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In this paper, we study the protein threading problem, which was proposed for finding a folded
3D protein structure from an amino acid sequence. Since this problem was already proved to
be NP-hard by Lathrop, we study polynomial time approximation algorithms. First we show
that the protein threading problem is MAX SNP-hard. Next we show that this problem can
be approximated within a factor 4 for a special case in which a graph representing interaction
between residues (amino acids) is planar. This case corresponds to a 3-sheet substructure,
which appears in most protein structures.

1 Introduction

The protein folding problem is, given an amino acid sequence (a string), to find its correctly
folded 3D protein structure. It is one of the most important computational problems in
molecular biology. Although this problem can be defined as a minimization problem, it is too
hard to be solved directly.

Recently, an indirect approach called inverse folding was proposed [3, 5, 7, 11]. In inverse
folding, given an amino acid sequence and a set of protein structures (structural patterns), a
structure into which the sequence is most likely to fold is computed. To test whether or not
a sequence is likely to fold into a structure, an alignment between spatial positions of a 3D
structure and amino acids of a sequence is computed using a suitable score function. That is,
an alignment which minimizes the total score (corresponding to potential energy) is computed.
This minimization problem is called a protein threading problem, and an alignment between a
sequence and a structure is called a threading (see Fig. 1) [5, 10, 11]. Note that, in Fig. 1, gaps
(insertions and deletions of amino acids) are not allowed in core regions, but allowed only in
loop regions, where a protein structure is partitioned into core regions and loop regions. This
assumption is used in Ref. [11] and seems reasonable.

A variety of studies have been done for the protein threading problem. However, there are
only a few studies that try to find an optimal threading (i.e., a threading with minimum score)
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Figure 1: The protein threading problem.

directly {5, 10, 11]. Bryant and Lawrence used exhaustive enumeration to examine all possible
threadings [5]. But, their method can only be applied to very small structures. Unfortunately,
Lathrop proved that the protein threading problem is NP-hard [10]. However, Lathrop and
Smith applied the branch-and-bound search technique to the protein threading problem in a
clever way and succeeded to compute optimal threadings for proteins of medium size [11].

Although Lathrop and Smith’s algorithm is very nice, long time is required if it is applied
to a large protein structure. Thus, this paper studies a computational aspect of the protein
threading problem. Since it was already proved to be NP-hard, we study (polynomial time)
approximation algorithms. Of course, approximate solutions are different from optimal so-
lutions corresponding to 3D shape. However, they can be useful from the following reasons:
the correct structure could be selected if the guaranteed error bound were sufficiently small;
combining with local search, approximate solutions might be lead to optimal solutions; ap-
proximate solutions might be useful for speeding up the branch-and-bound procedure. Note
that an approximation algorithm has already been developed for the protein folding problem
(not the inverse folding problem) although too simplified model is used [8].

In this paper, we first show that the protein threading problem is MAX SNP-hard. More-
over, we show that approximation of the problem is at least as hard as approximation of the
DENSE-k-SUBGRAPH problem, for which only an O(n%385) ratio approximation algorithm
is known [9]. Next we consider a special case in which a graph representing interactions between
residues (amino acids) is planar. This case corresponds to most of 3-sheet substructures. For
this case, we show a polynomial time algorithm which approximates the optimal score within
a constant factor.

2 The Protein Threading Problem

As mentioned in Introduction, the protein threading problem (PROTEIN THREADING, in
short) is, given a sequence and a 3D protein structure, to find an alignment (a threading)
between a sequence and a structure with minimum score. Lathrop and Smith defined this
problem in a formal way [10, 11]. In this paper, we modify their definition into much simpler
form as follows without loss of generality (see Fig. 1).

