the following theorem:

Theorem 2.5 The RNC algorithm runsin O(logn)
expected time using O(n + m) processors on a
CRCW PRAM.

The algorithm uses O(n+m) processors; every ver-
tex and every edge in G’ has a processor associated
with it. Each processor associated with a vertex
(resp., edge) uses one bit of its local memory to re-
member whether the vertex (resp., edge) has been
deleted or not from G'.

Clearly, the first three steps of the algorithm
takes O(1) time with O(n) processors on an EREW
PRAM. We claim that each iteration of the while-
loop can be done in O(1) time with O(n + m) pro-
cessors on a CRCW PRAM. To see the claim, first -
ohserve that removing isolated vertices from G’ can
be done in O(1) time with O(n+m) processors on a
CRCW PRAM. According to [6], steps F1 through
F5 of FIND_MATCH can be done in O(1) time
with O(n + m) processors on a CRCW PRAM.
Other steps of FIND MATCH use no more re-
sources. Thus, FIND MATCH can be done in
O(1) time with O(n + m) processors on a CRCW
PRAM. It is also easy to see that UPDATE can be
done in O(1) time with O(n + m) processors on a
CRCW PRAM. This establishes the claim. In the
remainder of this subsection, we will show that the
expected number of iterations of the while-loop is
O(logn). This together with the claim implies the
theorem,

We proceed to the proof of the fact that the ex-
pected number of iterations of the while-loop is
Of(logn). We use a potential function argument.
For a subgraph G of the input graph G and a path
set F in G, define

2

edge {i.j}in g

#(G, F) = (2 = dar (N2 = dgr (1))

For a random variable X, let £X denote the ex-
pected value of X, and let £(X | B) denote the
expected value of X given that event B occurs.

Lemma 2.6 (Main Lemma). Fix an iteration of
the while-loop. Let G, and G, respectively, be the
graph G’ before and after the iteration. Similarly,
let Fy and F,. respectively, be the path set F be-
fore and after the iteration. Then, E(¢(G}, Fy) —
#G . F)) > E(8(GFy) — 6(Gy Fa)) 2 ¢
é(G,, Fy) for some constant ¢ > 0.

Proof. For each edge ¢ = {i,j} in G}, let X, =
(2—d(:[r,](i))(Q—f{am;(j)), Ye = (2—dgr, (0))(2—
da[n}(]))‘ f

i€ V(

. =X, — Y., and B, be the event that
M) or j € V(M). Let the number of edges
in G} be mj. Clearly, 6(G}, Fy) < 4my.

Fix an edge ¢ = {¢,j} in G}. We claim that
£(Z. | B.) > 1. To see the claim, assume that
i€ V(M)orje V(M) (ie. event B, occurs). Ac-
cording to the values of dg(p,)(¢) and dgp,)(5), we
have the following four cases:

Case 1: dgr,)(1) = dgr,)(j) = 0. Then, we have
X.=4. Ifbothi € Vé]_)) and j € V(M), then
Y, = 1; otherwise, Y, = 2. Thus, Z, > 2.

Case 2: dgr, (i) = 0 and dgip,)(j) = 1. Then,
we have X, = 2. If j € V(JM), then Y, = 0; other-
wise, i € V(M) and Y, = 1. Thus, Z, 2 1.

Case 3: dgr,)(1) = 1 and dgr,(j) = 0. This
case is similar to Case 2.

Cuse 4: dngb](i) = dgyr,)(j) = 1. Then, we have
X,=1and ¥, =0. Thus, Z, = 1.

Since one of the four cases must occur, we al-
ways have Z, > 1 whenever event B. occurs.
This implies that £(Z. | B,) 2 1, establishing the
claim. From the claim, it follows that £(Z,) >
£(Z. | B.) Pr{B.} > Pr[B.]. Thus, if e is good, then
by Corollary 2.4, £(Z,) > Pr[B.] 2 ¢’ for some con-
stant ¢ > 0. Combining this with the fact that G
is a subgraph of G, we now have

£(¢(Gy, Fy) = $(Go Fa))
2 E(¢(';;wa)"'dj(G,b!Fn))

=& Y x- Y

edge e in G} edge e in G

>

edge e in G}

- ¥ e
edge e in G|

Ye)

= &

Z.)

