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abstract As a form of knowledge acquisition from data, we consider the problem of deciding whether
there exists an extension of a partially defined Boolean function with missing bits (T, F), where T (resp.,
F) is a set of positive (resp., negative) examples. Here, “x” denotes a missing bit in the data, and it is
assumed that T C {0,1,}" and F C {0,1,+}" hold. A Boolean function f : {0,1}" ~ {0,1} is an exten-
sion of (T, F) if it is true (resp., false) for the Boolean vectors corresponding to positive (resp., negative)
examples; more precisely, we define three types of extensions called consistent, robust and most robust,
depending upon how to deal with missing bits. We then provide polynomial time algorithms or prove their

NP-hardness for the problems under various restrictions.

HY key words: partially defined Boolean function with missing bits, consistent extension, robust exten-
sion, most robust extension, knowledge acquisition.
1 Introduction notes the set of true vectors (resp., the set of

fal t . A pair of sets (T, F) is called
The knowledge acquisition in the form of alse vectors) of f. A pair of sets (T, FY) is calle

Boolean logic has been intensively studied in
the recent research (e.g., [3, 6, 9]): given a
set of data, represented as a set T of binary
“true m-vectors” (or “positive examples”) and
a set F of “false n-vectors” (or “negative ex-
amples”), establish a Boolean function (exten-
sion) f, such that f is true (resp., false) in every
given true (resp., false) vector; i.e., T C T(f)
and F C F(f), where T(f) (resp., F(f)) de-

a partially defined Boolean function (pdBf).

For instance, data z represent the symptoms
to diagnose a disease, e.g., 1 denotes whether
temperature is high (z; = 1) or not (z; = 0),
and z, denotes whether blood pressure is high
(zg = 1) or not (zz = 0), etc. Establishing
an extension f, which is consistent with the
given data, amounts to finding a logical diag-
nostic explanation of the given data. Therefore,



this may be considered as a form of knowledge
acquisition from given examples. It is evident
that the problem is closely related to learning
theory [1, 10], in which a systematic improve-
ment of the obtained extensions is also taken
into account.

Unfortunately, the real-world data might not
be complete. As for the above examples, for
some data x, temperature might not be mea-
sured, that is, it is not known whether z; = 0 or
1, which is represented as z; = *. For another
instance, we have a battery of 45 biochemical
tests for carcinogenicity. However, we do not
usually apply all tests, since all tests cannot
be checked in a laboratory or some tests are
very expensive. When a test is not applied,
we say that the test result is missing. A set
of data (T, '), which includes the missing re-
sults, is called a partially defined Boolean func-
tion with missing bits (pBmb), where T (resp.,
F) C {0,1,}™ denotes the set of “positive ex-
amples” (resp., “negative examples”) of such
vectors. To cope with such situations, we in-
troduce in this paper three types of complete
Boolean functions called consistent, robust and
most robust extensions, respectively. More pre-
cisely, given a pBmb (T, F), (i) a consistent
extension (CE) is a Boolean function f such
that, for every @ € T (resp., F), there is a 0-
1 vector a obtained from & by fixing missing
bits appropriately, for which f(e) = 1 (resp.,
f(a) = 0) holds, (ii) a robust extension (RE)
is a Boolean function f such that, for every
@ € T (resp., F), any 0-1 vector a obtained
from @ by fixing missing bits arbitrarily satis-
fies f(a) =1 (resp., f(a) = 0), and (iii) a most
robust extension (MRE) is a Boolean function f
which is a robust extension of a pBmb (T, F'),
where (T", F') is obtained from (T', F') by fixing
a smallest set of missing bits appropriately (the
remaining missing bits in 7'UF” are assumed to
take arbitrary values). All of these extensions
provide logical explanations of a given pBmb
(T, F) with varied freedom given to the miss-
ing bits in T and F. By definition, if (’f’, F‘) has
a robust extension f, it is also a most robust
extension and is a consistent extension, and if
(T, F) has a most robust extension f, it is a

Table 1: Summary of complexity results.

