TN T U X A 52T
(1996. 7. 24)

B A7 Ui RERE 163 5 FEsAiTill 7 v =) X 4

BR 2 A
L PN R L

AT, ZDoONPREAMBICST 3 HFEN AT A=) X658 ET 5, —DHORERKD &
FYVTHD Bk L k-TEREY ST G= (V.E)Y# 54 bkt &, 797 (V,E') # k- Dilicd 3 &
SHEBNAXD E CE %KD X, CORECHLT, UToOWEYEE-T7AT) XLERETS :

(1) F=To ke L, FPEEG 1.924 ¢ 3,

(2) BKRAICE O(k(n + m)) BHEICH 5. Chid WM 2 X /& 0 BEETESR O(k(n + m))
THL, BREPIDOTATI XLTH b,

(3) Wl n+m WO T uty 3 &MV, O(klog’n) BRICH 2. Tk, FTLEHM 2 L /XL b
O BREN n ORBPLEAXTH S, RUOKFITATY XL TH B,

(4) G BEM7 7 7T k> 0.38n TH 3B & ¥, TLBEBEIO<Z F 1.85 L h/hE v,

ZOHORBBERROLEVTHE EBR kL -THAEREY 57 G = (V,BE)B85AbhicrE 757
(V,E') 35 k- AABRETH 2L 5 RBNHI A XD B C E #KH ko CoMEICH LT, L= 1.96 T
BWREREOENTAZ) XL RET 5. thrk ELEER 2 X VNI WEFIOSEHARE T+ o) XuTH
%o

Efficient Approximation Algorithms for
Unweighted Connectivity Problems

Zhi-Zhong Chen

Department of Mathematical Sciences, Tokyo Denki University

This paper presents efficient approximation algorithms for two NP-hard problems of finding minimum
spanning subgraphs with a given connectivity requirement. One problem considered is the following:
Given an integer k and a k-edge-connected graph G = (V, E) with n vertices and m edges, find an £/ C E
of minimum size such that the graph (V, E’) is k-edge-connected. Our algorithm for this problem has
the following properties:

(1) It achieves an approximation factor of 1.924 for all k.

(2) It has an O(k(n + m))-time sequential implementation, and is the first sequential algorithm
that both achieves an approximation factor less than 2 and runs in O(k(n + m)) time.

(3) It can also be implemented in O(k log® n) time with a linear number of processors, and is the
first parallel algorithm that both achieves a constant approximation factor less than 2 for all k and runs
in time polylogarithmic in n.

(4) If G has no multiple edge and k is large (namely, k& > 0.38n), the approximation factor
achieved by the algorithm is smaller than the previous best 1.85.

The other problem considered is the following: Given a 3-vertex connected graph G = (V, E) with
n vertices and m edges, find an E’ C F of minimum size such that the graph (V, E’) is 3-vertex-connected.
Our algorithm for this problem achieves an approximation factor of 1.96 and runs in linear time. It is the
first polynomial-time approximation algorithm for this problem that achieves an approximation factor
less than 2. Moreover, it can be implemented in O(log® n) time with O(m(n + m)) processors.

1 Introduction

The problems. Let G = (V, E) be a connected graph without self-loops (but possibly with multiple
edges), and k be a positive integer. A k-cut of G is a set of k edges whose removal disconnects G. G is
said to be k-edge-connected if it has no (k — 1)-cut. Similarly, G is said to be k-vertez-connected if it has
no set of k — 1 vertices whose removal disconnects G. The minimum edge-connectivity problem (MECP
for short) is the following: Given a positive integer k¥ and a k-edge-connected graph G, find a minimum
k-edge-connected spanning subgraph of G. Similarly, the minimum vertez-connectivity problem (MVCP
for short) is the following: Given a positive integer k and a k-vertex-connected graph G, find a minimum
k-vertex-connected spanning subgraph of G. Sometimes we want to fix the input integer & to a constant;
in this case, we denote the problems by k-MECP and k-MVCP to make the constant k explicit. Hereafter,
n and m denotes the numbers of vertices and edges in the input graph G, respectively.

MECP, MVCP, and their restricted versions (k-MECP and k-MVCP for various k) have applications
in diverse areas of computer science. For example, they can be used to design communication networks
that can tolerate a required number of link or site failures.