2 £z,
good edge € in G}

> d
good edge e in G}

> JImy/2.

The last inequality follows from Lemma 2.1. On
the other hand, we have ¢(G}, Fy) < 4mj. Thus,
E((Gy Fy) = $(Gin Fu)) 2 I'mi/2 2 §6(G). Fy).
This completes the proof. |

Note that ¢(G’,0) = 4m and that the while-loop is
iterated until ¢(G’, F) < 1. Thus, by Lemma 2.6

above and Theorem 1.3 in [9], we immediately have
that the expected number of iterations of the while-
loop is at most |, i Lz = O(logn). This com-
pletes the proof of the theorem.

2.3 Extension to digraphs

We start by giving several basic definitions. Let D
be a digraph. The vertex set and arc set of D are de-
noted by V(D) and A(D). respectively. For a subset
M of A(D), we use V(M) to denote the set of all
vertices v such that v is the tail or head of some arc
in M. The underlying graph of D is the undirected
graph (V(D), E), where E consists of those edges
{u, v} with (u,v) € A(D) or (v,u) € A(D). The tail
and head of an arc (u,v) are « and v, respectively.
The indegree (resp., outdegree) of a vertex u in D
is the number of arcs with head (resp.. tail) v in D
and is denoted by dp(u) (resp., d}(u)). The total
degree of a vertex is dp(u)+d}(u) and is denoted
by dp(u). Vertices of total degree 0 are called 1so-
lated vertices. For B C A(D), let D[{B] denote the
digraph (V(D), B). Hereafter, a path in D always
means a simple directed path. Note that a single
vertex is considered as a path (of length 0). A set
B of arcs in D is called a directed path set (DPS)
if D[B] is an acyclic digraph in which the indegree
and outdegree of each vertex are both at most 1.
Intuitively speaking, if B is a DPS, then D[B]is a
collection of vertex-disjoint paths. A mazimal di-
rected path set (MDPS) in D is a DPS that is not
propetly contained in another DPS.

Throughout this subsection, D always denotes
the input digraph, and n and m denote the num-
bers of vertices and arcs in D, respectively. As
the input representation of D, we assumne that
V(D)= {0,1,---,n — 1} and that each vertex i has
two lists; one of the lists consists of all arcs with
tail i and the other consists of all arcs with head s.

The top-level structure of our RNC' algorithm for
finding an MDPS in a given digraph D is described
by the following pseudo-code:

1: B:=@; D' :=D;

2: for each i € V(D) do R[] :=14;

3: while D’ has at least one arc do begin
4: remove all isolated vertices from D’;

5: G’ := underlying graph of D';

6: M := FIND_MATCH(G', R);

7 M = {(i,j) € A(D) | {i.j} e M

} -
{(i,j) € A(D) | {i,j} € M.(j.i) € A(D),
and i > j};
8: B:=BUM’;
9: D.UPDATE(D',R,M')
10: end;

The algorithm miaintains an array R for which
the following is an invariant: For each i € V(D').
R[l] = Blde[B](l) =0, and R[l] = j if dD B](i) =1,
where j # 7 is the unique vertex satisflying that

dprs(j) = 1 and that there is a directed path ei-
ther from i to j or from j to i in D{B]. Note that
we have the invariant before the first execution of
the while-loop of the algorithm.