Restrictions RE CE MRE
|AS(a) < 1forallae TUF P P P
|AS(a)l < 2forallae TUF P NPC NPH

General case P NPC NPH

P: Palynomial, NPC: NP-complete, NPH: NP-hard

consistent extension. In case of most robust
and consistent extensions, they also provide in-
formation such that some missing data must
take certain values if (T, F') can have a consis-
tent extension.

In this paper, we study the problems of de-
ciding the existence of these extensions for a
given pBmb (T, F), under various restrictions,
mainly from the view point of their computa-
tional complexity. We obtain computationally
efficient algorithms in some cases, and prove
NP-completeness in some other cases, as sum-
marized in Table 1, where AS(a) denotes the
set of missing bits in a vector a.

2 Partially Defined Boolean Func-
tions with Missing Bits

A Boolean function, or a function in short,
is a mapping f : B" — B, where B = {0,1},
and V € B" is called a Boolean vector (or a
vector in short). If f(V) =1 (resp., 0), then V
is called a true (resp., false) vector of f. The
set of all true vectors (resp., false vectors) is
denoted by T'(f) (resp., F(f)).

A partially defined Boolean function (pdBf) is
defined by a pair of sets (T, F) such that T, F C
B". A function f is called an ertension (or a
theory) of the pdBf (T, F) if T C T(f) and
F C F(f). Obviously, a pdBf (T, F) has an
extension if and only if TN F = 0.

To handle missing components, we introduce
set M = {0,1,x}, and interpret the asterisk
components * of v € M™ as missing bits. For
a vector v € M, let ON(v) = {j|v;=1,j=
1,2,...,n} and OFF(v) = {jlv; = 0, =
1,2,...,n}. For asubset S C M™, let AS(S) =
{(v,/)lv € 8,5 € V\ (ON(v) UOFF(v))} be
the collection of all missing bits of the vectors in
S. If S is a singleton {v}, we shall write simply



AS(v) instead of AS({v}). Clearly, B C M",
and v € B" if and only if AS(v) = 0. Let us
consider binary assignments a € B? to subsets
Q C AS(S) of the missing bits. For a vector
v € § and an assignment o € B?, let v* de-
note the vector obtained from v by replacing
the * components belonging to @ by the binary
values assigned to them by o, i.e.,

qu{v, if (v,5) ¢ Q
77 elwd) i (w,5) € Q.

For vectors v,w € M", we shall write v & w
if there exists an assignment a € BAS({v»}
for which v* = w® holds, and we say that v is
potentially identical with w.

A pdBf with missing bits (or in short pBmb)
is a pair (T F), where T,F C M". To a
pBmb (T F) we always associate the set AS =
AS(T' U F) of its missing bits. A function fis
called a robust extension of the pBmb (T, F) if

f(a*)=1and f(b*) =0
forall a € T, b € F and for all o € B45,

We first consider the problem of deciding the
existence of a robust extension of a given pBmb
(T, F).

RoBusT ExTENSION (RE)

Input: A pBmb (T F), where T, F C M™.

Question: Does (T, F') have a robust exten-
sion ?

It may happen that a pBmb (T, F) has no
robust extension, but it has an extension if we
change some (or all) * bits to appropriate bi-
nary values. A function f is called a consistent
extension of pBmb (7.", F ), if there exists an as-
signment o € B45 for which f(a®) = 1 and
F(6*) =0 for all @ € T and b € F. In other
words, a pBmb (T', F') is said to have a consis-
tent extension if, for some assignment o € B45,
the pdBf (T'*, F*) defined by T* = {a®|a € T}
and F* = {b|b € F} has an extension. This
leads us to the following decision problem.

ConsISTENT EXTENsION (CE)

Input: A pBmb (T F) where T', F C M™.

Question: Does (T, F') have a consistent ex-
tension 7

It may also happen that not all missing bits
are necessary to be specified in order to have a
robust extension. An assignment a € B for a
subset Q C AS is called a robust assignment if
the resulting pBmb (T'*, ) has a robust ex-
tension. We are interested in finding a robust
assignment with the smallest size |Q].

Most RoBusT ExTENsION (MRE)

Input: A pBmb (T, F), where T, F C M™.

Output: NO if (T, F) does not have a consis-
tent extension; otherwise a robust assignment
o € B? for a subset Q C AS, which minimizes
lQl-

It follows from definition that if RE or CE are
NP-complete, then MRE is NP-hard, and con-
versely, if MRE is solvable in polynomial time,
then both RE and CE are polynomially solv-
able.

