T T U X A 52—-8
(1996. 7. 24)

FEA 2HWAN 7 7 7 EoRSEKNE L 2 DI0H

Xin Hel B sl
P ma—a— s MR~y 77 m—f | SO AT T

STEE2WARY T 7 LORTKEE (SPCB) 2RO X5 EHT 5 At &L 2
WEAZ 77 G=(X ={z0,,2:},Y = {yo, 0, ym }, E) BEL DN L &, G KB 3
To b T, ¥ TOREREFHE X BAREETT 75T H HIRRA AW & ¥, SPCB
L DI Qnm) BIEBBETH 5, AT BEHEIEET 2175028 concave T 5
L%, SPCB 2 0(n+ mlogn) BKECHT 2. T %53,

¥7%. SPCB @Iifle LTy MZHE LD n fAcxdT 2 TSP RIE L EE LD n fHic
3 BANBR Y TR T 5. COZOORER R BHO T AT Y X L0 ER
ik O(n?) THo7%, SPCB 2FHAL T O O0REYEL O(nlogn)- Ko7 1
TY) XLERET D,

Shortest Path in Complete Bipartite Digraph
Problem and its Applications

Xin Hel and Zhi-Zhong Chen?

fDepartment of Computer Science, State University of New York at Buffalo
iDepartment of Mathematical Sciences, Tokyo Denki University

We introduce the shortest path in complete bipartite digraph (SPCB) problem: Given
a weighted complete bipartite digraph G = (X,Y, E) with X = {o,...,2,} and ¥ =
{¥0,---,ym}, we wish to find a shortest path from zy to z, in G. For arbitrary weight
matrices, the problem needs at least O(nm) time to solve since all edges of G' must
be examined. We show that if the weight matrices are concave, then the problem can
be solved in O(n + mlogn) time by using a modified version of Wilber’s algorithm for
solving the least weight subsequence problem.

As applications of the SPCB problem, we discuss the Traveling Salesman problem for
n points on a convex polygon and the Minimum Latency Tour problem for n points on
a straight line. The known algorithms for solving both problems require O(n?) time.
Using our SPCB algorithm, we show both problems can be solved in O(nlogn) time.

1 Introduction

Let G = (X,Y, F) be a complete bipartite digraph with X = {2o,%1,...,2,} and ¥ = {vo,¥1;---+Ym }-
Each edge e € E is associated with a real-valued weight w(e). We use z; — y; and y; — z; to denote
the edges. Let A[0..n,0..m] be the matrix with A[i,j] = w(z; — y;) and B[0..m,0..n] be the matrix
with Bl[i, j] = w(y; — z;). In applications, matrices A and B are not explicitly stored. Rather, an entry
is computed in constant time when it is needed. The weight of a (directed) path P in G is defined to
be w(P) =}, p wle).

The shortest path in complete bipartite digraph (SPCB) problem is: given such a digraph G, find a
path P in G from o to z, such that w(P) is minimumized. (We require that G contains no negative
cycles, since otherwise the shortest path of G is not well-defined.) For arbitrary weight matrices, we need
at least O(nm) time to solve the problem since all edges of G must be examined. A matrix M(0..n,0..m]
is called concave if the following hold:

Mliy, j1] + Mz, j2] < Mlig, 1]+ M[i1,j2] for 0<iy <ip<n and 0<jp<ja<m (1)

Concave matrices were first discussed in [10] and have been very successfully used in solving various
problems. In this paper, we show that if both A and B are concave, the SPCB problem can be solved
in O((n + m)logn) time.

