7 o 4 U X & 53-13
(1996. 9. 13)

LMT-skeleton (ZB8§ 5 —E& %

HIFEE ML, Siu-Wing Cheng?, & H 53

U E R AR 2Department of Computer Science, The Hong Kong University
of Science & Technology. HF B K# KFRAEEEMAEE FHIHFIL

PFIIRSU b ABTEHRNELZABTEORSTS 77 TH S LMT-skeleton ZROFATNVNTY
XM DVT DR B HIRET o LMT-skeleton I Belleville et al, & Dickerson and Montague 12 & »
THTITRESNELDTH D, bLbhOYEMIOEN#EY) THS, (1) LMT-skeleton ROl
% 72 ® Dickerson and Montague D HiEIC 81T 5 BFTRMEO &M %5 L#R® T2 5, (2) Dickerson
and Montague D2 ETT ABOFHEREYEL TV 5. () KERHFAXOMBEEHCBROKFE
Wiy 2 kA RREETERMBALOPRIRLLTWVE, TIN5 DY BHICETWTEHHEER
#iT% 072

A Study of the LMT-skeleton
Naoki Katoh!, Siu-Wing Cheng?, and Manabu Sugai'

1Kobe University of Commerce
2Department of Computer Science, The Hong Kong University of Science & Technology

Abstract: We present improvements in finding the LMT-skeleton, which is a subgraph of all
minimum weight triangulations, independently proposed by Belleville et al, and Dickerson and
Montague. Our improvements consist of: (1) A criteria is proposed to identify edges in all min-
imum weight triangulations, which is a relaxation of the definition of local minimality used in
Dickerson and Montague’s method to find the LM T.skeleton; (2) A faster algorithm is presented
for performing one pass of Dickerson and Montague’s method (with our new criteria); (3) Im-
provements in the implementation that may lead to substantial space reduction for uniformly
distributed point sets. In solving the minimum weight triangulation problem, finding a large sub-
graph is a very useful preprocessing step because a large subgraph tends to be well connected and
the number of connected components appears in the exponent of the running time of an exhaustive
search algorithm.

1 Introduction

Given a planar point set S, the weight of a triangulation of S is defined to be the sum of Euclidean
lengths of the edges. The minimum weight triangulation problem is to compute a triangulation
of S with minimum weight (denoted by MWT from now on). The complexity of finding a MWT
is currently unresolved: it is not known to be in P or NP. Nevertheless, many new results are
discovered recently concerning its geometric properties [4,5,7,9,12, 13] and combinatorial prop-
erties [2], as well as approximation algorithm [10), fast heuristics [8, 11], and algorithms for finding
large subgraphs of a MWT [3, 6].

This paper is a further study on the new subgraph of a MWT independently proposed in [3, 6].
Following [6], we call this subgraph the LMT-skeleton. Although it can be proved that the LMT-
skeleton can have linearly many holes in the worst case [4], the experimental results observed so
far is encouraging. As indicated by the experimental results in [6], the LMT-skeleton is often
connected and contains a large percentage of the edges in MWT for uniformly distributed point
set (up to 250 points are tried by Dickerson and Montague [6] and up to 1000 points are tried by
Belleville et al [3]). Unfortunately, finding a LMT-skeleton currently takes O(n*) time and ©(n?)
space [3]. The implementation in [6] uses O(n®) space, runs in multiple passes, and each pass
takes O(n?) time. It is not clear if a constant number of passes suffice to construct the LMT-
skeleton although this is observed to be the case experimentally. The quadratic space requirement
is especially a hindrance of experimenting with larger point sets.

In this paper, we pursue improved ways to find a large subgraph of a MWT based on the
LMT-skeleton. First, we propose a relaxed version of the criteria used in [3, 6] for identifying
edges in the LMT-skeleton. As in [6], we can apply this relaxed criteria in multiple passes to find
the LMT-skeleton. Our second contribution is a more worst-case efficient algorithm for running
one pass, which takes O(n3logn) time and O(n?) space. Space is one bottleneck for trying large
point sets. The implementation in [3] uses ©(n?) because each point p is associated with a list of
all the other points sorted in angular order around p. The implementation in [6] uses atleast Q(n2)
space and at most O(n®) space becasue all possible edges and all empty triangles are stored. We
suggest improvements in the implementation, which may lead to substantial reduction in space
for uniformly distributed point sets. In our experiments, the space usage is about five times
the point set size. We also ran our implementation on some data from natural resources: cross-
sections of some human organs. We observe that one pass of the algorithm may generate a highly
disconnected subgraph. This contrasts with the findings for uniformly distributed points.