Let us add that we shall also consider vari-
ous restricted variants of the above problems,
in which the input pBmb (T, F) is restricted to
satisfy the following condition for a given k:

|AS(a)| < k, for every a € TU F.

3 Robust and Consistent Extensions

Theorem 1 Problem RE can be solved in poly-
nomial time.

Proof. It is easy to see that a pBmb (T, F) has
a robust extension if and only if there exists an
index j such that a; # b; and {e;,b;} = {0,1}
(1e,e1thera,] —Oa.ndb =1,0rae; =1and

= 0) for every pair of a € T and b € F.
Obv1ously, this can be checked in O(n|T||F|)
time. ]

Let us note next that CE can be trivially
solved if [AS(a)| > 0 holds for all ¢ € T U F,
since in this case (T, F') always has a consistent
extension f. Indeed, let us consider an assign-
ment a € B45 such that |ON (a®)| is odd for all
a € T, and [ON(b%)| is even for all b € F, and
let f be the parity function for which f(v) =1
if and only if |ON(v)| is odd. Problem CE
becomes more complicated when not all input
vectors have missing bits, although it remains
polynomially solvable if each input vector con-
tains at most one missing bit.



Theorem 2 Problem CE can be solved in poly-
nomial time for a pBmb (T, F) for which every
a € TUF satisfies |AS(a)] < 1.

Proof. Let j, be the index of the * in each
vector a € TU F (ie., AS(a) = {(a,7)}), if
any. Then (T, F) has a consistent extension if
and only if (i) there is no pair of a € T and
b € F such that a,b € B" and a = b, and (ii)
there is an assignment o € B4Y satisfying the
conditions

a(a,jo) #b;, ifagB"” and be B™ (1)

alb,jp) #aj, faecB” and bg B"” (2)
a(a, ja) # bj, orax(b, J) # aj, ‘

ifa,bgB" and j, #7 (3)

a(a,ja) # a(b.jp) ifa,bgB" and ja=j (4)

for every pair of @ € T and b € F with
a = b. Obviously, condition (i) can be checked
in O(n|T||F}) time. To check (ii), let us observe
that each of the conditions (1)-(4) can equiva-
lently be represented as clauses in the variables
afv,j) for (v,j) € AS. Namely, (1) and (2)
can be represented by linear clauses, (3) by a
clause containing two variables, and (4) by the
conjunction of two clauses, each of which con-
tains two variables. E.g. (4) is equivalent with
the condition

1= (o‘(aaja) V a(b, jy))(a(a, ja) V Ot(b, Jb))

In total, we have a 2-SAT problem containing at
most 2|T'||F| clauses, which is solvable in time
linear in its input size (see e.g., [2]). This shows
that problem CE can be solved in O(n|T||F|)
time. O

Example 1 Let us define T, F C {0,1} by

G - L) bV = (1,1,1)
T={ % ZOOD L P i@ = (001) 3.

a =01y b = (,0,0)

(1(4):(*,0,0) 7

Then we have the following 2-SAT:
a(aV),3) a(b?,2)(a(a®, 3) V a(¥D),2))
(a(am’ 1)V a(d®,1)) (a(a(‘”, 1)V a(b®, 1)) =1.

For this, the assignment o € BAS given by
a(a®,3) = a(@®,3) = a(a¥,1) = 0 and
a(d®,2) = a(b®,1) = 1, is a satisfying so-
lution. a

In general, however, we have the following
negative result (see [4]).

Theorem 3 Problem CE is NP-complete, even
if |AS(a)| < 2 holds for alla e TUF.

4 Most Robust Extensions

As Theorem 3 implies that MRE is NP-hard
even if |AS(a)| < 2 for all T U F. Therefore, we
only consider the case in which

|AS(a)] <1forallae TUF,

and show that it can be solved in polynomial
time.

Let us remark first that any assignment o €
B45 for which (T, F*) has an extension must
satisfy the conditions (i) and (ii) in the proof of
Theorem 2. Hence, some components of such
an o may be forced to take a unique binary
value by conditions (1) and (2). Let us assume
therefore that we fix all such asterisks * in ad-
vance, and let us consider only conditions (3)
and (4) in the sequel.