The following least weight subsequence (LWS) problem was introduced in [7]. Given a sequence
{xo,21,...,%,} and a real-valued weight function w(z;,z;) defined for indices 0 < i < j < n, find an
integer k > 1 and a sequence S = {0 = iy < i1 < ... < g1 < i = n} such that the total weight
w(S) = Ef:l w(z;,_,, ;) is minimized. The LWS problem can also be formulated as a graph problem:
Let G be a digraph with vertex set V = {zq,%1,...,s}, the edge set {z; » z; | 0 < i < j < n} and
the weight function w. We wish to find a shortest path in G from zo to zn. For an arbitrary weight
function w, the LWS problem requires O(n?) time to solve. The weight function w is concave if the
following hold:

w(xiw‘rjl) +w(ziwxh) < w(ziwxjx) + w(:v,-l,xh) for 0<i1 < <1 <pa<n (2)

If the weight function is concave, then we have an instance of the concave LWS problem. Hirschberg
and Larmore showed that the concave LWS problem can be solved in O(nlogn) time [7]. Similar
algorithms were also developed in [5, 6]. Wilber discovered an elegant linear time algorithm for solving
this problem [9]. All these algorithms assume each entry w(i,) can be computed in constant time.
In this paper we only consider the concave LWS problem. ;jFrom now on, the phrase “LWS problem”
always means the concave LWS problem.

We will show that an instance of the SPCB problem defined by concave matrices A and B can be
reduced to an instance of an enhanced version of the LWS problem. However, in the reduced problem,
the weight matrix w is the product matrix A x B (with operators min and +). Thus an entry w(z;, z;)
cannot be evaluated in O(1) time. So when using Wilber’s algorithm to solve our problem, it is necessary
to modify the algorithm and its analysis.

We also discuss two applications of the SPCB problem. The first one is the Traveling Salesman
problem (TSP) for points on an n-vertex convex polygon C. Given two points @ and y on C, we want
to find a Hamiltonian path P connecting all points of C from z to y such that the total weight of P is
minimized, where the distance between any two points is the Euclidean distance between them. This
problem can be solved in O(n?) time by dynamic programming [8]. It was posed in [8] as an open
problem whether there exists an o(n?) algorithm for solving the problem. We show the TSP problem
for this case can be reduced to the SPCB problem and solved in O(nlogn) time.

The second application we consider is the Minimum Latency Tour (MLT) problem discussed in [4].
Given a set S of n points, a symmetric distance matrix w, and a tour T which visits the points of S in
some order, the latency of a point p is the length of the tour from the staring point to p. The total latency
w(T) of T is the sum of the latencies of all points. We wish to find a tour T such that w(T’) is minimized.
Of particular interest is the case when the distance matrix satisfies the triangle inequality. This problem
is also known as the delivery-man problem or the traveling repairman problem in the literature (see [4]
for more discussions and references). Although it looks similar to the TSP problem, the MLT problem is
very different from the TSP problem in nature [4]. For general case, the MLT problem is NP-complete
[4]. Even for points on a tree or on a convex polygon, it is not known whether the MLT problem is in
P or NP-complete [4]. The case where points are on a straight line was considered in [1, 4]. This case

Is interesting since it is exactly the following disk head scheduling problem: A disk head moves along a
straight line . The head must visit a set of n point on L in order to satisfy disk access requests. The
time needed to travel is proportional to the distance being traveled. Once the head reaches a point,
the disk access time can be ignored (since the disk rotating speed is much higher than the head moving
speed). We want to find a tour of the head such that the average delay (or equivalently, the total delay)
of all requests is minimized. The MLT problem for this special case can be solved in O(n?) time by
dynamic programming [1, 4]. We show the MLT problem for this case can be reduced to the SPCB
problem and solved in O(nlogn) time.

2 Background
Given two matrices A[0..n,0..m] and B[0..m,0..n}, C[0..n,0..n] = A x B is defined by:
Cliril= min (ALK + Blk, i) ©

)
Lemma 2.1 [10]. If both A and B are concave, so is C.

For0 <i<nand0<j<m,letI(sj) denote the smallest index k that realizes the minimum value
in definition (3).

Lemma 2.2 [10]. Foranyi, j (0<i<n, 0<j<m) wehave: I(5,5) <I(5,5+1)<I(i+1,5+ 1).

Let (¢,7) and (¢,j') be two pairs of indices. If i < and j < j/, we write (%,4) < (¢,3'). By Lemma
2.2, (i,4) < (¥, j') implies I(i,5) < I(¢, 5.