In Section 2, we introduce our relaxed criteria and prove its correctness. Section 3 describes
our improved algorithm for running one pass. In this extended abstract, due to the space limit, we
omit implementation details and experimental results which will be reported in the full version.

2 A relaxed criteria

We denote the MWT of a point set S by MWT(S) and the LMT-skeleton by LMT(S). The set
of all possible edges connecting two points in S is E(S). Let e be an edge in E(S) and #; and ¢,
be two triangles such that t; Nty = e. In [6], e is defined to be locally minimal with respect to
t1 Uty if t) Uty is not convex, or if t; U ¢ is convex and [e] < |e/|, where € is the other diagonal
of £; Uty. A triangle T'(S) of S is locally minimal if each edge e in T(S) is locally minimal with
respect to the two triangles containing e.

Given the above definition, it follows immediately that MWT(S) is a locally minimal triangu-
lation and therefore, the intersection of all locally minimal triangulations must be a subgraph of
MWT(S). Denote such an intersection by £(S). It is not clear how to compute £(S) without enu-
merating all locally minimal triangulations. But the enumeration itself is very time-consuming. A
subset of £(S), which is the LMT(S), is computed as follows (our description is adapted from [6]
and is not identical to that in [6]).

A list candEdges of candidate edges, a list edgesIn of edges known to be contained in MWT(S),
and a list deadEdges of edges known to be not contained in any locally minimal triangulations are
maintained. Initially, all edges in E(S) except the convex hull edges are in candEdges, edgesin
contains the convex hull edges, and deadEdges is empty.

For each unexamined edge e € candEdges,

1. Find all combinations of empty triangles t; and ¢; on the two sides of e such that ¢; and t; are
not bordered by any edge in deadEdge.

2. Test each combination of t; and t; to see if e is locally minimally with respect to ; and ¢;. If
e is not locally minimal to any such pair ¢; and t;, then move e to deadEdges. Otherwise, if e
intersects no other edge in candEdges or edgesIn, then move e to edgesln.

The above is one pass to find edges in LMT(S). Multiple passes should be run until no more
edges in candEdges can be moved to edgesIn or deadEdges. The correctness relies on the fact
that an edge e is in some locally minimal triangulation only if e is locally minimal with respect
to all neighboring empty triangles, excluding those that are neighboring to edges known to be
not contained in any locally minimal triangulations. (Since such triangles cannot exist in any
locally minimal triangulations, e needs not be locally minimal with respect to them.) Therefore,
the above algorithm works by first eliminating all edges that cannot be contained in any locally
minimal triangulations. Such edges are put in deadEdges and they are called dead edges. Each
remaining edge is possibly contained in some locally minimal triangulation and we call them active
edges. Thus, if an active edge does not intersect any other active edge, then it belongs to £(S) and
can be included in LMT(S) (i.e., put in edgesIn). It is not clear that LMT(S) = L(S) because it
is possible but not certain that an active edge is in some locally minimal triangulation.

In the previous definition, if there are neighboring triangles ¢; and ty bordering e such that
t; Uty is non-convex, then e is locally minimal with respect to t; and ¢9 and so e will become one
of the remaining edges. However, the fact that ¢; U ¢ is non-convex implies that t; U tp does not
really play any active role. Thus, we perhaps should not label e as an active edge immediately
based on t; and t3. For example, if e is not locally minimal to any other pairs of empty triangles,
then we may not want to label e as active. After all, excluding e means that it is more likely to
include more active edges in LM T (S). This prompts us to define a weaker criteria in the following.

First, we introduce some terminology to ease our discussion. All edges in E(S) and all empty
triangles are initially active. Edges will become dead if they are known to be not contained in
any locally minimal triangulation. Whenever an edge ab becomes dead, we collect the set A of all
empty active triangles azb satisfying: for all empty active triangles ayb such that axb N ayb = ab,
abNzy # 0. Then we label all triangles in A dead. When each edge is examined, its status will
be determined as active, inactive, or dead as follows:

Let T be the set of pairs {azb, ayb} of empty active triangles such that azbNayb = ab.
An edge ab is labelled active if it lies on the boundary of the convex hull, or there
exists {azb,ayb} € T such that abNzy # 0 and |ab] < |zy|. Suppose that ab is not
labelled active. Then if 7 = @ or abN zy # @ for all {azb, ayb} € T, then we label ab
dead. Otherwise, we label ab inactive.