Existing work on MECP and k-MECP. MECP and k-MECP for k > 2 are NP-hard. Thus, it is
of interest to design approximation algorithms for them. It is rather trivial to obtain a polynomial-time
approximation algorithm for MECP (and hence its restricted versions) that achieves an approximation
factor of 2. Khuller and Vishkin were the first to give a polynomial-time approximation algorithm for
2-MECP that achieves an approximation factor less than 2 [8]. Subsequently, Garg et al. gave better
approximation algorithms for 2-MECP [5]. Recently, Khuller and Raghavachari succeeded in giving the
first polynomial-time approximation algorithm for MECP that achieves a constant approximation factor
less than 2 (namely, 1.85) [7]. Their algorithm runs in O(k%n?) time and is of high complexity.

In the parallel setting, there have been several approximation algorithms for MECP and k-MECP
[1, 3]. Cheriyan and Thurimella gave a parallel approximation algorithm for MECP [1]. Their algorithm
achieves an approximation factor of 2 and runs in time polylogarithmic in n (but not in k) using a
polynomial number of processors. Chong and Lam were the first to give an NC' approximation algorithm
for 2-MECP that achieves an approximation factor less than 2 (namely, 1.5 + ¢ for any € > 0) [3].

Our results on MECP and k-MECP. Although Khuller and Raghavachari’s approximation
algorithm for MECP achieves an approximation factor of 1.85, its time complexity is rather high. A
natural question is to ask if there is a more efficient approximation algorithm for MECP that achieves
a constant approximation factor less than 2. In this paper, answering this question affirmatively, we
present an approximation algorithm for MECP that achieves an approximation factor of 1.924 and runs
in O(k(n + m)) time. An interesting property of our algorithm is that its approximation factor is good
when k is rather large and G has no multiple edge. More precisely, its approximation factor is smaller
than 1.841 if & > 0.38n and G has no multiple edge; this improves on the previous best factor 1.85 due
to Khuller and Raghavachari [7]. In addition, the approximation factor decreases as k increases from
0.38n ton — 1.

Previous to our work, even for 3-MECP, there had been no NC approximation algorithm achieving
a constant approximation factor less than 2. Our algorithm mentioned above can be implemented to
run in O(klog®n) time with a linear number of processors on a PRIORITY PRAM. This is the first
parallel algorithm for MECP that both achieves a constant approximation factor less than 2 and runs
in time polylogarithmic in n. Although our algorithm does not run in polylogarithmic time when k is
not polylogarithmic in n, we think that the running time of our algorithm is the best possible for the
following reason: It is still an open question whether there is an NC approximation algorithm for MECP
achieving an O(1) (i.e., an arbitrary constant) approximation factor [2].

Our algorithm can be viewed as a nontrivial mixture of Khuller and Raghavachari’s sequential ap-
proximation algorithm for MECP [7] and Chong and Lam’s NC approximation algorithm for 2-MECP
[3]. Suppose k is an even integer. Like Khuller and Raghavachari’s sequential algorithm, our algorithm
starts with an empty subgraph G’ and then works in k/2 phases: In each phase, the edge-connectivity
of G' is increased by 2. However, our algorithm differs from that of Khuller and Raghavachari in how to
perform each phase. (Note: Each phase of Khuller and Raghavachari’s algorithm performs a depth-first
search for which there is no known NC algorithm.) Each phase of our algorithm is similar to Chong
and Lam’s algorithm; in each phase, a marimal matching M in G — G’ is found and then a maximal

spanning forest containing M together with some other edges in G — G’ is added to G’. However, since
G — G’ may be not 2-edge-connected, we need to modify Chong and Lam’s algorithm appropriately.
Although our algorithm is a mixture of the two algorithms above, its analysis is completely new. An
important part of its analysis is to use the size of the matching M found in each phase to prove a lower
bound on the size of the minimum k-edge-connected spanning subgraph of G.

Existing work on MVCP and k-MVCP. MVCP and k-MVCP for & > 2 are also NP-hard.
Cheriyan et al. gave efficient sequential and parallel approximation algorithms for MVCP achieving an
approximation factor of 2. Khuller and Vishkin were the first to give a polynomial-time approximation
algorithm for 2-MVCP that achieves an approximation factor less than 2 [8]. Subsequently, Garg et al.
gave better approximation algorithms for 22MVCP [5]. Recently, Chong and Lam presented the first
NC approximation algorithm for 2-MVCP that achieves an approximation factor less than 2 (3].