Input: sequence s = 8;83--- 3, over a fixed alphabet ¥ (usually |Z} = 20),
core lengths ¢;,¢g,- -, ¢, score function g(4,j,t;,t;) (g(%, 7, %i,t;) > 0),

Output: m-tuple t = (t1,---,%,,) which maximizes a total score: score(t) =
Zg(z’,j, t;,t;) under the condition that 1 < t1,t;+¢; < tip1,tm +em < n+1.
i<j



This definition may be felt strange since it is defined as a maximization problem. However,
the protein threading problem is intrinsically a maximization problem as well as the protein
folding problem is. Indeed, usual score functions can take negative values and the minimum
score can become negative. Thus, inverting the sign of values of score functions and adding a
constant factor, we can treat the protein threading problem as a maximization problem. This
definition seems more natural when we consider approximation algorithms for the problem.

In Lathrop and Smith’s definition, two kinds of score functions ¢4 (%, ;) and go(¢, 5, t:,¢;) are
used, while only one kind is used in the above definition. However, letting g(i,¢ + 1,%;,t;11) =
a1(3,t) +g2(3,+ 1, ti,tiy1), we can treat any score functions used by Lathrop and Smith. Note
that we ignore the time for computing g(%, 5, t,t;) because it can be computed in polynomial
time for most score functions. Although the lengths of loop regions are included in an input
in Lathrop and Smith’s definition, the effect of loop regions can be taken into account in the
above definition by adding a length of a loop region to a length of a core region and modifying
g(%, j,ti,t;) suitably. Therefore, in the above definition, there is no loss of generality.

We call t = (t1,--+,tm) a threading if it satisfies the above condition (1 < #1,t; + ¢ <
tit1,tm+¢m < n+1). i’th core (length ¢;) is denoted by C;. For an instance PT of the problem,
we associate a directed (multi) graph Gpr(Vpr, Epr) such that Vpr = {Cy,---,Cn}, EpT =
Erz U{(Ci, Cit1) | 1 < i < m}, where Epr = {(Ci, Cj) | i < j and 3(ti,£5)(g(is s tirts) # 0)}-
Note that Gpr can have multi-edges, where the maximum multiplicity is at most 2.

In this paper, we consider two special cases: a case where the maximum vertex degree of
Gpr is bounded by a constant B, and a case where Gpr is planar. The former case is called
PROTEIN THREADING-B. Most protein structures correspond to this case because each
core interacts with small number of other cores if we ignore weak interactions. Indeed, score
becomes very small when the distance between residues exceeds a threshold value [10].

The planar case corresponds to 3-sheet substructure, which appears in most core regions
and is known as a kind of secondary structure (see Fig. 2) [4]. (-sheet consists of multiple
B-strands. To classify (-sheet structures, topology diagram has been used [4]). In topology
diagram, f-starnds are usually arranged parallel in a plane, and each $-strand strongly in-
teracts with at most two neighbor §-strands. Thus, in most $-sheet substructures, Gpr can
be considered as a planar graph. Although other substructures (e.g., a-helices) can appear
in core regions, good approximations might be obtained even if we only consider 3-sheet sub-
structures. At least, this special case would be useful to identify §-strands in a given amino
acid sequence. Identifying 8-strands is also an important problem in molecular biology.

In this paper, we consider polynomial time approximation algorithms. Recall that the
performance ratio of an approximation algorithm for a maximization problem is the worst-
case ratio of the size of the optimal solution to the size of the approximate solution. If there
exists an approximation algorithm with performance ratio f(n) for a problem X where n
denotes the size of an input, we say that X can be approximated within a factor f(n) [1].
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Figure 2: f-sheet and topology diagram. In this case, 33 strongly interacts with 3; and fs.



3 Hardness Results

First, we show that PROTEIN THREADING is MAX SNP-hard even if the maximum vertex
degree is bounded by a constant B. From this result, a constant size lower bound of perfor-
mance ratio follows [1, 13]. Note that the following theorem also gives much simpler proof of
NP-hardness of PROTEIN THREADING than that in [10].