Clearly, our criteria is no stronger than the definition of locally minimal edges. That is, if an
edge e is labelled active by our criteria, then e must also be labelled active by the definition of
locally minimality. After finding the active edges, an active or inactive edge is in LMT(S) if it
does not intersect any other active edge. We prove the correctness of our criteria in the following.

Lemma 1 If an empty triangle t is labelled dead, then t € MWT(S).

PROOF. We prove the lemma by contradiction. Let axh be the first triangle in MWT(S) which is
labelled dead and suppose that it is labelled dead because the edge ab becomes dead. So ab does
not lie on the boundary of conv(S) and so ab is adjacent to some triangle ayb in MWT(S) such
that y # z. Since azb is the first triangle becoming dead, ayb is active when ab is to be examined.
Moreover, the fact that axb becomes dead implies that ab N zy # 0. However, the fact that ab
becomes dead implies that |ry| < |ab|. Therefore, we can replace ab by zy to decrease the total
length of MWT(S), a contradiction.

0
b
x c
0, 7\\0
/ \\\ a
z /,’ i
‘I \‘ d
b e
Fig. 1. Fig. 2.

Lemma 2 If ab g MWT(S), then ab intersects some active edge.

PROOF. Assume to the contrary that ab € MWT(S) but ab does not intersect any active edge.
Since ab & MWT(S), ab intersects some edge in MWT(S). Let zo and yo be the edge in MWT'(S)
such that ab N zgyg is closest to a. Thus, zgayg € MWT(S). For convenience, we also rename
a as vg. Let Cy be the cone bounded by the two rays originating from vg through zg and yo,
respectively. By construction, b € Cp. Consider the other triangle zpzyo adjacent to zoyo in
MWT(S). See Figure 1.

By Lemma 1, zguoye and zgzyo were active when zqyo was labelled dead in test(zgyp). So we
conclude that voz N zoyo = @, otherwise, |vgz| < |zoyo| and we can flip zoyo to decrease the total
length of MWT(S), which is impossible. Therefore, z € Cp and z # b. Without loss of generality,
let z lies on the left of vgb. We rename z¢ as vi, z as z1, and yp as y1. By construction, we
discover a new edge r1y; in MWT(S) that intersects vgb, and b lies inside the cone C; bounded
by the two rays from v; through z; and y;. Thus, we can repeat the previous argument again
to zyv1y; and z1y; to obtain a new edge zoys that intersects vgb. In fact, we can repeat this
argument indefinitely to obtain an infinite sequence of edges z;y;, ¢ > 1, that intersect vpb. This
contradicts the finiteness of MWT(S).

Lemma 2 implies the correctness of reporting active or inactive edges that do not intersect any
other active edges. We have mentioned before that our criteria is no stronger than the definition
of locally minimal edges. There is a point set such that in one pass, a larger subgraph of MWT(S)
will be reported if our criteria is used instead of the definition of locally minimal edges. Consider
the point set X in Figure 2. MWT(X) contains the convex hull edges and be, bf, ef, cf, and df.
Other the convex hull edges, suppose that E(S) is processed in this order af,ac, ad, ce, bd, be,
bf, ef, cf, df. Using the definition of locally minimal edges, ac, ad, ce, and bd will be labelled
dead; of, cf, df, bf, and ef will be labelled active. Among the active edges, cf, df, and ef will
be reported to be in LMT(S). The edge be is not reported due to the presence of af. In contrast,
using our criteria, af will be labelled inactive and so cf, df, ef as well as bf will be reported to
be in LMT(S). (In fact, cf and df will also be labelled as inactive.)

3 An efficient algorithm

We present an algorithm that runs in O(n3logn) time. The worst-case space usage is O(n?). The
improvement comes from two techniques: (1) when we examine an edge e, instead of enumerating
every pair of empty active triangles bordering e, we process all of them simultaneously by looking
at two simple polygons induced by these triangles, (2) for each active or inactive edge e, we develop
a more efficient way to check if e intersects an active edge.