Our result on 3-MVCP. Previous to our work, even for 3-MVCP, there had been no polynomial-
time approximation algorithm achieving an approximation factor less than 2. In this paper, we present
the first such algorithm for 3-MVCP. Our algorithm runs in linear time and achieves an approximation
factor of 1.96. It can also be implemented to run in O(log®) time with O(m(n + m)) processors on
a PRIORITY PRAM. The algorithm is based on new properties of scan-first search trees (these trees
are introduced by Cheriyan et el in [2]). It also uses Chong and Lam’s approximation algorithm for
2-MVCP as a subroutine.

2 An approximation algorithm for MECP

We start by giving several basic definitions. Let G = (V, E) be an undirected (possibly disconnected)
graph. For E' C E, we denote the graph (V, E') by G[E']. For V' C V| the subgraph induced by V' is
the graph (V', E') with E' = {{u,v} € E'| {u,v} C V'}. For U C V, we denote by G — U the subgraph
induced by V' — U. When U consists of a single vertex u, we write G — u instead of G — {u}.

A subset M of E is a matching in G if no two edges in M have a common endpoint. Let M be a
matching. A vertex is matched by M if it is incident to an edge in M, and unmatched otherwise. An
augmenting path for M is a simple path in G whose endpoints are both unmatched and whose edges
are alternately in £ — M and in M. A matching is mazimal if it is not properly included in any other
matching. A matching is mazimum if it has the maximum cardinality among all matchings in G.

A bridge of G is an edge whose removal increases the number of connected components in G. Define
an equivalence relation = as follows: For every two vertices v and v of G, v = v if and only if u = v
or G contains an edge-disjoint cycle in which both u and v appear. The vertices of G are partitioned
into equivalence classes by =, and the subgraphs of G induced by these classes are called the 2-edge-
connected components of G. It is clear that no bridge of G appear in a 2-edge-connected component of G.
By merging each 2-edge-connected component of G into a super-vertex (with resulting self-loops being
deleted), we obtain a forest whose edges are the bridges of G. Consequently, the number of bridges of
G is less than the number of 2-edge-connected components of G. (Note: Our definitions of bridges and
2-edge-connected components are not standard, as they are usually defined only for connected graphs.)

2.1 The algorithm and its running time

We first give three lemmas that are helpful to understand our algorithm. The first two lemmas are
known and their proofs can be found in [7].

Lemma 2.1 Let G = (V, E) be a graph which is at least k-edge-connected. Let E’ be a subset of E
such that G[E'] is (k — 1)-edge-connected, and let E” be the edge set of a maximal spanning forest in
G[E — E']. Then, G[E' U E"] is k-edge-connected.

Lemma 2.2 Let G = (V, E) be a graph which is at least k-edge-connected. Let E' be a subset of £
such that G[E'] is (k — 2)-edge-connected, and let E” be the edge set of a maximal spanning forest in
G[E — E']. Then, every (k — 1)-cut of G[E’ U E”] must contain exactly one edge of E".

Lemma 2.3 Let G = (V, E) be a graph which is at least k-edge-connected, and let E' be a subset of
E such that G[E'] is (k — 2)-edge-connected. Let A be a subset of E — E’ such that for every edge
e € E— (E'UA), G[A] has the same bridges as G[A U {e}]. Then, G[E’ U A] is k-edge-connected.

We first describe our algorithm for even values of k. Let G = (V, E) be the input k-edge-connected
graph. The algorithm starts by setting E' = @. Then, it proceeds in phases. In each phase, some edges
in E — E' are added to E' so that the edge-connectivity of G[E'] is increased by 2. After k/2 phases,
the edge-connectivity of G[E’] is k and the algorithm outputs G[E'].

Below, we describe the procedure used by our algorithm in each phase. It is a modification of Chong
and Lam’s NC approximation algorithm for 2-MECP, and consists of the following steps.

1. Compute a maximal matching M in G[E — E'].
2. Construct a maximal spanning forest F' = (V, E”) in G[E — E'] with M C E", and set A = B

3. In parallel, for each edge e € M, if there is an edge f € E — (E' U A) such that G[A U{f}] contains a
cycle in which both ¢ and f appear, then add one such edge f to A. (Comment: e and f belong
to the same 2-edge-connected components of G[A] (and of every supergraph of G[4]).)