Theorem 3.1 PROTEIN THREADING-B is MAX SNP-hard.
Proof. We use L-reduction from MAX CUT for graphs of bounded vertex degree B —2, which
was already proved to be MAX SNP-complete [13]. MAX CUT is, given an undirected graph
G(V,E), to find a subset V' C V maximizing the cardinality of the cut (i.e., the number of
edges between V’ and V — V). From G(V, E) of bounded degree B—2 where V = {vy,---,v,},
we construct an instance of PROTEIN THREADING-B in the following way:
n-01’s
e vuhunmse

s = 0101 ---0lover X ={0,1}, c; =¢ca=+-=¢p =1,

g(3,5,ti,t;) = 1if i < j, (v, v;) € E and s, # s¢;, otherwise g(i,5,%,t;) = 0.
Then, each threading corresponds to a cut and the score of a threading is equal to the size of
the corresponding cut. Therefore, this reduction is L-reduction and the theorem follows. - O

Next, we show a result suggesting that approximation of PROTEIN THREADING is

much harder, using a reduction from the DENSE-k-SUBGRAPH problem [2, 9]. DENSE-k-
SUBGRAPH is, given an undirected graph G(V, E) and an integer k, to find a subset V' C V
of cardinality £ with maximum number of edges (in an induced subgraph by V'). Although no
lower bound of performance ratio has been proved, DENSE-k-SUBGRAPH is considered to be
hard to approximate. Currently, an approximation algorithm by Kortsarz and Peleg achieves
the best performance ratio of O(n%388%) [9].

" Theorem 3.2 If PROTEIN THREADING can be approzimated within a factor f(|s|) in poly-
nomial time, DENSE-k-SUBGRAPH can be approzimated within a factor f(|V|?) in polyno-

mial time.
Proof. From an instance (G(V, E),k) of DENSE-k-SUBGRAPH where V = {v1,- -, v,}, we

construct an instance of PROTEIN THREADING in the following way.

n—1 n-1 n-1 n—1 n?2—kn

P — p——— P p———— e,
s = 00---0a; 00---0az00---0:--00---0 a, 00---0 over ¥ = {0,1}
where a; =1 forall¢, ey =cg=--"=¢, =1,

9(i, 5yt t5) = 1if € < j, (vi,v;) € E and sy, = 8;; = 1, otherwise g(i, j,%i,t;) = 0.

Then, a subset of cores {C; | s;;, = 1} corresponds to a subset V’. From this observation, it
is easy to see that the maximum score in PROTEIN THREADING is equal to the maximum
number of edges in DENSE-k-SUBGRAPH. Moreover, given a threading £, we can obtain
V' C V of cardinality at most k having score(t) edges in polynonual time. Since |s| (length
of s) is n?, the theorem holds. o
Note that if the maximum degree of G(V, E) is bounded by a constant, there is a trivial
constant ratio approximation algorithm for DENSE-k-SUBGRAPH. In the above construction,
an instance of PROTEIN THREADING-B is constructed from such a graph. Thus, the above
theorem does not suggest the hardness of PROTEIN THREADING-B. However, we can
show that approximating PROTEIN THREADING-B is at least as hard as approximating
DENSE-k-SUBGRAPH for general graphs, where we omit the proof here.

Theorem 3.3 If PROTEIN THREADING-B can be approzimated within a factor f(|s]) in
polynomial time, DENSE-k-SUBGRAPH can be approzimated within a factor f(|V|3) in poly-
nomial time. ‘



4 An Approximation Algorithm for a Planar Case

In this section, we show a constant ratio approximation algorithm for PROTEIN THREADING
in a special case in which an associated graph Gpr(Vpr, Epr) is a planar graph. Although
we do not yet know the answer, it seems that this restricted case remains in NP-hard.

To develop an approximation algorithm, we partition a set of edges Epr into three subsets
(see Fig. 3): E, (a set of upper edges), E; (a set of lower edges), E, (a set of loop edges). First
we show that an optimal threading can be obtained using a simple dynamic programming
algorithm if £} = E, = @ or E, = E, = 0. Next we show an approximation algorithm with
performance ratio 2 for a case of E; = E,, = (. Combining those, we obtain an approximation
algorithm with performance ratio 4.

Although we only describe a method to compute scores of approximate threadings, it can
be modified for computing siich threadings.