D_UPDATE updates the array R so that the in-
variant is kept, and deletes those arcs.e from D’
such that D € M’ or D’ U {e} is not a DPS. More
precisely, given D', R, and M’', D.UPDATE per-
forms the following steps:

D1. Remove the arcs in M’ from D’.
D2. In parallel, for each arc (i,j) € M’, perform
the following steps:
D2.1. If R[{] = ¢ and R{j] = j, then set
R[i] = j and R[j] = i, remove all arcs
with tail ¢ or head j-from D’, and re-
move the arc (j,4¢) from D’ if it is in D’.
D2.2. I R[{] =i and R[j] = k # j, then set
Rl[i] = k and R[k] = i, remove j and all
its incident arcs from D’, remove all arcs
with tail / from D’, and remove the arc
(k,?) from D' if it is in D',
D2.3. If R[i{] = k # i and R[j] = j, then set
R[k] = j and R[j] = k, remove i and all
its incident arcs from D', remove all arcs
with head j from D', and remove the arc
(j, k) from D’ if it is in D',
D2.4. If Ri] = k # i and R[j] =1 # j, then
set R{k] = ! and R[l] = k, remove i, j,
and all their incident arcs from D', and
remove the arc (I,k) from D’ if it is in
D
We say that a vertex 7 in D' is good if it is good
in G’ (the underlying graph of D'), and say that an
arc in D’ is good if its tail or head is good.
Lemma 2.7 At least one third of the arcs in D’
are good.
From Corollary 2.4, it is easy to see the following
lemma:
Lemma 2.8 For each good arc (4, j) in D', Prfi €
V(M) or j € V(M')] is no less than a positive
constant.)
To prove that the expected number of iterations of
the while-loop is O(logn), we need to modify the
potential function in the last subsection as follows:
For a subgraph D of the input digraph D and a
DPS B in D, define

¢(D, B)

arc (¢,j) in D

(2 = dpg(i))(2 — dpig (7))-

Then, using Lemma 2.7 and Lemma 2.8, we can
show the following lemma by a similar proof to that
of Lemma 2.6:

(1= dhy ()1 = d5g(3)

Lemma 2.9 Fix an iteration of the while-loop. Let
Dy and D}, respectively, be the digraph D’ he-
fore and after the iteration. Similarly, let B, and

B, respectively, be the DPS B bhefore and after
the iteration. Then, £(¢(Dj, By) — ¢(D.. B,)) >
E(¢(Dy. By) — ¢(Dy. Ba)) > ¢ - ¢(Dj, By) for some
constant ¢ > 0.

Note that ¢(D’, B} = 4m and that the while-loop is
iterated until ¢(D’, B) < 1. Thus, by Lemma 2.9
above and Theorem 1.3 in [9], we immediately have
that the expected number of iterations of the while-
loop is at most ffm Ldx = O(logn). From this, it
is not difficult to see that the RNC algorithm runs
in O(log n) expected time using O(n+m) processors
on a CRCW PRAM. Therefore, we have:
Theorem 2.10 An MDPS can be computed in
O(log n) expected time with O(n 4 m) processors
on a CRCW PRAM.

The following corollary will be used later:

Corollary 2.11 Given a digraph D and a DPS F
in D, an MDPS B in D with F C B can be found
in O(log n) expected time with O(n+m) processors
on a CRCW PRAM.

3 The NC algorithm

In this section, we obtain an NC algorithm for the

MPS probleis by carefully derandomizing the RNC

algorithm in section 2.1. Recall that the RNC al-

gorithm consumes random bits only in steps F1,

F4, and F6 of FIND_MATCH. Our first step to-

ward derandomizing the algorithm is to make these

steps consume a small number of random bits, More
precisely speaking, we modify FIND MATCH as
follows:

F1’. Randomly choose r and y such that 0 <
r.y € g—1, where g is a (previously com-
puted) prime with 2A < ¢ < 4A. In parallel,
for each i € V(G'), set t(i) to be the j-th
neighbor of 7 in G if there is some (unique)
j with (= Dlz2m) < (¢ + iy) mod g <
J L#ﬁ | —1; otherwise, let (i) be undefined.

Further set L to he the list of all pairs (i, ¢(¢))
such that 7 € V(G') and t(7) is not undefined.
Same as step F2 above.
Same as step F3 above.
In parallel, for each connected component C
of H that is a cycle, delete an arbitrary edge
in C' from H. Next, partition the edges in H
into two matchings My and M,.
Randomly set M’ to be one of M, and Afy.
In parallel, for each connected component C'
of G[F U M'] that is a cycle, select an arbi-
trary edge in E(C') N M’. Let Mj be the set
of the selected edges, and My = M’ — M.
F7’. Randomly set M to be one of M3 and M.
Note that the input parameters to the modified
FIND_MATCH are G’ and F. That is, we do not
use the array R any more. Accordingly, UPDATE
can be modified to consist of the following single
step:

F2
F3'.
Fq.