To ease the discussion, for the time being, whenever an edge becomes dead, we will not label
any empty active triangle bordering the edge dead. We will discuss how to put this feature back
later. Given a direction o, we use Sp(a) to denote the sequence of points in § — {p} swept by

Figure 4: The bold polygonal figure is L,y U Rgp. Note that the triangles being empty does not
imply that L., U Rgp is empty.

rotating a ray around p in counterclockwise order starting from direction a. Given any point
z € S —{p}, we use Sp(a, z) to denote the subset of points that precede z in S,(p). The following
simple lemma enables us to identify the empty triangles adjacent to an edge ab.

Lemma 3 Let a be the direction denoted by the ray from point a to point b. Given a triangle azb
lying on the left of ab with respect to «, azxb is empty iff So(a,z) C Sy(a, z).

PROOF. If y lies outside azb and y € Sy(a, z), then y must lie inside the halfspace defined by
the supporting line of bz that does not contain a. This implies that y € Sy(a, z) and proves the
forward direction. If y lies inside azb, then y € Sg(a, z) but y € Sp(a,). This proves the reverse
direction.

Let a be the direction of @ to b. By Lemma 3, we can find all the points z such' that azb
is empty and lies on the left of ab with respect to a in O(nlogn) time as follows. Sort points
around e and b separately. Scan S;(a) and for each point z, visit the corresponding entry in
Sp(c). If the rank of = in Sp(a) is found to be larger than the ranks of all previously visited
entries in Sy(cr), then azb is an empty triangle. We connect the set {z : azb is an empty triangle}
in counter-clockwise order to form a simple polygon Lg,. Similarly, we can construct a simple
polygon R, on the right of ab with respect to a. Refer to Figure 4 for an illustration. Now, it
suffices to find the longest diagonal e of La,U R,p that intersects ab. If e exists and |e| > |ab|, then
we label ab active. Suppose that ab is not labelled active. If Ly, or Ry is empty, or if the angle
at a or bin Lg, U Ry, is not larger than «, then we label ab dead. Otherwise, we label ab inactive.
The labelling of ab can be done in quadratic time by brute-force. In fact, this is the preferred
method whenever the size of L,, U Ry, is not greater than /n because this incurs less overhead.
(This case will apply most of the time if there are not too many empty triangles adjacent to ab.)
We need a different method if the size of L,s U Ry is greater than /n.

Name the vertices of L, on the chain from a to b (excluding a and b) as vy, v, - -, v;. Name the
vertices of R,; on the chain from b to a (excluding a and b) as wi, ws, - - -, wy,. First, observe that
each w; can see a contiguous subsequence of vertices {v Fp V) +1s ,Ug(i)} on Ly, Moreover,

the sequences {f(z) : 1 < ¢ < m} and {g(?) : 1 <1 < m} are non-decreasing. Thus, the “intervals”
of visible vertices from all w;’s can be computed by a single traversal of the chain on L, from b to
a. Hence, to find the longest diagonal of Lg, U Ry that intersects ab, it suffices to find efficiently
the furthest vertex from w; among those on Lg; visible from w;.

Lemma 4 Given wy, and wg with p < q and v, and vy with v < s, if v, is visible from wq and v
15 visible from wp, then v, is visible from w, and vy is visible from wy. Moreover, for 1 <4 < m
and 1 <j £, define dij = jwv;| if v; is visible from w; or —oo otherwise. Then (di;) is a Monge
matriz.

PROOF. Since v, is visible from wg and v, is visible from wp, aw;b U av;b is convex for all w;
between w, and w; and v; between v, and v,. Thus, we conclude that v, is visible from w,
and v, is visible from w,. Take any four entries d; j,,d;, j,, di,j,, diyj, of the matrix (d;;), where
11 > 13 and 71 > jo. If v;, is not visible from w;, or vj, is not visible from wj,, then d;;;, = —oo or
diyjy = —oc0. 8o d; j, +di,j, > di j, +diyj, . If vj, is visible from w;, and vj, is visible from w;,, then
we know that v;, is visible from w;; and vj, is visible from w;,. Given any convex quadrilateral,
the sum of the lengths of the two diagonals is always no less than the sum of lengths of any two

opposite sides. Thus, d;,;, + d;,j, > di,j, + di,j,. This proves that (d;;) is a Monge matrix.

We can then compute in O(n) time the furthest visible vertex on Lg, from w; for each ¢ by
applying fast matrix searching algorithm on a Monge matrix [1]. In all, we can determine if ab is
active, inactive, or dead in O(n8logn) time.