Let us define next a bipartite graph

Guas=(V,E),

V = AS(T) U AS(F), and

E={(gma)lg=(a,i) € AS(T)!T =(bj) € (5)
AS(F),
B2} such that a® = b},

there exists an assignment a €

where the label c(e) of each edge e = (g,7; ¢(e)),
as defined in (5), is called the configuration of
e. If there are more than one assignments o €
B{%"} for some ¢ € AS(T) and r € AS(F),
for which a® = b* (this occurs if ¢ = (a,1)
and r = (b,7) satisfy 1 = j), then the graph
G s has parallel edges corresponding to such
different configurations. Let us note that, since
|AS(a)| < 1 holds for all a € T'U F, every pair
of ¢ = (a,i) € AS(T) and r = (b,7) € AS(F)
has at most two assignments o € Bler} guch
that a® = b*.

Example 2 Let us define T, F C {0,1}° by

“fii Zebnby B = (1,%,1,1,1)
R a(a) = {11 1,1,1, *) ~ b(2) = (1,111, 17*)
T=¢a'¥ =(1,1,1,%,1), F= B = (115, 1,0)("
a® = (1,1,%,1,1) B
b = (1101*)
a® =(1,%,0,1,0) >



Then the graph Gas is given in Figure 1. Al-
though the configurations of edges are not in-
dicated, they are easy to find out. For ez-
ample, the edge ¢ = (a'V,bD) has cle) =
(a(ll) = 1,b(21) = 1), and the parallel edges
e = (a?,b52)) and " = (a, b)) have c(e') =
(@ = 0,65 = 0) and c(e") = (e = 1,6Q) =

1), respectively. O
N Gas .
T F
(aV, 1) (1,2
(a®,5) (6@, 5)
(a®,4) (6%,3)
(@®,3) (',5)
(a9.2)

Figure 1: The graph G4s of the pBmb (T, F)
in Example 2.

Lemma 1 Given a pBmb (T, F), an assign-
ment B € B® for a subset Q C AS is a ro-
bust assignment of (T, F) (i.e., (TP, FP) has a
robust extension) if and only if, for every edge
e = (q,7; @) of Gas, we have either ¢ = (a,t) €
Q and @® # a*, orr = (b,j) € Q and b # b,
or both.

Proof. Let us first show the only-if-part. Let
f be a robust extension of (T, F#), and let
e = (g,7; @) be an edge of G 45. We can assume,
without loss of generality that ¢ = (a,i) €
AS(T).

Let us assume that either ¢ € Q or a? = a®.
Let us show first that f(e®) = 1. Indeed, if
¢ = (a,i) € Q, then (a#)* = a®, and since
B € BY is a robust assignment, f(a®) = 1 must
hold. On the other hand, if af = a®, then
obviously f(a®) = f(a®) = 1 must hold, since
a€eT. ’

We then show that f(a®) = 1 implies r =
(6,7) € Q and b# # b, If r ¢ Q, then (B8)* =
b = a*, and hence f(a®) = f(b*) =0 by b €

F, which is a contradiction. Similarly % = b®
leads to the same contradiction. Hence r € @
and 5% # b* must hold.

To prove the if-part, assume that 3 € B9 for
a subset Q C AS is not a robust assignment of
(T, F). Then, by the definition of robustness,
we have a pair of vectors a € T and b € F such
that o ~ 2. Then the edge e = (¢,7;a) with
g = (a,7) and r = (b,j) does not satisfy the
statement of the lemma. O

For a vector d € B", let E(d) denote the set
of edges e = (¢,7;a) € E with a® = b* = d,
where ¢ = (a,7) and r = (b,j) Then E =
U4E(d). Let us define a coherent domain D(d)
as the set of vertices incident to some edges of
E(d), and let Dy denote the set of isolated ver-
tices (i.e., incident to no edge e € E). (Vertices
in Dy do not belong to any coherent domain.)
In the following discussion, we only consider
nonempty coherent domains. Figure 2 shows all
nonempty coherent domains of the graph G 45
of (T, F) in Example 2.