F5°,
Fe’.

U1’. Remove from G’ all edges e such that e € M
or F U {e} is not a path set.

It should be easy to see that even if we mod-
ify FIND MATCH and UPDATE as above, the
resulting RNC' algorithm is still correct. Next, we
want to show that the expected number of iterations
of the while-loop in the modified RN C' algorithm is
still O(log n). To this end, first note that steps F1’
through F4' have previously been used in [2], where
the following lemma was shown:

Lemma 3.1 ["]
Pili e U] 2 35
of H.)

For each good vertex i in G'.
. (Recall that U is the vertex set

From this lemma and the modified FIND M ATCH

it is easy to see that Corollary 2.4 still holds. This
in turn implies that Lemma 2.6 still holds. Thus, in
a given iteration, ¢(G’, F) decreases by a constant
fraction on average. Now, we are ready to show our
NC algorithm:

ALGORITHM MAX_PATH_SET
Input: An undirected graph G.
Output: An MPS F in G.
Initialization: Set F =0 and G' =G

1. Compute the maximum degree A of G and find
a prime g with 2A < ¢ < 4A.
2. While G’ has at least one edge, perform the fol-
lowing steps:
2.1. Remove all isolated vertices from G'.
2.2. In parallel, for each (z,y, b;1,b;) with
0<z.y <g-1and b.bp € {0,1}, per-
form the following steps:

2.2.1. Same as step F1' above except
that the first sentence is deleted.

2.2,2. Same as step F2’ above.

2.2.3. Same as step F3’ above.

2.2.4. Same as step F4’ above.

2.2.5. If b; = 0, then set M' = M;; oth-
erwise, set M' = M.

2.2.6. Same as step F6’ above.

2.2.7, If by = 0, then set M, yp, b, =
Ms3; otherwise, set Mz b, 5, = Mj.

2.2.8. Set myypp, = 6G.F) -
oG, Wb ,,,.F U Mz yb,5,), Where
Gy by b, 15 the graph obtained from
G’ by removing all edges e such that
e€ M, b b, 0t FUM; 5, 5, U {e}
is not a path set.

2.3. Among the quadruples (i, y, by, by) with
0 < z,y £qg-1and b,bp € {0.1},
find a quadruple (x,y,b1,b52) such that
Mz yby by I8 Maximized.

Add the edges in M ,p,,5, to F.
Remove from G’ all edges e such that
e € M,y b, of FU{e} is not a path
set.

3. Output M.

2.4.
2.5.

It is clear that MAX_PATH_SET always finds
au MPS in G. We next analyze its complex-
ity. Step 1 can be implemented in O(log? n) time
with O(A%(n +m)/logn) processors on an EREW
PRAM [2]. Step 2.1 can be simply done in O(log n)
time with O((n+m)/logn) processors on an EREW
PRAM. According to [5], the connected components
in a planar graph can be computed in O(log n) time
with O((n + m)/logn) processors on an EREW
PRAM. Using this fact, it is not hard to see that
steps 2.2.1 through 2.2.8 can be done in O(logn)
time with O((n+m)/logn) processors on an EREW
PRAM. Thus, step 2.2 can be done in O(log n) time
with O(A%(n + m)/logn) processors on an EREW
PRAM. Clearly, step 2.3 can be implemented in