Lemma 2.3 Let (i1,71),(42,72), - - ., (ip, jp) be p pairs of indices such that (&1, 51) < (141, Jig1) for all
1 <1< p. Then I(i1, 51),I(i2,52),- .., 1(ip, Jp) can be computed in O(mlogp) time.

Consider a matrix M[0..n,0..m]. For each column index 0 < j < m, let i(j) be the smallest row
index such that M((5),j) equals the minimum value in the jth column of M. The column minima
searching problem for M is to find the i(j)’s for all 0 < j < m. M is called monotone if i(j;) < i(j,)
for all 0 < j; < jo < m. M is totally monotone if every 2 x 2 submatrix of M is monotone [3]. If M is
concave, then it is easy to check that M is totally monotone. (The reverse is not necessarily true). For
a totally monotone matrix M, the column minima searching problem for M can be solved in O(n+m)
time, assuming each entry of M can be evaluated in O(1) time [3]. Following [7], we will refer to the
algorithm in {3] as SMAWK algorithm.

3 The Enhanced Least Weight Subsequence Problem

In this section, we introduce the enhanced LWS problem, and show the SPCB problem can be reduced
to it. An instance of the enhanced LWS problem is a sequence {2, z1, . .. ,Zn } and a real-valued concave
weight function w(z;, z;)} defined on all 0 < 4,j < n such that w(z;,z;) > 0 for all 0 <7 < n. We want
to find a sequence S = {0 = 49,71,...,ix = n}, (40,41,...,4; are not necessarily in increasing order),
such that the total weight w(S) = ELI w(;i,_.,, ;) is minimized. In terms of the graph formulation,
we are given a complete digraph G with vertex set V = {z¢,z,,.. .,y } and a weight function w, we
wish to find a shortest zo to z,, path in G. Let e = z; — z; be an edge of G. If 7 < j, e is called a
forward edge. If i = j, e is called a self loop. If i > 7, e is called a backward edge. We require the weight
of self loops of G are non-negative since otherwise the weight of the shortest path in G would be —oco.

Lemma 3.1 For any instance of the enhanced LWS problem, there exists a shortest zy to z, path
consisting of only forward edges.

Lemma 3.1 implies that there are no negative cycles in any instance of the enhanced LWS problem.
It also implies we can ignore all backward edges and self-loops when solving the enhanced LWS problem.
Consider an instance of the SPCB problem defined by a complete bipartite digraph G = (X,Y, E)
and concave weight matrices A and B. Let G’ = (X, E') be the complete digraph on X with concave

weight matrix w = A x B. If w(z;,z;) > 0 for all 0 < i < n, then G’ and w define an instance of the
enhanced LWS problem.

Let P' = {0 =49 < 41 < ... < ix = n} be ashortest path in G’ from z to 5. Foreach! (0 <1< k),
let j; = I(ij—1,4). Then P = {0 = zi, — Yj, — Ti, — Yj, = -+ = Yjx — Tip = Tn} is a pathin G
from 2o to z,,. Let w(P’) denote the weight of P in G'. Let w(P) denote the weight of P in G. Clearly,
w(P) = w(P'). We will show w(P) is minimum among all zo to z, paths in G.

Let Q be a shortest path in G from zg to z,. Since G is bipartite, @ is a concatenation of subpaths
Q1,Q2,...,Qp for some p > 1, where each @; (1 <! < p) consists of two edges zy;_ — Y1 — i
(i = Oand 4, = n). Foreachl <1 < p, if ji # I(ij_,,1), we can replace Q; by the subpath
Ty~ YIG_, 4 T without increasing the total weight w(@). So, without loss of generality, we
can assume jj = I(i}_,,4}) for all 1 <1< p. Hence the weight of Q; is wlij_;,%}]. Thus @ corresponds
to an zo to z, path Q' = {0 = 44,4},...,1, = n} in G’ with w(Q') = w(Q). Since the weight of P'is
minimum among all such paths in G’, we have w(P) = w(P')' < w(Q") = w(Q). So P is a shortest zg
to , path in G.

Lemma 3.2 Let A and B be two concave matrices such that all main diagonal entries of the product
matriz w = A x B are non-negative. If the enhanced LWS problem defined by the matriz w can be solved
in T(n,m) time, then the SPCB problem defined by A and B can be solved wn O(T(n,m)+mlogn) time.