To handle labelling empty triangles dead, for each edge e whose status has been determined,
we maintain a window of e, window(e), which consists of the four edges of L. U R, adjacent to e.
Let ab be the edge whose status is to be determined. Suppose that during the scanning of Se{c)
and Sp(a) to produce L,y or Rgp, we encounter a point z in Sg(a) such that azb is detected to
be empty but ar is dead. (The symmetric case for bx is handled similarly.) There are two edges
e1 = ac and ez = dz in window(az) that lie on the side of az opposite to that containing b. If
bcNaz # @ and bd Naz # B, then azxb should be labelled dead and we do not include z in forming
the simple polygon. After L,; and R, are obained, we process them as described before.

In all, we determine the status of all edges in E(S) in O(n?logn) time if we apply one pass.
The space needed is O(n?). The next task is to report all the active and inactive edges that do
not intersect an other active edge.

We shall examine each point p € S and determine for each active or inactive edge e incident
to p, whether e intersects any active not incident to p. For each point p € S, we first compute the
“envelope” of active edges not incident to p around p. That is, imagine that we emit light rays
from p in all directions, we wan to find out all the points on active edges (not incident to p) hit by
these light rays. The situation is basically the same as computing the lower envelope of a set of
line segments with at most n distinct endpoints. Recall that there are possibly O(n?) active edges.
We describe below an O(n2logn) divide-and-conquer algorithm to compute the lower envelope of
O(n?) line segments with at most n endpoints. This algorithm can be adapted to compute the
“envelope” around p.

Given O(n2) line segments, we first sort their endpoints by z-coordinates in O(n? + nlogn)
time. Then we split the set of endpoints into two equal halves by a vertical splitting line £. We
take out all the line segments that intersecting £. All remaining line segments lie completely on
one side of £. We first recursively find out the lower envelope of line segments on both sides of
£. Then we compute the lower envelope of line segments intersecting £ and then merge the three
envelopes to obtain the final solution. The complexity of a lower envelope of O(n?) line segments
is O(n%a(n,n)), where a(n,n) is the inverse Ackermann function. Therefore, if the lower envelope
of line segments intersecting £ can be found in O(n2 logn) time, then the merging step can be done
in O(n?logn). Thus, we have the following recurrence equation T'(n) < 2T(n/2) + O(n%logn)
and it solution is O(n?logn). The lower envelope of line segments intersecting £ can be found as
follows. It suffices to focus on the left half of this lower envelope on the left of £ as the other half
can be handled similarly. We sort the line segments into the order si, sg,- -, such that the left
endpoint of s; is further away from £ than the left endpoint of s;y;. Our approach is to insert
segments s, s9, 83, - - - in this order to construct the solution. Suppose that we have already found
the left half of the lower envelope for s1,s2,---,s;—1. In general, it consists of a number disjoint
concave chains ordered from left to right. By the ordering, s; can only intersect the right most
concave chain C in this intermediate solution. If we represent C using a balanced search tree,
then we can determine the intersection between s; and C and find the lower envelope of C and s;
in O(logn). (Note this lower envelope may consists of two disjoint concave chains.) This together
with the other concave chains form the left half of the lower envelope of s1,- -+, s;. Since there are

—100—

Table 1: For each size from 100 to 500, 50 random trials were performed. For size 1000, 10 random
trials were performed. For size 2000, 5 random trials were performed.
| Size | Aver. # comp. | Aver. # active/inactive edges [Aver. % MWT |

100 1.04 406.14 77.15
200 1.36 841.84 75.73
300 1.24 1298.96 74.72
400 1.62 1781.46 73.62
500 1.34 2239.70 74.04
1000 1.6 4630.9 73.38
2000 2.8 9422 73.88

O(n?) line segments intersecting £, the total time needed is O(n2logn).

After computing the “envelope” of active edges around p which has O(n2a(n,n)) complexity,
we connect each vertex of this “envelope” with p to form a set of wedges around p. Now, for
each active or inactive edge e incident to p, we can perform a binary search to find the wedge
containing e. Then e intersects an active edge not incident to p if and only if e intersects the side
of the wedge not incident to p. In all, it takes O(n?logn) time to process on point in S and it
sums to a total time of O(n3logn).