4. Let Oy, ..., C; be those 2-edge-connected components of G[A] whose vertices are all matched by M.
Compute n; (1 < j < t), the number of vertices in Cj. (Comment: C; must contain nj — 1
edges of F among which exactly n;/2 ones are edges in M. Thus, by step 3 and the comment
after it, C; contains at most 3n;/2 — 1 edges. According to [3], if C; has exactly 3n;/2 ~ 1 edges,
then C; must contain at Jeast one redundant edge whose removal from C; does not destroy the
2-edge-connectivity of Cj;.)

5. In parallel, for each Cj (1 < j < t) with exactly 3n;/2 — 1 edges, find one redundant edge in C; and
remove it from A. (Comment: Clearly, G[A] still contains a maximal spanning forest of G[E~E'
as a subgraph.)

6. In parallel, for each bridge e in G[A], if there is an edge f € E — (E’ U A) such that GAU{f}]
contains a cycle in which both e and f appear, then add one such edge fto A, (Comment: We
claim that after step 6, G[A] has the same bridges as G[A U {g}] for every edge g € E — (E'UA).
Assume, on the contrary, that this is not true. Then, by the comment on step 5, there are some
bridge e in G[A] and some edge g € E — (E’ U A) such that G[A U {g}] contains a cycle in which
both e and g appear. Since no edge added to A in step 6 can be a bridge in G[4], e must have been
a bridge in G[A] before step 6. Now, the existence of ¢ implies that some edge f must have been
added to A in step 6 so that e can be no longer a bridge in G[A] after step 6, a contradiction.)

7. Compute a maximal spanning forest (V, E1) of G[A] and add the edges in E; to E’. Further compute
a maximal spanning forest (V, E3) of G{A— E1] and add the edges in B, to E'. (Comment: Before
step 7, the edge-connectivity of G[E' U A] is at least 2 larger than that of G[E'], by Lemma 2.3 and
the comment on step 6. So, by Lemma 2.1, the edge-connectivity of‘G[E’] increases by at least 2
after step 7.)

Now, consider the case where k is odd. In this case, we first use the above procedure repeatedly to
find a (k — 1)-edge-connected spanning subgraph G[E'] of G and then add a maximal spanning forest of
G[E — E'] to G[E'] to make G[E'] k-edge-connected.

Theorem 2.4 The algorithm is correct and runs in O(klog® n) time with O(n + m) processors. More-
over, it can be turned into an O(k(n + mn))-time sequential algorithm.

2.2 Performance analysis

Define ky = |k/2|. For 1 < i < ky, let M; and 4, be the matching M and the edge set A computed
in phase i of the algorithm, respectively. For 1 < i < ky, let E! = Uigj<i4; and z; = |M;|. For
convenience, let Ej = @ and E!,, be the output of the algorithm. If k is even, then El,, C Ei,;

otherwise, E’,, includes a subset of Ej}_.

Lemma 2.5 If k is even, then |E} .| < Zf;l(Qn—.r,-——Z). In case k is odd, |Ejy| < (n—1)+2f;1(2n—
z; — 2). Consequently, |E, .| < kn — Z:Zl(:m +2).

Let Opt be the number of edges in a minimum k-edge-connected spanning subgraph of G.
Fact 1 Opt > [kn/2].
Lemma 2.6 For 1 <i < ks, Opt > (k — 2i 4+ 2)n — 2(k — 2i + 2)z; + 2(i — 1). |

Theorem 2.7 Let Ri be the approximation factor achieved by our algorithm. Then, Ry < 1.924 for
all & > 2.
Proof. Let k4 = [k/4]. By Lemma 2.5, Fact 1, and Lemma 2.6, we have

kn — SR (2 +2)

R
k maxi<i<k, {1 kn/2], (k — 2 + 2)n — 2(k — 2i + 2)z: + 2 — 1)}
kn— 50t
maxlSiSh.,_l{[kn/?],(k — 2t + 2)11 - 2(10 -2+ 2)11}
_ (kn — batln) 4 5703 (n — @)
- maxlsiskﬁl{[lsn/?] s (k' — 2t + 2)71 — 2(k — 21+ 2)11‘}
k4