We would like to use Wilber’s algorithm in [9] to solve our enhanced LWS problem. We have to
overcome two difficulties, however. First, Wilber’s algorithm is for solving the (ordinary) LWS problem
which is defined by an upper triangle matrix while our problem is defined by a full matrix. Second,
Wilber’s algorithm assumes each entry w(%,j) can be evaluated in O(1) time. In our case, an entry of
the matrix w = A x B may need ©(m) time to evaluate. We will address these.two issues in the following
two sections, respectively.

4 Wilber’s Algorithm

In this subsection, we briefly describe Wilber’s algorithm for solving the LWS problem. We assume the
readers are familiar with [9]. Then we show that Wilber’s algorithm can be used to solve the enhanced
LWS problem without any change.

Consider an instance of the LWS problem with the sequence {zg,z1,...,Zn} and the weight matrix
w(z;, ;). Recall that wis an (n+1) x (n+ 1) upper triangular matrix. Let f(0)=0and,for1<j<n,
let f(7) be the weight of the lowest weight subsequence between zo and z;. For 0 < i< j<n,letg(ij)
be the weight of the lowest weight subsequence between zo and ; whose next to the last element is z;.
(That is, the lowest weight subsequence of the form 0 =1ly <!y < ... <lg_1 =i <l = j). Then we
have:

f(j)zmin05i<j g(i,j) for 1<j<n. (4)
g(i,5) = f()) +w(xi,z;) for 0<i<j<n

Adding f(i1) + f(42) to both sides of inequality (2) and apply definition (4), we get:
g(i1, j1) + 9(iz, 52) < 9(i1,j2) + g(ia, 1) for 0< iy <ip <1 <ja<n

We extend the definition of ¢ by setting g(i,7) = 400 for 0 < j < i < n. Then g becomes a full
(n+1) x (n+ 1) matrix. It is easy to verify that the extended matrix g is totally monotone. (The only
role of the +co entries is to make ¢ a full matrix for convenience. These entries otherwise have no effect
on computation). Our goal is to determine the row index of the minimum value in each column of g. So
we would like to simply apply SMAWK algorithm. But we cannot, because for ¢ < j, the value of g(, §)
depends on f(i) which depends on all values of g(l,1) for 0 <[< i. So we cannot compute the value of
g in O(1) time as required by SMAWK algorithm.

Wilber’s algorithm starts in the upper left corner of g and work rightwards and downwards, at each
iteration learning enough new values for f to be able to compute enough new values of g to continue
with the next iteration. Actually, during one step of each iteration, the algorithm might “pretend” to
know values of f that it really does not have. At the end of the iteration, the assumed value of f is
checked for validity.

We use f(7) and g(2, j) to refer to the correct value of f and g. The currently computed value for f(j)
is denoted by F'(j), and will sometimes be incorrect. The currently computed value of g(i, j) is denoted
by G[i,], and is always computed as F[i} + w(i,5). So G[i,j] = g(3,j) iff F(i) = f(3). The algorithm
does not explicitly store the matrices w,g,G. Rather, their entries are calculated when needed. Let
Gli1, i2; j1, jo] denote the submatrix of G consisting of the intersection of rows 4; through i and columns
J1 through js. G[i1,42; j] denotes the intersection of rows 7; through iy with column j. The rows of G
are indexed from 0 and the columns are indexed from 1. Wilber’s algorithm is as follows. First, set
F[0] — ¢« r — 0. Then, while (¢ < n), perform the following 5 steps:

1. p — min{2¢c —r+ 1,n}.

2. Apply SMAWK algorithm to find the minimum in each column of submatrix S = G[r,c;c + 1, p].
For j € [c+1,p], let F[j] = the minimum value found in G[r,c;j].

3. Apply SMAWK algorithm to find the minimum in each column of the submatrix T'= Glc+ 1,p —
¢+ 2,p]. For j € [c + 2,p], let H[j] = the minimum value found in Gle + 1,p — 1;;].