' O(log) time with O(A?/log A) processors on an

EREW PRAM. The implementation of step 2.4 is
trivial. Let us consider how to implement step 2.5.
First observe that F U {e} is not a path set if and
only if either the two endpoints of e are in the same
connected component of G[F] or at least one of the
two endpoints of e has degree 2 in G{F]. Thus,
to implement step 2.5, we compute the connected
component of G|F] and the degrees of the vertices
in G[F] in O(logn) time with O((n + m)/logn)
processors on an EREW PRAM. After this, we can
find out all those edges e such that F U {e} is not
a path set in O(logn) time with O((n + m)/logn)
processors on an EREW PRAM. Hence, each itera-
tion of the while-loop in M AX_PATH _SET takes
O(logn) time with O(A%(n + m)/logn) proces-
sors on an EREW PRAM. On the other hand, by
Lemma 2.6, the while-loop in MAX_PATH_SET
is iterated at most O(logn) times. Therefore,
MAX_PATH_SET runs in O(log?n) time with
O(A%n + m)/logn) processors on an EREW
PRAM. This establishes the following theorem:

Theorem 3.2 An MPS in a gwen undirected
graph can be found in Ollog®n) time with
O(A%(n + m)/logn) processors on an EREW
PRAM.

Similarly, we can prove the following theorem:
Theorem 3.3 An MDPS in a given digraph can bhe
found in O(log? n) time with O(AZ(n + m)/logn)
processors on an EREW PRAM.

Corollary 3.4 Given a digraph D and a DPS F in
D, an, MDPS B in D with F C B can be found in

Ollog? n) time with O(A%(n +m)/log n) Processors
on an EREW PRAM.

An immediate consequence of Corollary 3.4 is that
Algorithm 5 in [3] can be made faster.

4 An application to shortest
superstrings with flipping
For a string s, let s¥ denote the reverse of s and |s|

denote the length of s. Let s and ¢ be two distinct
strings, and let v be the longest string such that

8 = wv and t = vw for some non-empty strings u
and w. |u| is called the overlap between s and t and
is denoted by ov(s,t). By sot, we denote the string
wurw,

Let S = {51,82."--,3,} be a set of strings over
some alphabet £. Define S® = {sF,...,sf} and
1S| = X0, |si]. A superstring-with-flipping of S is
a string s over T such that for each i, at least one
of 5; and &F is a substring of s. In the sequel, a
superstring-with-flipping is simply called a super-
string; this should be distinguished with the usual
definition of a superstring in the literature. The
amount of compression achieved by a superstring
s is |S] — |s|. Let optecom(S) denote the maximum
amount of compression achievable by a superstring
of S. W.lo.g., we assume that the set SUS® is sub-
string free, i.e., no string in §U S® is a substring of
any other. For simplicity of explanation, we assume
that no string in S is a palindrome. At the end of
this section. we will point out why this assumption
is not essential to our results.

The overlap graph of S is a weighted digraph
OG(S) = (SUSH A, 0v), where 4 = {(s,) | 5,t €
SUSR s #t, and s # tB} and each arc (s,t)
has weight ov(s,t). For a subgraph D of OG(S),
the weight of D is the total weight of the arcs in
D and is denoted by ov(D). The mate of a vertex
s in OG(S) is s®. Similarly, the mate of an arc
e = (s.t) in OG(S) is (tR,s%) and is denoted by
ef, Note that e and e® have the same weight. A
(directed) path P in OG(S) is said to be legal if for
every string s € S, at most one of s and its mate 5%
is on P. The mate of a legal path P in OG(S) is the
path consists of the mates of the arcs on P, and is
denoted by PE. Note that ov(P) = ov(PR). Fora
legal path P = s.t, ..., u in OG(S), we call soto- - -ou
the string associated with P. Note that the string
associated with P is a superstring of the strings s,
t, -+, u and has length (|s| +|t| +- -+ + |u]) = ov(P).
A legal path P in OG(S) is said to be Hamailtonian
if for each string s in S, either s or its mate s¥
is on P. A two-path cover of OG(S) is a subgraph
consisting of a Hamiltonian legal path and its mate,
We denote by opt.o,(S) the weight of a maximum-
weight two-path cover of OG(S). Then, we have
the following fact immediately:

Fact 1 opteou(S) = 2 - opteom(S). Moreaver, the
amount of compression achieved by the string asso-
ciated with a Hamiltonian legal path P in OG(S)
is ov(P). Especially, the amount of compression
achieved by the string associated with a maximum-
weight Hamiltonian legal path is optcom(S).