Gas

D(11111) a® OWCD bV

D(11110)

N

a® QA | D(11011)

=)

D(11010)] 4(5)

Figu}e ~'2: Céherent domains of the graph G4s
of (T, F) in Example 2.

Lemma 2 Every coherent domain D(d) C V
of G s induces a complete bipartite subgraph
Of GAS~

Proof. Take any pair ¢ = (a,%) € AS(T) and
r = (b,7) € AS(F) that satisfy ¢, € D(d).
Then there exist assignments a € B{2} and pe



B} such that d = a® = b%. We concatenate
these assignments to have an assignment v =
(a,8) € Bl¢™} for which a” = b” = d, implying
that there is an edge (q,r) € E(d). o

Lemma 3 Let D(d) and D(d') be two coherent
domains of G4s, where d,d' € B™ and d # d'.
If D(d)N D(d') # 0, then || d — d ||=1 holds,
where || z {|= 37 |zil.

Proof. Let ¢ = (a,t) € D(d) N D(d'). Then
there exist two assignments o, € B% (=
{0,1}) such that a® = d and o? = d'. Since
|AS(a)} < 1 is assumed, || d — d' ||= 1 is im-
plied. O

Lemma 4 Let D(d) and D(d’) be two coherent
domains of Gas, where d,d' € B" and d # d'.
Then |D(d) N D(d')| < 2 holds. Furthermore, if
D(d)n D(d') = {q,r}, then the graph G 45 has
two parallel edges between g and r.

Proof. If ¢ = (a,1),7 = (b,7) € D(d) N D(d'),
then by assigning 0 and 1 to ¢ and r, each of a
and b can become both d and d'. Since || d —
d' ||= 1 by Lemma 3, this can only happen if the
vectors a and b are identical, missing the same
component 7 = j. Therefore |D(d) N D(d') N
AS(T)| <1 and |D(d) N D(d") N AS(F)| < 1,
and hence |D(d)ND(d')| < 2. Finally, if D(d)N
D(d') = {q,r}, where ¢ = (a,i) € AS(T) and
r = (b,j) € AS(F), then ¢ = r implies that
there are two assignments o, € B9} such
that a® = b = d and @® = b% = 4/, i.e. the
graph G 45 has two parallel edges between ¢q and
r. m}

Let us now color the edges of G5 by “yel-
low” and “blue”, so that all edges of a set E(d)
have the same color, and every pair of sets E(d)
and E(d'} with D{d) N D(d') # 0 has different
colors. We call such a two coloring alternating.
The following lemma shows that an alternating
coloring is always possible. Furthermore, it can
be uniquely completed after fixing a color of a
set E(d) in each connected component of G45.

Lemma 5 Let D(d®), D(dY),..., D(d®D) de-
note a cycle of coherent domains such that
dli=1 # d® gnd D(d )N D) £ 0 hold

foralli =1,2,...,1—1, and D(dV) = D(d\?)).
Then [ is even.

Proof. Lemma 3 tells that || 4~ — d() ||=1
holds for all i = 1,2,...,] — 1. Since || d©® —
d? ||= 0 is even, ! must be even. O

Finally, let us orient the edges of Gag ac-
cording to a given alternating coloring, as fol-
lows. Every yellow edge (g,7) is oriented from
q € AS(T) to r € AS(F), and every blue edge
(g,7) is oriented from r € AS(F) to g € AS(T).
Let G’y denote the resulting directed graph.
E.g. Figure 3 shows the directed graph G/;¢
corresponding to the pBmb (7', F) of Example
2. Let us observe that every directed path of
this graph is alternating in colors, and every al-
ternating undirected path is either forward di-
rected or backward directed. The next lemma

4
GAS

p(11111) ¢V OWO b

|

D(11110)

| D(11011)

a® Olf/ VO b4

D(11010)‘ M

Figure 3: The directed graph G, of (T, F) in
Example 2.

characterizes a robust assignment by a directed
path of G'y¢.

Lemma 6 Let (T, F) be a pBmb, and let ¢'©)
= ¢ 7y @ .. gD w qW be o directed
path in G'yg. Then f € B? for Q C AS is a
robust assignment if and only if the following
properties hold, where ¢ = (a®,7,) and o; =
c(e;) for alli.