4. If there is an integer j € [c + 2, p] such that H[j] < F[j], then set jo to the smallest such integer.
Otherwise, set jo «— p+ 1.

5. if (jo = p+ 1) then ¢ — p; else F[jo] — Hljol; 7 — c+1; ¢ — jo.

Each time we are at the beginning of the loop, the following invariants hold:

(1)r>0andc>r.

(2) For each j € [0,d], Fj] = £(j).

(3) All minima in columns ¢ + 1 through n of g are in Tows > r.

These invariants are clearly satisfied at the start when r = ¢ = 0.

Invariant (2) implies that G[i, j] = ¢(z, j) for all j and all i € [0, ¢]. So the entries of submatrix S are
the same as the corresponding entries of g. Therefore S is totally monotone and for each j € [c+ 1,p],
step 2 sets F[5] to the minimum value of subcolumn g(r,¢;j). Also, since S contains all finite-valued
cells in column ¢+ 1 of g that are in rows > r, we have Flc+ 1] = f(c+ 1) at the end of step 2. On the
other hand, we do not necessarily have F(j] = f(j) for any j € [e + 2, p], since g has finite-valued cells
in those columns that are in rows > r and not in S.

In step 3, we proceed as if F[j] = f(j) for all j € [c+ 1,p — 1]. Since this may be false, some of the
values in T may be bogus. However, T is always totally monotone for if we add F[i;] + F[iz] to both
sides of (2), we get G[iy, j1] + Gliz, j2] < Gli1, j2] + Giz, j1]. Thus SMAWK algorithm works correctly
and H[j] is set to the minimum value of the subcolumn Glc + 1,p — 1; ;] (which is not necessarily the
same as the minimum value of the subcolumn g(c + 1,p — 1;7)). Note that since all entries on and
below the main diagonal of g are 400, they cannot be H[j] for any j and hence have no effect on the
computation.

In step 4, we verify that F[j] = f(j) for j € [c+2, p] (this is the case if H[j] > F[j]for all j € [c+2, p]);
or find the smallest j where this condition fails (this is the case when there exists j € [c + 2,p] such
that H[j] < F[j]). In either case, the values of ¢ and r are set accordingly at step 5 so that the loop
invariants hold. This completes the description of Wilber’s algorithm.

Next we discuss how to use Wilber’s algorithm to solve the enhanced LWS problem. Let w[0..n,0..n]
be the weight matrix of an instance of the enhanced LWS problem. Let L denote the portion of w
consisting of the entries on and below the main diagonal of w. Let w’ be the matrix obtained from
w by replacing all entries in L by +co. Then w’ defines an instance of the (ordinary) LWS problem.
By Lemma 3.1, the solution for the problem defined by v’ is identical to the solution for the problem
defined by w. If each entry of w can be computed in O(1) time, we can use Wilber’s algorithm on w’
to solve the problem. However, if the enhanced LWS problem is derived from an instance of the SPCB
problem, the entries of the matrix w = A x B cannot be computed in O(1) time. In this case, we cannot
afford to change w to v’ since doing so will distroy some properties of w that are crucial for obtaining a
fast algorithm. Fortunately, we will show Wilber’s algorithm can be applied directly to w to solve the
enhanced LWS problem.

It is enough to show that the entries in L have no effects on the computation of Wilber’s algorithm.
The only place where Wilber’s algorithm needs the entries in L is step 3, where SMAWK algorithm is

applied to the submatrix T'. For each j € [c + 2, p], let F[j] and H[j] be the minimum value of column
jin S and T, respectively. There are three cases:

(a) F[5] < H[j]- :

(b) Fj] > H[j] and H[j] is not in L. Namely, H[j] = G[i, j] for some i < j.

(c) F[j] > H[j] and H[j] is in L. Namely, H[j] = GI[i, j] for some i > j.

In cases (a) and (b), the values in L does not affect the computation. In the following we show case
(c) cannot occur. Toward a contradiction, assume there exist indices j € [¢ + 2,’p] and i such that i > j
and H[j] = G[i,j] < F[j].