- - -
- - - -

-

Figure 3: Partition of Epy into E,, E; and E,. In this figure, cores are arranged on a horizontal
line where each core is denoted by a circle.

4.1 An Algorithm for Upper Edges

In this subsection, we assume that all edges in Epr are upper edges (ie., E; = E, = 0).
Obviously, a case of E, = E, = 0 can be treated in an analogous way. First, we can see the
following property from the fact that any two upper edges do not cross.

Observation Assume that (C;,C;) € E, holds and t;,t; are fized. Then, the values of
tiy1,tig2, -+, 11 do not affect the scores of edges that do not contain any of Ciy1,---,Cj_1.

From this observation, we can develop a simple dynamic programming algorithm as follows.
We define score w(i, j,z,y) by w(i, j,z,y) = ma‘xt{Zileij g(h, k,tp,tx)}. where maximum
is taken from all threadings ¢ such that ¢; =z and t; = y (z < y).

For each pair (C;,C;) € E,, we compute w(i,j,z,y) in the following way. For each Cj,
(C;,C;) € E, is denoted by parent(Cy) if i < k < j holds and there exists no (C,,C,) € E,

§]

C,- =Cr, Crz Cr3 Cr,, Cr5 Cr6 Cj =Cr7

Figure 4: Computation of an optimal threading for upper edges.



suchthat i < p< k< g<Ljori<p<k<gqg<j. Let(Ci=C,Cprp--,Cp = Cj) bea
sequence of cores such that parent(C,,) = (C;,C;)forall1 < k< h,andi=r <r <---<
rh = j. Then, w(ry, 4,2, 1,,) is computed by:

tr,t if rp, = 1
w(,,.l’,rh’t”’trh) { g('rlarhv 1 rh)a Hrp=r1+4+1,

g(r1,7h,tey, ) + wi(rh,y 8y, ), otherwise ,
{ 0, ifz=t,,

where wy(r, z) —o0, otherwise,

w1(rit1,y) max {w(ri,ris1,2,9) + wi(ri, )}

z<y—cr,
It is easy to see that the score of an optimal threading is given by max, , w(1,m,z,y).

Here we analyze the time complexity of this procedure. First note that there are O(m)
edges in Epr because Gpr(Vpr, Epr) is planar (with multiplicity at most 2) and |Vpr| = m.
For all (C;,C;) € E, and z,y (¢ < y), we must compute w(i,j,z,y). Therefore, the number
of w(i,7,2,y)’s to be computed is O((|Ex| + m)n?) = O(mn?). To compute each w(i, j,z,y),
O(h; jn?) time is required, where h; ; is the number such that C; = C,, and C;= Cr,“, T Since
2(6i.¢5)eB, hi,j is O(m), the total computation time is O(mn*).

However, w;(-+-)’s used to compute w(,j,z,y) can also be used to compute w(i, j,z,y')
for ' > y. Using this fact, the time complexity is reduced to O(mn?).

Lemma 4.1 An optimal threading can be computed in O(mn®) time if E; = E, = 0 or
E,=E,=90.

4.2 An Approximation Algorithm for Loop Edges

In this subsection, we assume that all edges in Epr are loop edges (i.e., E, = E; = §) until
Thm. 4.4. Such a case is called a loop case. Note that, in a loop case, the following property
holds: for any two edges (C;,C;),(Cir,Cj1) € Eo, j < j'if i < 4.

Z i
C3 C6 ’
C
N __—> x' C; ’ y
C G C; th=C4 Cs GCs C, C,
¥4
-z

Figure 5: Example of a very simple loop case where loop edges are described in upper half
plane. In this case, an optimal threading can be computed using dynamic programming.

