A = |
(1996. 9.

THPEARE RV -RERRO BRLE

NLY— -

Yx b &2 SEER HOE

HEETRERPBAMB LN

FRL TR, BEROADEERCEMT 25810, REMEEA Y 54 VBlT 2 FHICo0
THERT 20 TOF ¥ I 4 VT, BEABI R 7 AIZBWTA XY Mo 2 5E 2 REIC
A0 Z EATTE, T2, HHEBOBERE LSBT S LHTR B,

Logic Evaluations as Processing of Queries using Binary Decision
Diagrams

Valery Viatkin, Koji Nakano, Tatsuya Hayashi
Dept. of Electrical and Computer Engineering
Nagoya Institute of Technology
Showa-ku, Nagoya 466, JAPAN
{valery, nakano, hayashi}@elcom.nitech.ac.jp

The paper presents approach to evaluation of logic expressions in on-line execution of
control algorithms for general case when arbitrary number of input variables is changing
value. This approach essentially uses event-oriented nature of discrete control systems and
allows to improve productivity of the computation and, correspondingly, response time of a
controller. Given results are to be implemented for fast on-line logic processing in distributed
control systems and other computer applications including real-time logic processing.

1 Introduction

Optimizing of logic computations is especially im-
portant in discrete control systems because they
include a big deal of such a computations and in-
teract with dynamic objects in real time. Hence,
faster logic has computed, faster is response of the
controller and wider its abilities. There are two
general ways to improve an efficiency of such com-
putations.

First one optimizes processing of logic using
fast data presentations. Among most effective
are binary decision diagrams (BDD) which guar-
antees that computation be completed and out-
put generated in O(n) time, where n is the num-
ber of variables included in computed Boolean ex-
pression. This is especially significant in the case
when the model comprises the numerous functions
. whereas prior direct methods of formula interpre-
tation computed the result in O(Y, L(f;)) time,
proportional to the sum of all the formula length
[1]. Use of reduced and ordered BDDs (OBDD)
proposed in [2] even more decreases memory re-
quirements from exponential to polynomial for a
big class of Boolean functions.

The other optimization approach regards to su-
pervising interface within which the logic process-
ing is operated. Usual cyclic interface of logic con-
trollers is based upon the update of inputs and out-
puts between phases of model evaluation. Alterna-

tive routine is oriented on events, which activates
the part of the model dependent on the given event.
As event it is assumed the fact of a value change by
certain input variable. Even a simple application
of this principle joined with any particular tech-
nique of logic processing may considerably reduce
required computations [3], [5].

The main contribution of this paper is develop-
ment of algorithms that combine both these meth-
ods for general and more complicated case when
event is tuple of inputs changed values simultane-
ously. Obviously, applying simple BDD traverse
the result may be derived in O(n) time for any
length of the tuple. Qur aim is to improve this re-
sults evolving ideas of event-driven BDD traverse
from [4].

Two approaches to improve the computation
efficiency are studied in the paper. The first one
stated in Section 3 uses the property of discrete
control systems which are idle during monitoring
the same inputs in intervals between events. This
time can be used to prepare some data to im-
prove response time of the controller for upcoming
events. Along this it is better to compute the func-
tion for as many input combinations as the time
allows. These massive computation done with pro-
posed data model and algorithms gives a favor of
using some intermediate data left in the model by
another passes. So total computation time is less

J X A& 53-5
13)

than that of the sum of passes done independently.
Second part of the paper (sections 4,5)is de-
voted to optimization of immediate OBDD tra-
verse to compute the function with certain data
given after an event. Some modification of OBDD
are proposed to derive the result in O(k) time at
best, where k is number of arguments, changed by
event. All these modifications implement certain
trade of memory to speed as well as all require
some pre-evaluation - preparatory evaluations of
some parameters used to compute result fast.

2 Evaluation and re-evaluation of
Boolean function

Consider a Boolean function f : {0,1}" — {0,1}.
For the initial input vector A =< ay,as,...an >,
the value of f is f(A). Let us consider an
event, represented by k—tuple of indices 0 =
(s jaresdn) (1 € ji € j2 € oo < ji). This
event means that j;—th (1 < ¢ < k) argument
a;, is changed to @j,. We call k¥ as a rank of event
o :r(o) = k. We also term sub-array < aj,...a, >
as Aj.n and sub-event (jp, ..., jk) as Op:k.

Let o(A) denote argument vector after the
event and ¥ = ||¢;]| ;;=r is Boolean vector such
that only those £, = 1 which indices included in
event: ji € 0. Then the value of input vector after
o could be derived as o(A) = A9 X.

The re-evaluation problem is to compute value
of f(c(A)). An event can be considered as query
to be processed by the model having the function
f definition and current argument vector A.

2.1 Logic computations using binary
decision diagrams

A BDD (Binary Decision Diagram) is a labeled
directed acyclic graph G =< V, E,ind,! > which
represents a Boolean function f:

1. V is a set of nodes: exactly two nodes in V
are termed terminal nodes. One of them is
0 — node, and the other is 1 — node. value :
V — {0,1} is a marking assigning a Boolean
value to a terminal node. If v is 0—node then
value(v) = 0 or value(v) = 1 correspond-
ingly. All other nodes are termed variable
nodes. One of variable nodes is root.

2. E is a set of edges (i.e. ordered pairs of
nodes) defined as follows: Each terminal
node has one in-coming edge and no outgo-
ing edges. Each variable node v has exactly
two out-going edges (v, hi(v)) and (v,lo(v)).
The root node has no in-coming edges and
the other variable nodes have one or more
incoming edges.