Case 1: i = j. Then H[j] = G[j, 5] = F[j] + w(j,j) > F[j]. This is impossible.

Case 2: 1 > j. In this case, H[j] = G[i,j] = F[i] + w(i,j). Recall that F[:] is the minimum value of
the subcolumn Gfr,c;i]. Suppose F[i] = G[t,7] = F[t] + w(t, 1) for some r <t < c. Note that t < ¢ < i
and j < 1. By the concavity of w, we have: w(t, 7) + w(¢,i) < w(t,7) + w(i, j). Since w(i, i) > 0 for all
i, we have: H[j] = Fli]+ w(i,j) = F[t] + w(t,) + w(s,j) > Fit] + w(t, i) + w(i, i) > F] + w(t, j) =
G[t, 5] > F[j]. This contradicts the assumption that H[j] < F[j].

Since case (¢) cannot occur, the entries in L do not affect the computation of Wilber’s algorithm,
regardless of whether they are changed to 400 or not. Hence, we have proved the following:

Lemma 4.1 Wilber’s algorithm solves the enhanced LWS problem without changing the weight matriz.

5 Implementation and Time Analysis

In this section, we discuss how to use Wilber’s algorithm to solve an instance of the enhanced LWS
problem that is derived from an instance of the SPCB problem. Namely, the enhanced LWS problem is
defined by a product matrix C = A x B where C[i, 7] > 0 for all 5.

During each stage of Wilber’s algorithm (steps 2 and 3), we need to find column minima of subma-
trices S and T". Both S and T have the form C’[r,¢; ¢, p] where C'[t, j] = F[i] + Clz, j] for some known
value F[7]. Since the values C’[¢, j] cannot be computed in O(1) time, we cannot use SMAWK algorithm
directly. Instead, we use the algorithm given in the following lemma. (Similar methods was used in [2]).

Lemma 5.1 The column minima searching problem for the submatriz C'[r,c;q,p] withr < g andc<p
can be solved in O((c —) + (p— ¢) + (k2 — k1)) time, where ky = I(r,r) and ky = I(p,p).

Each iteration of Wilber’s algorithm is completely specified by three parameters: r,c,p. Let r;, ¢;, p;
be the values of these parameters in the 7th iteration. The parameters for the next iteration are calculated
in step 5 as follows:

Case 1: “then” part of step 5 is executed. In this case, 741 = 7;; ¢i41 = pi; and

Case la: pj41 = 2¢i41 — i1 + 1, if it 1s < m; or

Case 1b: p;11 = n, otherwise.

Case 2: “else” part is executed. In this case, rip1 = ¢; + 1, cip1 = jo (¢ + 2 < jo < ps); and

Case 2a: piy1 = 2¢i41 — i1 + 1, if it is < n; or

Case 2b: pi41 = n, otherwise.

If the case la (or 1b, 2a, 2b, respectively) applies to the ith iteration, we call it a type la {or 1b,
2a, 2b, respectively) iteration. We call [r;, p;] the ith span; r; and p; the left and the right end of the
ith span, respectively. Note that for a type 1a or 1b iteration, the left end is not changed, the right end
increases. For a type 2a or 2b iteration, the left end increases, the right end may increase, decrease, or
remain unchanged. For an interval [t,t + 1] (0 < ¢ < n), we say a span [r;, p;] covers [t,¢+ 1], written as
[t,t+ 1] € [ri,pi], if ;i <t and t+ 1 < p;. Since the left end of spans never decreases, the spans “move”
from left to right. Once the left end of a span is > ¢ + 1, [t,t + 1] will never be covered by subsequent
spans. First we make the following obvious observations.

(1) If a type la or 1b iteration follows a type 1b or 2b iteration, the algorlthm terminates immediately.

(2) If the (i+1)th iteration is of type la, then: pjt1 —rig1 = (2c,+1 —rig1+1)=rig1 = 2(pi—ri)+1.
Namely, the length of the (i + 1)th span is 1+4twice the length of the 7th span.

(3) Suppose the (i+1)th iteration is of type 2a or 2b. Since p; < 2¢;—r;+1, we have ¢; > (pi+r;i—1)/2.
Hence: ripy =i+ 1> (pi+ri—1)/2+ 1.