4 Experiments

We have run one pass of our implementation on uniformly point sets of size 100, 200, 300, 400,
500, 1000, and 2000. Figure 5(a)—(e) in the appendix show the MWT edges identified for example
point sets of size 100, 200, 300, 400, and 500. Table 1 shows the average number of connected
components in the resulting graph, the average number of active and inactive edges found, and
the average percentage of MWT edges found. For all the point sets, we identify at least 73% of
the MWT edges on average. For point set of sizes from 100 to 1000, we almost always obtain one
single connected component. For point sets of size 2000, it is more often to obtain more than one
connected component in one pass (the number of connected component goes up to four in some
test case with 2000 points). We would like to emphasize again that this is done in just one pass.
In all our experiments with uniformly distributed point sets, we observe that the number of active
and inactive edges identified is always bounded by five times the size of the point set. This helps
to explain the roughly cubic running time observed and this also suggests that our implementation
may use significantly less than quadratic space for uniformly distributed point sets.

Other than uniformly distributed point sets, we have also run one pass of our implementation
on a few two-dimensional cross-sections of some human organs. But the details of our results are
omitted here. ‘

For comparison, we also run one pass of Dickerson and Montague’s algorithm on edges in
decreasing lengths for uniformly distributed point sets of size 500 and 1000. Our implementation
performs slightly better in identifying more MWT edges. Thus, in comparison, the major ad-
vantage of our implementation is the saving in space which permits us to experiment with larger
point sets.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P.W. Shor, and R. Wilber: Geometric applications of a matriz-
searching algorithm, Algorithmica, 2 (1987), pp. 195-208.

[2] O. Aichholzer, F. Aurenhammer, S.W. Cheng, N. Katoh, M. Taschwer, G. Rote, and Y.F. Xu, Trian-
gulations intersect nicely, manuscript, 1996.

[3] P. Belleville, M. Keil, M. McAllister, and J. Snoeyink, On computing edges that are in all minimum-
weight triangulations, Video Presentation, Symp. Computational Geometry, 1996, to appear.

—101—-

[4] P. Bose, L. Devraye, and W. Evans, Diamonds are not o minimum weight triangulation’s best friend,
Technical Report 96-01, Dept. of Computer Science, Univ. of British Columbia, January 1996.

[5] S.W. Cheng and Y.F. Xu, Approaching the largest 3-skeleton within a minimum weight triangulation,
Proc. Symp. Computational Geometry, 1996, to appear.

[6] M.T. Dickerson and M.H. Montague, The Ezact Minimum Weight Triangulation, Proc. Symp. on
Computational Geometry, 1996, to appear.

[7] M. Golin, Limit theorems for minimum-weight triangulations, other Euclidean functionals, and prob-
abilistic recurrence relations, Proc. Symp. Discrete Algorithms, 1996, pp. 252-260.

[8] L. Heath and S.V Pemmaraju, New results for the minimum weight triangulation problem, Algorith-
mica, 12 (1994), pp. 533-552.

[9] J.M. Keil, Computing a subgraph of the minimum weight triangulation, Computational Geometry:
Theory and Applications, 4 (1994), pp. 13-26.

[10] C. Levcopoulos and D. Krznaric, Quasi-greedy triangulations approzimating the minimum weight tri-
angulation, Proc. Symp. Discrete Algorithms, 1996, pp. 392-401.

[11] C. Levcopoulos and D. Krznaric, A fast heuristic for approzimating the minimum weight triangulation,
Proc. Scandinavian Workshop on Algorithmic Theory, 1996, to appear.

[12] B. Yang, A better subgraph of the minimum weight triangulation, in Proc. International Conference on
Computing and Combinatorics, 1995, pp. 452-455.

[13] B. Yang, Y. Xu, and Z. You, A chain decomposition algorithm for the proof of a property on mini-
mum weight triangulation, in Proc. International Symposium on Algorithms and Computation, 1994,
pp- 423-427.

Y
Q'
fj /_" S
S5 PSR
’@(’ 8 7 BX s
\'}v 7‘7 “‘QP VN ,
‘L’sefv, X

(c) 300 points

— Vg =Tl NS 3

g > a VAN 4)%

N ‘,) \ i‘g" 4;““% a D ;‘b 4

6 AN | 2\ havg)17

o el EH LT
‘;;4‘ % o \\1 JAN ’A
s N) G
v v d D

P \\
(D < 7
7/ 2 V4 <]
T ‘ﬁe‘%‘éﬂ" A
Py, 5 >
‘““ SN e
Q. I/

A ASEER
(d) 400 points (e) 500 points

—102-