() If ¢ ¢ Q or (V) = (a@)™, then
¢ € Q and (@) # ()% hold for all i =
1,2,...,1.



(ii) If ¢ € Q or (a8 = (™)™ for some
1 >0, then ¢V € Q and (a®)P # (a!V)xint
hold for olli=0,1,...,1 - 1.

Proof. We first prove the only-if-part. For con-
dition (i), we first consider e; = (¢(%, ¢'V). By
Lemma 1, ¢/ € Q or (a'9)? = (/@) jmplies
that ¢*) € Q and (a*)P # (o)™ . Now, since
e1 = (¢'9,¢'V) € B(d) and e; = (¢, q?) €
E(d’) have different colors, we must have d # d’
and ¢'¥) € D(d)ND(d'), and hence || d—d' ||= 1
by Lemma 3. Therefore, (a/V)? # (al1) (=
d) implies (aM)? = (a?)22 (= '), and hence
g@ satisfies (a®)? # (a?)*2 by Lemma 1.
This assignment can proceed in a similar man-
ner to ¢¥), i =2,3,...,l. Case (ii) is similar to
(i).

Conversely, if conditions (i) and (ii) hold,
then, by Lemma 1, 8 € B9 is a robust as-
signment. [m]

Let C;,1=1,2,...,s, denote all the strongly
connected components of this directed graph
G'45. Furthermore, let G¥% g denote the transi-
tive closure of G'y¢ (i.e., (s,t) is an arc in G
if there is an s-t directed path in G;5), and
let Go denote the directed subgraph of G% in-
duced by

W =U;s1.|ciy=1 Cie (6)

It is easy to see that the set of isolated vertices
Dy in G 45 satisfies Do C W. Figure 4 contains
the graph Gy of (T, F) in Example 2, where,
for simplicity, arcs (u,v), for which there is a
directed path of length at least 2 from u to v,
are not indicated.

Figure 4: The graph Gg corresponding to Gy
of (T, F) in Example 2.

Lemma 7 Let (T,F) be a pBmb, let o € BY
for some Q@ C AS be a robust assignment, and
let C; and W be defined as above. Then the

following two conditions hold:
(i) C; C Q for all C; with |Cy} > 1, and

(ii) W\ Q 15 an antichain in Gy (i.e., for any
pair of g7 € W \ Q, there is no directed path
from q and v in Gy, and vice versa).

Proof. Consider a robust assignment o € B?.
Assume ¢ € C; \ Q for some C; with |C;] >
1. Then there is a directed cycle ¢ (= g),
gV,¢@, ... ¢V (= g) of length I > 1 in Gy,
and ¢ ¢ @ implies ¢ € Q by Lemma 6, which
is a contradiction. Hence condition (i) holds.
To prove condition (ii), let us assume that for
some pair of g, 7 € W\ Q, there exists a directed
path from ¢ and r in G'5. This is again a
contradiction since ¢ € Q implies r € Q by
Lemma 6. a

Lemma 8 Let (T, F) be a pBmb, and let S C
W be any mazimal antichain in Go. Then for

Q= AS~\ ‘?’ there is a robust assignment a €
BY of (T, F).

Proof. For Q = AS\ S, we shall construct a
robust assignment a € B?. In the following,
we shall consider the directed graph G, and
let us note that, by definition, S is also an an-
tichain in G';5. Lemma 6 tells that, starting
from a vertex ¢ € S (i.e., ¢ € @), a robust as-
signment # for all vertices t which are either
reachable from ¢ or reachable to ¢ is uniquely
determined, unless the following cases of con-
flicts are encountered.

(i) For q,r € S, there is a vertex t for which
there are two directed paths P; = ¢(® (= ¢) —
—¢®(=t)and P, = rO(=7r) -
— r(0 (= 1) such that t* # t*', where
a = ¢(q®* 1 t) and o' = c(r(-1)1).

¢ — ...
P

(ii) For ¢,r € S, there is a vertex ¢ for which
there are two directed paths P, = ¢(® (=) —
— q(k) (=4q) and P; = 0 (=1t) —

— M (= ) such that t* # ¢,
where o = c(t,¢")) and o/ = c(t,r(D).

q® - ...
r



If one of these conflicts occurs, Lemma 6 tells
that ¢t must be assigned in different ways, and
hence we cannot construct an appropriate ro-
bust assignment 5.