< kn — fakly e - a)
- [kn/2] (k—2i4 2)n — 2(k — 2t + 2)x;

kg +1 R 1
< 2-— ;%—42-{-4)

ka+1 1 ka1 1
s -7 +(2k—4(k4+1)+4+/1 % —drra® @)

ks +1 1 |
= 2-7 +2k-4k4+5/k_2k4§dy 3)
B by +1 1 1 k
B R T T L s T

1 1 1
< 4
< 2 4+2k——4k4+4ln2

1 1

< 1.9233+m<1.9233+;. (4)

For k£ > 1429, % < 0.0007 and Ry < 1.924 by (4). For small values of k, we resort to the inequality
Ry <2- ka—l + Z’.“"H m (see (1) above). By executing a computer program for computing the

i=1
quantity 2 — fstl 4 Yokatt 35—ar4 We can verify that this quantity is less than 1.9232 for all k < 1429.

Therefore, no matter whether k is large or small, we always have R, < 1.924. [|

2.3 A variation for large values of k

Throughout this subsection, we assume that the input graph G has no multiple edge. Suppose that we
modify the algorithm in subsection 2.1 as follows. In step 1 of each phase, we compute a special maximal
matching M in G[E — E'] for which there is no augmenting path with 3 edges. The other steps of each
phase remain unchanged.

Lemma 2.8 [6] If S is a matching in an n’-vertex and m’-edge graph without multiple edges such that

there is no augmenting path with 3 edges for S, then |S| > n’,’il and S can be found in linear time.

We adopt the notations and definitions in subsection 2.2. For simpliciﬁy, we assume that k 1s even;
similar results can be proved for odd k. Clearly, Lemma 2.5 and Fact 1 still hold. By Lemma 2.8,
1 > 2 and (A < 2n —2; — 2 < 2n— 2 — 2. From this and Lemma 2.8, we have ¢, > -":%ﬂl-
and |Az] < 2n — 3 — 2 < 2n — . Repeating this for all 3 < i < ky, we get |3 < 2n— 242, ..,
[Ar,| < 2n — 2 4 2(ky — 2). Thus, BY,, = 02, |Ai] < 2kan — 822 4 (ky — 1)(kz — 2). Therefore,

min{2kan — 822 4+ (ky — 1)(k2 — 2),m} _4n+k

R :
k< rez] o+ k

Using this, we can verify that R, < 1.841 if k¥ > 0.38n. Also, the upper bound on R; decreases as k
increases. In particular, when k¥ = %, we have Ry < 1.8. These approximation factors are better than
the previous best 1.85 [7]. It can also be verified that Ry < 1.923 if k > 0.17n. This improves on the
“approximation factor 1.924 shown in subsection 2.2. The modified step 1 can also be done in O(log” n)
time with O(n®) processors [4].

Theorem 2.9 There is an approximation algorithm for MECP which runs in linear time and achieves
an approximation factor of —3"— In particular, the approximation factor is less than 1.841 for all

k > 0.38n. Moreover, the algorlthm can be implemented in O(log®n) time with O(n®) processors.

2.4 A variation for small values of &

Throughout this subsection, we fix k as a constant. Suppose that we modify the algorithm in subsection
2.1 as follows. Fix an arbitrary constant ¢ > 0. In step 1 of phase I, we compute a matching M in G
whose size is at least (1 — ¢) optimal, and then extend M to a maximal matching. According to [4],
M can be found in polylogarithmic time using a polynomial number of processors. The other steps of
phase 1 and all steps of the other phases of the algorithm remain unchanged.

Clearly, the modified algorithm is still correct and runs in polylogarithmic time using a polynomial
number of processors (recall that k is fixed). In the remainder of this subsection, we prove that it
achieves a better approximation factor than 1.924 if £ is sufficiently small.

We adopt the notations and definitions in subsection 2.2. Clearly, Lemma 2.5 and Fact 1 still hold.
To obtain a new lower bound on Opt, let zo be the size of the maximum matchings in G.

Lemma 2.10 A minimum k-edge-connected spanning subgraph of G must contain at least kn —2(k —
Dzo — 1 edges.