(4) Suppose an interval [t,t+ 1] is covered by the ith span [r;, p;]. If the (i 4 1)th iteration is of type
la or 1b, and the (i + 2)th iteration is of type 2a or 2b, then 7,42 = ¢i41 +1 =p; +1 >t + 1. Hence
[t,t + 1] is not covered by [ri42, piy2] and subsequent spans.

Lemma 5.2 Any interval [t,2 + 1] (0 <t < n) is covered by at most 2logn + 2 spans.

Theorem 5.3 Given two concave matrices A and B such that the main diagonal entries of A x B are
non-negative, the SPCB problem defined by A and B can be solved in O(n + mlogn) time.

6 TSP Problems for Points on a Convex Polygon

Let C be a convex polygon. For any two points ¢ and y on C, let d(z,y) be the Euclidean distance
between z and y. Let P be a path connecting points on C. The weight of P is w(P) = Peep dle).
Given two points z,y of C, we wish to find a Hamiltonian path P connecting all points of C from z to
y such that w(P) is minimized. One can show that no two edges of P cross each other.

Let z = zg,21,...,2, = y be the points of C from z to y in clockwise order. Let Cx denote this
portion of C. Let £ = yo,41,...,ym = y the the points of C from z to y in counterclockwise order. Let
Cy denote this portion of C. For 0 < i < j < n, let z; X z; denote the portion of Cx from z; to z;.
For0<i<j<m,lety X y; denote the portion of Cy from y; to y;.

Let P be an optimal Hamiltonian path from zo = yo to £, = y,. Depending on whether the first
and the last edge of P is in Cx or in Cy, there are four possibilities. We assume both the first and the
last edge of P are in Cy. Then P must be of the following form.

. Y b's Y X X Y
Tip = L0 = Yo 2 Y5y = %1 = 2i;, Y41l — Yjp 2 Ti41 = = Ty, = Tul Y4l — Ym = Ty

forsome 0< j1 <ja<...<ji<m-—1land0=ip<ij<ig<...<ig=n—1. Weuse the following
dummy path P’ to represent P:

Pl={0=ip—ji—ii—ja—iz > ...—> jio1 —ip — j1 — i =n—1}

Each edge -1 — j; and ji — 4 in P’ is called a dummy edge. P is completely specified by P’. Define
the weights of dummy edges as follows.

Alei, yj] = w(zi — ;) = d(zi41,y;) — d(zi, 7iy1) and Bly;, z;] = w(y; — ;) = d(yj41,2:) — d(Y5, ¥i41)

Note'that Alzo, yo] = Blyo,zo] = 0. Let Sx = Z?;ll d(zi_1,z;) and Sy = E}nzl d(yj-1,Yj). Then,

t t
w(P) = Sx + Sy +3_ Alzi_,,v;] + > Blyj,, i) (5)
=1 =1

Since the term Sx + Sy in equation (5) is fixed for any P, in order to minimize w(P), we only need
to minimize the reduced weight w(P') defined by w(P') = Y1_, Alzi,_,,v;,]+ Soi—, Bluj,, 2]

Let G = (X,Y,E) be the complete bipartite digraph with X = {#0,71,...,2p-1} and ¥ =
{¥0,¥1,...,Ym-1} and the weight matrices A and B. Then a dummy path P’ with minimum reduced
weight w(P’) is exactly a shortest path in G from g to z,,_,. Also, A and B are concave.

Theorem 6.1 TSP for points on an N-point convezr polygon needs O(N log N) time.

7 Minimum Latency Problem for Points on a Straight Line

Consider a set S of n + 1 points, a symmetric distance matrix d[0..n,0,,n], and a tour T which visits
the points of S in some order. The latency of a point p € S on T is the length of the tour from the
staring point to the first occurrence of p. More precisely, suppose T visits the points in S in the order
P0,P1, ..., Pn starting at po. Let d(p;_1,p;) be the distance traveled along T between p;_; and p;. Then
the latency of p; is w(pi) = 37;_, d(pj-1,p;). The total latency w(T) of T is the sum of the latencies of
all points: w(T) = 3"7_, w(p;).