However, we now show that none of these
conflicts can occur. Let us consider case (i)
only, since case (ii) can be analogously treated.
Now t* # ¢ implies (¢*~1,s) € E(d) and
(r0-1.5) € E(d') for some d # d'. Thus
(¢*1,t) and (r'*~1,t) have different colors,
since D(d) N D(d') # 0. By the rule of ori-
enting edges (yellow edges are oriented from
AS(T) to AS(F), and blue edges are oriented
from AS(F) to AS(T)), this means that one of
(¢*~1,t) and (r""1),¢) is oriented towards t,
and the other is away from ¢, a contradiction to
the assumption in (i).

Let us denote by R the set of all verticest & S
such that either t is reachable from some ¢ € S
or some g € S is reachable from t. The above
argument shows that a robust assignment g for
R is uniquely determined by Lemma 6. Finally,
we consider an assignment vy € BAS\SUR) By
the maximality of S, every vertex t € AS\
(S U R) has an incoming arc e = (r,t) € E(d).
Therefore, determine the robust assignment g
of this ¢ so that t? = d holds. This is well-
defined because all incoming arcs to t belong to
the same E(d) by the definition of G'yg. It is
easy to see that the resulting § over AS is in
fact a robust assignment. a

Lemmas 7 and 8 tell that problem MRE is
equivalent to the problem of finding a maximum
antichain of Gy. Since Gy is acyclic, we can
find such an antichain in polynomial time by
Dilworth’s theorem (see e.g. [8]). Hence, we
have shown the following theorem.

Theorem 4 Problem MRE can be solved in
polynomial time for a pBmb (T, F) in which all
a € TUF satisfy |AS(a)] < 1.

5 Discussion

From the view point of knowledge acquisi-
tion, it is interesting to consider extensions
for restricted classes of Boolean functions, be-
cause some structural information that justi-
fies such restrictions might be available before-

hand. In this case, however, even the prob-
lem of deciding whether there is an extension
or not for a given pdBf (T, F) may not be
trivial, depending on the class of functions at
hand. This problem and the problem of find-
ing an extension with a minimum number of
errors are extensively discussed in [3] for such
classes as positive (i.e., monotone) functions,
Horn functions, functions with k-DNF and/or
h-term-DNF, threshold functions, regular func-
tions, read-once functions, self-dual functions,
decomposable functions and so on. This direc-
tion is further pursued in [4] to consider the
problems RE, CE and MRE of this paper, as-
suming that a pBmb (T, F) is given.

References

[1] D. Angluin, Queries and concept learning, Ma-
chine Learning 2 (1988) 319-342.

[2] B. Apswall, M. F. Plass, R. E. Tarjan, A linear-
time algorithm for testing the truth of certain
quantified Boolean formulas. Information Pro-
cessing Letters 8 (1979) 121-123

[3] E. Boros, T. Ibaraki, K. Makino, Error-free
and best-fit extensions of a partially defined
Boolean function, RUTCOR Research Report
RRR 14-95, Rutgers University 1995.

[4] E. Boros, T. Ibaraki, K. Makino, Extensions of

partially defined Boolean functions with miss-

ing data, RUTCOR Research Report RRR 06-

96, Rutgers University 1996.

E. Boros, T. Ibaraki, K. Makino, Boolean Anal-

ysis of Incomplete Examples, SWAT'96, LNCS

1097 (1996) 440-451.

[6] Y. Crama, P. L. Hammer, T. Ibaraki, Cause-

effect relationships and partially defined boole-

an functions, Annals of Operations Research 16

(1988) 299-326.

R. Dechter, J. Pearl, Structure identification in

relational data, Artificial Intelligence 58 (1992)

237-270.

[8] L.R. Ford, D. R. Fulkerson, Flows in Networks,
Princeton University Press 1962.
[9] J. R. Quinlan, Induction of decision trees, Ma-
chine Learning 1 (1986) 81-106.
[10] L. G. Valiant, A theory of the learnable, Com-
munications of the ACM 27 (1984) 1134-1142.

5

[7