Therefore, the approximation factor Ry achieved by the modified algorithm satisfies:

R < kn— T2, (@i +2)
* = Maxocicrd1kn/2], kn — 2(k —)zg — 1, (k — 20+ 2)n — 2(k — 2i + 2)a:}

By the modified algorithm, z; > (1 — €)z¢. Using this and modifying the proof of Theorem 2.7, we have

kn — ((1 - €)zo +2) — Z o(xi +2)

R maxzsisk,{[kn/ﬂ kn — 2(k — Dzo — 1, (k — 2+ 2)n — 2(k — 21 + 2)z;}
1—e ’““ 1
< 2- -
= 2(k— 1) k < 2k —4i+4
1 ka ot 1 :
= Qe —— = .
k= 1) k+;2k—4i+4+2(k—1) ®)

Since € can be set arbitrarily small as long as it is a constant, (5) can be rewritten as Ry < 2 — ﬁ -

_a + 3 katl Y rvaw) 4z+4 + 6 for any constant 6§ > 0. Using this, we obtain Ry < 1.5+ 6, R3 < 1.75+ 6, and
R4 <1. 834 + 6. To mention more, we have R < 1.9 for all £ <11, and Ry < 1.92 for all k£ < 78.

3 An approximation algorithm for 3-MVCP

In this section, we present an approximation algorithm for 3-MVCP. We will describe it as a parallel
algorithm; at the end of this section, we will also mention how to turn it into a sequential algorithm.
We need the following result proved by Chong and Lam {3].

Lemma 3.1 [3] There is a parallel algorithm such that given a 2-vertex-connected graph G = (V, E)
and a matching M in G, finds a 2-vertex-connected spanning subgraph of G with at most 2|V|— Lj%lj -3
edges in O(logn) time using O(m(n + m)) processors.

We start by giving several basic definitions. Let G = (V, E) be an undirected (possibly disconnected)
graph. For E' C F, the subgraph induced by E’ is the graph (V', E’), where V' is the set of all endpoints
of edges in E’. Define an equivalence relation =, as follows: For every two edges e; and e5 of G, 1 =, €
if and only if e; = e; or G contains a vertex-disjoint cycle in which both e; and e; appear. The edges of
G are partitioned into equivalence classes by =.. The subgraphs induced by these classes together with
the isolated vertices in G are called the biconnected components of G. A vertex may be contained in
two or more biconnected components and such a vertex is called a cut point. (Note: Our definitions of
biconnected components and cut points are not standard, as they are usually defined only for connected
graphs G.)

Lemma 3.2 Let p and g be the numbers of connected components and biconnected components of G,
respectively. Then, the sum of the numbers of vertices in the biconnected components of G is |V |+¢ —p.

3.1 Scan-first search

The notion of scan-first search was introduced by Cheriyan et al. [2]. For the sake of completeness, we
give the definition here. Given a connected graph G and a specified vertex r, a scan-first search in G
starting at r is a systematic way of marking the vertices. The main marking step is called scan: to scan
a marked vertex means to mark all previously unmarked neighbors of that vertex. At the beginning of
the search, only the specified starting vertex is marked. Then, the search iteratively scans a marked and
unscanned vertex until all vertices are scanned.

A scan-first search in G produces a rooted spanning tree defined as follows. At the beginning of the
search, the tree is empty. Then, for each vertex v in G, when v is scanned, all the edges between v and
its previously unmarked neighbors are added to the tree; the edges between v and its previously marked
neighbors are not added to the tree.

We next prove several useful properties of scan-first search trees. Some of the properties have been
implicitly proved in [2] but our proofs are much simpler. To begin, let G = (V, E) be a connected graph
and r be a vertex in G. Fix a scan-first search tree T' = (V, Er) of G rooted at r. We refer to the edges
in Ep as tree edges and the edges in E — Er as noniree edges.

Fact 2 There is no nontree edge {u,v} such that u is an ancestor of v in T

Lemma 3.3 For every u € V, T — u has at most one connected component C such that there is a
nontree edge connecting u to a vertex of C.

Lemma 3.4 Let u; and uy be two vertices in G such that u; is scanned earlier than us by T. Then,
T — {u1,uz2} has at most one connected component C such that there is a nontree edge connecting u;
to a vertex of C.

3.2 The algorithm

We first prove two lemmas which are helpful to understand our algorithm.

Lemma 3.5 Let G = (V, E) be a graph which is at least 2-vertex-connected, and let 7' = (V, E') be a
rooted scan-first search tree of G. Let E” be the edge set of a maximal spanning forest of G[E — E'].
Then, G[E' U E”] is 2-vertex-connected.