We wish to find a tour 7 with minimum w(T). In this section, we show that the MLT problem for
points on a straight line can be reduced to the SPCB problem and solved in O(n log n) time.

Let S = {Zp,Tn_1,---T1,Z0 = Y = 0,¥1,¥2,- .-, Ym} be aset of N = n 4 m+ 1 distinct points on
the real line from left to right. We overload z; (and y;) to denote both a point and the distance from
it to the origin. The tour starts at the point 0. Define: w(Tx) = > poi(zr — 2k—1)(n — k + 1) and
w(Ty) = S5 (vk — yr—1)(m — k + 1). w(Tx) is the total latency of the tour Tx that starts at 2o = 0
and travels the points 1, 2o, ..., 2, in this order. w(Ty) is the total latency of the tour Ty that starts
at yo = 0 and travels the points y;,¥2, ..., ¥m in this order.

Consider an optimal tour 7 for S. Depending on whether the first and the last edge of T' is to the
left or to the right, there are four possibilities. We assume the first edge is to the right and the last edge
is to the left. Then T must be of the following form:

_ _ A A A A A A A _
Zip = Yjo = Lo = Yo — Yj; — Tiy — Yju = Tig .- > Liy_y > Yj; = Ym = Tip = Tn

forsome 0 = jo < j1 < j2 < ...fim1 < fr=mand 0 =4y < 4 < ...05h1 < & = n. ('The notation

P y; denotes a path from z; to y; consisting of several edges). We use the following dummy tour T’
to represent 7"

T’:{O:io—bjl—+i1—>,,,—>it_1——»jt:m-»it:n}

T is completely specified by 7”. We can show the following:

t t
w(T) = w(Tx) + w(Ty) + Y y;,[2n+2m — 201 — 23] + >z, [2n+ 2m — 20 - 24

1=0 1=0
Define the reduced weight of the dummy tour 7" to be:

t

t
w(T’):Zyj,[n+m—i1-1 —j1]+zxi,{n+m—il“jl]-

1=0 =0

Then, we have: w(T) = w(Tx) + w(Ty) + 2w (T").
Let G = (X,Y, E) be the complete bipartite digraph with X = {z¢,21,...,2.}, Y = {yo,u1,--. Ym }
and the weight matrices A[0..n,0..m] and B[0..m,0..n] defined as follows:

Al 5] = w(xs — y;) = yj(n + m—i—j) and B[j,i] = w(y; — ;) = zi(n +m —1—j).

It is easy to check that a dummy tour 7” with minimum reduced weight w(1") is exactly a shortest
path in G from zq to z,. We can also show that both 4 and B are concave. Thus, we have:

Theorem 7.1 The MLT problem for a set of N points on straight line needs O(N log N) time.

References

[1] F. Afrati, et al., The Complexity of the Traveling Repairman Problem, Informatique Theorique et
Applications (Theoretical Informatics and Applications) 20 (1986) 79-87.

[2] A. Aggarwal and J. Park, Notes on Searching in Multidimensional Monotone Arrays, F' 0CS’88.
[3] A. Aggarwal, et al., Geometric Applications of a Matrix ..., Algorithmica 2 (1987).
[4] A. Blum, et al., The Minimum Latency Problem, ST0OC’94.
[5] D. Eppstein, Sequence Comparison with Mixed Convex and Concave Costs, J. Alg. 11 (1990).
[6] Z.Galil and R. Giancarlo, Speeding-up Dynamic Programming with Applications ..., TCS 64 (1989).
[7] D.S. Hirschberg and L. L. Larmore, The Least Weight Subsequence Problem, SIAMJC 16 (1987).
[8] O. Marcotte and S. Suri, Fast Matching Algorithms for Points on a Polygon, SIAMJC 20 (1991).
[9] R. Wilber, The Concave Least-Weight Subsequence Problem Revisited, J. Alg. 9 (1988).

[10] F. F. Yao, Efficient Dynamic Programming Using Quadrangle Inequalities, STOC"80.