Recall that a directed path set (DPS) in a digraph
D = (Vp,Ap) is a subset B of Ap such that the
digraph (Vp. B) is an acyclic digraph in which the
indegree and outdegree of each vertex are hoth at
most 1. Consider the following simple algorithm
for finding a two-path cover of OG(S) with large
weight;

Algorithm GREEDY

Input: OG(S) = (SUSE, 4,00).

1. Initialize B to be the empty set.

2. While the digraph (SUS¥, B) is not a two-path
cover of OG(S), perform the following: Add
to B the maximum-weight arc e and its mate
e® such that BU {e,ef} is a DPS in OG(S)
but BU{f, fR} is not a DPS in OG(S) for all
arcs f with ov(e) < ov(f).

3. Output the two-path cover (SU S¥, B).

The following fact was implicitly mentioned in [7):
Fact 2 [7] Let P be one of the two paths in the
two-path cover output by GREEDY . Then, the
amount of compression achieved hy the string asso-
ciated with P is at least” 2leem(5),

Lemma 4.1 Suppose that the weights on the arcs
in OG(S) are modified in a manner such that each
arc has the same weight as its mate. Let OG'(S) =
(SUSE, A w) be the resulting digraph. Then, the
two-path cover (SUS®, B) output by GREEDY on
input OG’(S) has weight > -'ﬂ%'"—“—'-l. where Cpyz
is a maximum-weight two-path cover of OG'(S).

Our next goal is to parallelize GREEDY . To reach
this goal, we need to prove several lemmas. First,
several definitions are in order. An unweighted sub-
graph D of OG(S) is said to be legal if the mate of
each vertex and each arc in D is also contained in
D. A DPS B in D issaid to be legal if the mate
of each arc in B is also contained in B. A mazimal
legal DPS in D is a legal DPS that is not properly
contained in another legal DPS. We want to design
a parallel algorithm for computing a maximal legal
DPS in a legal unweighted subgraph D of OG(S).
To this end, we modify the RNC algorithm in sub-
section 2.3 as follows. The new input is a legal
unweighted subgraph D of OG(S). and lines 8 and
9 therein are replaced with the following five lines:

8’: for each s; € S, randomly select one of s; and
its mate;

9: M{ := {e € M’ | both the tail and head of e
were selected in the last step};

10: M" := M{'U{e | eisin D’ and e® is in M{'};

11 B:=BUM";

12 DUPDATE(D',R,M"):

The crucial point is that for each vertex (resp.,
arc) in D', the vertex (resp., arc) and its mate must
be removed from D’ in the same call of procedure
D.UPDATE. Moreover, from Lemma 2.8 and lines
8' through 12, it is easy to see the following lemma:
Lemma 4.2 For each good arc (i,j) in D', Prji €
V(M") or j € V(M")] is no less than a positive
constant.

By this lemma and the discussions in subsection 2.3,
we have:

Lemma 4.3 Given a legal unweighted subgraph D
of OG(S) and a legal DPS F in D, a maximal le-
gal DPS B in D with F C B can be found in

Of(logn) expected time with O(n + m) processors
on a CRCW PRAM, where m is the number of arcs
in D.

To decrease the number of random bits used in
line 8’ above. we further replace lines 8', 9’,and 10’
above with the following three lines:

8": wuse M’ to construct an undirected graph
" = (M',Eg), where Ex consists of those
edges {e1,e2} such that the head or tail of e

is the mate of the head or tail of es;

9": 3-color the vertices of A to partition M’ into
three independent sets M{, Mj, and My;
10”: randomly set M” to he one of M{, Mj, and

Mjg;

It is easy to construct A" and 3-color it in O(logn)
time with O(n/logn) processors on an EREW
PRAM. Moreover, even if lines 8' through 10’ are
replaced with lines 8" through 10", Lemma 4.2 still
holds. This together with the discussions in section
3 implies the following lemma:

Lemma 4.4 Given a legal unweighted subgraph D

of OG(S) and a legal DPS F in D, a maximal

legal DPS B in D with F C B can be found in

O(log? n) time with O(n?(n + m)/log n) processors

on an EREW PRAM, where m is the number of

arcs in D.