Lemma 3.6 Let G = (V, E) be a graph which is at least 3-vertex-connected, and let T = (V, E') be a
rooted scan-first search tree of G. Let A be a subset of E — E’ such that for every edge e € E~ (E'U A),
GI[A] has the same number of biconnected components as G[A U {e}]. Then, G[E’ U A] is 3-vertex-
connected.

Let G = (V, E) be a 3-vertex-connected graph. We next use Lemma 3.6 to design an approximation
algorithm for computing a small 3-vertex-connected spanning subgraph in G. The algorithm consists
of two phases. In phase 1, it computes a rooted scan-first search tree 7= (V, E') in G. In phase 2, it
computes a subset A of E — E’ satisfying the condition in Lemma 3.6. The output of the algorithm is
the subgraph (V, E’ U A). The correctness of the algorithm follows from Lemma 3.6 immediately. We
need to specify how to perform phase 2. Phase 2 consists of the following five steps.

1. Compute a maximal matching M in G[E — E'].
2. Compute the biconnected components By, ..., By of G[E — E'].

3. In parallel, for each B; (1 < j < q), compute the number n; of vertices in B; and compute M;, the
set of all edges in both M and Bj;.

4. In parallel, for each B; (1 < j < ¢) with at least one edge, use M; to find a 2-vertex-connected
spanning subgraph B; of B; with at most 2n; — L——J——J 3 edges.

5. Set A to be the union of the edge sets of Bi, ..., By.

We claim that the set A computed in step b satisfies the condition in Lemma 3.6. To see this, first
note that Bj, ..., By are the biconnected components of G[A]. Fix an arbitrary edge e in £ — (E'U A)
e must belong to some B;. By step 4, the biconnected components of G[A U {e}] must be B, ..., Bj_1,
B}, Bi.y, ..., By, where B” is obtained from B} by adding e to it. Thus, G[A] has the same number of
blconnected components as G[A U {e}]. Therefore by Lemma 3.6, G[E' UA] is 3-vertex-connected. This
shows the correctness of the algorithm.

We next analyze the approximation factor achieved by the algorithm. Let |M] = z.

Lemma 3.7 |E' U A| < 3n - .
Proof. Without loss of generahty, we may assume that Bl, cery Bq/ are the biconnected components of

G[E — E’] that are not isolated vertices. Then, |A| < Z; 1(2n; — [Zi| —3). Using Z] =1 {Mj| ==, we

get |A|<QZJ 11 —%—3¢'. The total number of vertices in By, ..., By 1321 1n] Z] an +(¢—¢"),

which is at most n +q — 1 by Lemma 3.2. Thus, |[A] < 2(n+¢ — 1) — £ — 3¢’ < 2n — %. Therefore,
|E'UAl=(n—1)+|4] <3n—2. |

Lemma 3.8 Let Opt be the number of edges in a minimum 3-vertex-connected spanning subgraph of
G. Then, Opt > 2n — 4z.

By Lemma 3.7 and Lemma 3.8, we see that the approximation factor achieved by the algorithm is
at most —2n==2 o <2 —1/24 < 1.96.

Theorem 3.9 There is an NC approximation algorithm for 3-MVCP that achieves an approximation
factor of 1.96 and runs in O(log® n) time with O(m(n + m)) processors. Moreover, it can be turned into
a linear-time sequential algorithm.

References
[1] J. Cheriyan and R. Thurimella, Algorithms for Parallel k-Vertex Connectivity and ..., STOC"91.
[2] J. Cheriyan, et al., Algorithms for Parallel k-Vertex Connectivity and ..., SIAMJC 22 (1993).
[3] K.W. Chong and T.W. Lam, Approximating Biconnectivity in Parallel, SPAA’95.
[4] T. Fischer, et al, Approximating Matchings in Parallel, IPL 46 (1993).
[5] N..Garg, et al., Improved Approximation Algorithms for Biconnected Subgraphs ..., SODA’93.
[6] Y. Kajitani, et al., New Approximation Results on Graph Matching and Related Problems, WG’94.

[7] S. Khuller and B. Raghavachari, Improved Approximation Algorithms for Uniform Connectivity
Problems, STOC"95.

[8] S. Khuller and U. Vishkin, Biconnectivity Approximations and Graph Carvings, JACM 41 (1994).