First we begin with a very simple case (see Fig. 5) in which the following condition holds:
there exists a number b (1 < b < m) such that every edge (C;,C;) € E, must satisfy ¢ < b < j.
For each 4,7 such that 1 < i < band b < j < m, let wy(4,,2,y,2) be the maximum score
(maxy Elshsi,bsksj g(h,yk,th,t;)) under the condition that t) + ¢, < z and t; > z. Then
ws(4,3,2,Y,2) is determined by the following recurrence (#) (see Fig. 5):

g(l,b,z,y), ifx""cl <z and yZ 2,

wb(l’bsz’y7z) = {—00 otherwise
y ’



’UJ[,(& 7,y Z) — g(z:,]:,z,y) + maXy' <y—cj_1 wb(’:aj - l.,z,y’,z), if (Ci;gj—-l) € Eo,

WD 9(3,5,2,y) + maXprco—e,_, wp(i — 1,5,2,y,2), otherwise.
Computing maxy , , wp(1,m, z,y,2) where z < z < y, we can obtain a maximum score in this
very simple case.

Next we consider a case where there exists no three edges (C;,C;),(Ci, Cjr),(Cin,Cjn) in
E, such that ¢,4",j’ < i and i < j” (see Fig. 6). In this case, E, can be partitioned into
disjoint sets (blocks) By, Bs,---, By where each block B; corresponds to a very simple case
(see Fig. 6). This case is called a simple loop case, and we say that E, is simple. Let I(B;) =
min{i | (Ci,C;) € Bi}, m(Bx) = min{j | (Ci,C;) € Bx}, and r(Bg) = max{j | (Ci,C;) € Bx}.
For convenience, we define I(Bry1) = r(Bp) and m(Br41) = r(Bryr) = m.

Lemma 4.2 An optimal threading can be computed in O(mn*) time if E, is simple.

Proof. Partition E, into By, By,---,B),. For any B; and for any z,y (1 < z < y < n), an
optimal score under the condition that #g,) = z and t,(3,) = y can be computed using the
recurrence (#). Since r(B;) < I(B;41) holds, an optimal score for E, can be computed using
a simple dynamic programming algorithm. The total computation time is O(mn*), where
details are omitted here. a

Figure 6: Example of a simple loop case. E, can be partitioned into blocks.

Next we show that a loop case problem can be reduced to two simple loop case problems
(see Fig. 7).

Lemma 4.3 E, can be partitioned in O(m?) time into two disjoint sets E1 and E, each of
which corresponds to a simple loop case.
Proof. We use the following simple algorithm:
begin
El = 0;
fori:=1tom—1do for j:=i+1tomdo
if (Ci,Cj) € E, and E; U{(C;,C;j)} is simple then E, := E, U {(C;, C})};
Ez = Eo - E1
end
Obviously, E; obtained by this algorithm is simple. Here, we consider a partition of E; into
By, By, - -+, By. Then, each edge (C;, C;) € E; satisfies the following condition: there exists k
such that m(Bi) < i < r(By) and r(By) < 7 < m(Br+1). Therefore, E; also becomes simple.
Moreover, this algorithm can be implement so that it works in O(m?) time. a
Combining Lemma 4.2 and Lemma 4.3, we can see that PROTEIN THREADING can be
approximated within a factor 2 in O(mn?) time if E, = E; = 0.
Finally, we obtain the following theorem.

Theorem 4.4 PROTEIN THREADING can be approzimated within a factor 4§ in O(mn*)
time if Gpr(Vpr, Epr) is planar.



Figure 7: Partition of E, into E; and E,.

Proof. We use the following simple algorithm. First compute a planar embedding of Gpr(Vpr, EPT)
and a partition of Epy into Ey, Ej, E1, E;. Next compute an optimal threading ¢, by letting
E; = Ey = E; = 0. t;,t1,t; are computed in a similar way. Finally select the one (£mqez)
having maximum score from ¢,,%;,%;,1;.

It is easy to see that score(tmaz) > (1/4)score(typt) holds since

score(topt) < score(ty) + score(t;) + score(ty) + score(t;) ,

where t,,; denotes an optimal threading.

Since a planar embedding of Gpr(Vpr, Epr) can be computed in O(|Vpr|) = O(m) time
[12], we can obtain a partition of Epr into Ey, Ej, Ey, E; in O(m?) time. Thus, the total
computation time is O(mn*) from Lemma 4.1, Lemma 4.2 and m < =, and the theorem
follows. ’ m}
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