Now, we are ready to present a parallelized version

of GREEDY. This algorithm is similar to Algo-

rithm 5 in [3].

Algorithm PAR_GREEDY

Input: OG(S) = (SUSR A ov).

1. Let ¢ = 1+ §. In parallel, for each arce € A,
set lev(e) = [logL ov(e)] if ov(e) > 1, and set
lev(e) = 0 otherwise.

2. Compute MazLev = max{lev(e) | e € A}.

3. Set B =0 and CurLev = MaxLev.

4. While CurLev > 0, perform the following steps:
4.1. Construct an unweighted digraph D =

(SU SR, E) by setting E = BU {e €
A | lev(e) = CurLev}.
4.2. Compute a maximal legal DPS F in D
with B C F and then update B to be
F.
4.3. Decrease C'urLev by 1.
5. Output the digraph (S U SR, B).

Lemma 4.5 Algorithm PAR_GREEDY finds a
two-path cover of OG(S) with weight at least

opteou(S)

+e€ .
Theorem 4.6 There is a parallel approximation
algorithm that produces a superstring of a given

set § of n strings by which the amount of com- -

pression achieved is at least 54~ optimal for any
€ > 0. It runs in O(logn - log,, /3 |S|) expected
time with O(|S|?) processors on a CRCW PRAM or
in O(log? n - logy . /315]) (deterministic) time with
O(|S|? +n*/log n) processors on an EREW PRAM.

Finally. we explain how to remove the assumption
that no string in § is a palindrome. Suppose some
strings in § are palindromes. We redefine OG(S)
as follows. For each string s in S, we introduce two
vertices one of which corresponds to s and the other
corresponds to s, That is, we treat s and s® as dif-
ferent vertices in OG(S), even if ¢ is a palindrome.
The edges of OG(S) and their weights are defined
as before. Redefining OG(S) in this way, we give
no influence on the above discussions.

- References

[1] A. Blum, T. Jiang, M. Li, J. Tromp, and M.
Yannakakis, Linear approximation of shortest
superstrings, 29rd STOC, 1991, pp. 328-336.

[2] Z.-Z. Chen, A fast and efficient NC algorithm
for maximal matching. Inf. Proc. Lett., 55
(1995), 303-307.

[3] Z.-Z. Chen, NC algorithms for finding a max-
imal set of paths with application to com-
pressing strings, 22nd ICALP, LNCS vol. 944,
Springer-Verlag, 1995, pp. 99-110; journal ver-
sion to appear in Theoretical Computer Sci-
ence,

[4] A. Czumaj, L. Gasieniec, M. Piotrow, and
W. Rytter, Parallel and sequential approxima-
tion of shortest superstrings, §th SWAT, LNCS
vol. 824, Springer-Verlag, 1994, pp. 95-106.

[5]) H. Gazit, Optimal EREW parallel algorithms
for comnectivity, ear decomposition and st-
numbering of planar graphs, Proc. of the th
IEEE International Parallel Processing Sym-
postum, 1991, pp. 84-91.

[6] A. Israeli and A. Itai, A fast and simple ran-
domized parallel algorithm for maximal match-
ing, Inf. Proc. Lett., 22 (1986), 77-80.

[7] T. Jiang, M. Li, and D.-z. Du, A note on short-
est superstrings with flipping, Inf. Proc. Lett.,
44 (1992), 195-199.

[8) D.C. Kozen, The Design and Analysis of Algo-
rithms, Springer, New York, 1992.

[9] R. Motwani and P. Raghavan. Rendomized Al-
gorithms, Cambridge University Press, 1995.

[10] S.Rao Kosaraju, J.K. Park, and C. Stein, Long
tours and short supelstnngs. 35th FOCS, 1994,
pp. 166-177.

{11] S.-H. Teng and F. Yao, Approximating short-
est superstrings, 34th FOCS, 1993, pp. 158
165.

[12] J.-S. Turner, Approximation algorithms for the
shortest common superstring problem, Inf. and
Comp., 83 (1989), 1-20.