3. ind : V = [1,n + 1] gives a number label to
each node and [: E -+ [0, 1] gives a Boolean
marking to edges. Each variable node u is
labeled by an integer in the range [1,n]. This
means, that a variable z;,4(,) is assigned to
u. Terminal nodes have ind(u) = n + 1. For
each variable node u one of the two out-going
edges is labeled by 0 and the other is labeled
by 1. Node v, such that I(u,v) = 0 is called
lo(u) and such that [(u,v) = 1 is hi(u).

The size of BDD is defined by the number of
nodes in V denoted as |V].

An OBDD (Ordered BDD) is a BDD such that
for all directed edges (v,u) € E the inequality
ind(v) < ind(u) holds. Every node of OBDD is
a root of some subgraph, which also is OBDD [2].
Given OBDD G =< V,E,ind,l > such a sub-
OBDD rooted in node v(€ V) is termed as G,.
Correspondingly it defines Boolean function f, as:

1. If v is either 0—node or 1—node, then f, =
value(v) respectively.

2. If v is a variable node with two out-
going edges (v,vo) and (v,vy), then f, =
Tind(0) Jlo(v) V Tind(v) Fri(v)-

Functions fio(,) and fpi(y) are termed residual.
As it was shown in [2] OBDD may be reduced
to be free of isomorphic subgraphs. Such reduced
OBDD is canonical form of Boolean function defi-
nition. Thus it might be used as branch program
to derive function result in O(n) time with memory
consumption that is often rather polynomial than
exponential.

2.2 Interpretation of BDD and events

To describe formal way of OBDD interpretat ion
let function Step(v,;na(v)) return a successor of
v
Step(v, Tinawy)) = Hh(0)if Zingw)y = 1 or
Step(v, Tind(w)) = lo(v)if Zingw) = 0.

Given an input vector A the value of function
fuw, defined by BDD rooted in w:
Juw(Find(w)s -+ Tn) = val(w) if w is terminal or
fw(zind(ty):"'ixn) =
fStep(w,::,',,d(,,_,]) (zind(Step(w,zind(w)))’ seey zn)- .

Nodes v; = Step(v, z1), v2 = Step(v1, Tind(v,))s

U = Step(vt_l,z;nd(w_l)), where ind(v,) =n+

1, form a list I,,(A) =< v,v1,vg,..., 13 >: |[,(A)] <
n + 1 since ind(v;) < ind(vj41) < n+ 1. This
list is termed as interpretation path of OBDD G,
with current values A. Deriving the function result
causes recursive computation of Step(vi,Tind(v,))
in the nodes of I,,(A). Interpretation path started
from the root of G is termed just I(A).

For events of 1-st rank the following lemma is
valid:

Figure 1: Interpretation changed by event

Lemma 2.1 Given event 0 =< ji > and I(A)
the value of a, can be computed as:

1. if v € I(A) : ind(v) = j1 then a,
flo(u)(A) 5] fhi(v) (A),

2. Otherwise a, = 0;

i

Proof: As far as a, = f(A) & f(o(4))
[@5 fio(w) (A) V aj, friw)(A)] ® (7 fiowy (0(4)) V
z5, fri(w) (0 (A))]. As far as z; = aj,and
flo(v)(U(A)) =
flo(u) (A);fhi(,,) (G'(A)) = f},,‘(v)(A) because both
residual functions do not depend on z; we have
o = (@7 frow)(4) V aj, friw)] @ [, fioqw) (4) V
@5, Friw) (A)] = fro(w) (A) @ Fhi(w) (4)-

If I(A) does not contain a vertex of index 7,
then I(A) = I(0(A)) and f(A) = f(a(A)), so that
a; = f(A) ® f(a(4)) = 0. u

Using the lemma 2.1 the following property

of OBDD traverse for an arbitrary event can be
proved:

Theorem 2.2 Given event 0 =< ji,j2,.. Jk >
and I(A) = {ul, Uy -eny UtA}

1.3 3¢ = min(p) : (j, € o)&{u €
I(A) : ind(u) = j,) then a, = f(A) &
fStep(u,W)(aq+I:k(Aind[Step(u,rq')]:n));

2. Otherwise a, = 0;

Interpretation I(o(A))of OBDD with new in-
put data combination after event o differs from
I(A4) in no more than k recursive applications
of procedure Step, which are done with inverted
operand @, as this shown at the Fig.1

3 Boolean pre-evaluations using
dependent traverses of a BDD

It is possible to improve an efficiency of a control
system we increasing its loadness in an idle time
intervals. We propose to use this time for compu-
tation the control logic function in advance for cer-
tain set of probable events. This action is termed
as pre-evaluations or pre-computations.

Instead of the function’s value it is possible
also to pre-evaluate semsitivity function a, that
is a Boolean function expressing ability of f to
change the value as a result of event ¢ : o, =
f(A) @ f(a(A)). Consequently f(o(A)) can be ex-
pressed as f(o(A)) = f(A) ® a,. So that if the
value of a,, had been computed for the given set of
events it would be possible to reevaluate the func-
tion at constant time O(1).

Every node of OBDD is root of some sub-
OBDD [2]. So that it denotes some Boolean func-
tion. As full evaluation it is termed the evaluation
of all this functions with assigning value to corre-
sponding nodes. This value computed for particu-
lar node and stored as its parameter we denote as
mark(v). Then we prove that:

Lemma 3.1 Full-evaluation of mark(v) for all
v €V is done in O(|V]) time.

Let us marks(v) has three values - 0,1 and
U (unknown). Assume that Initially marks(v) =
*U” for all non-terminal nodes and mark4(v) =
"U”. The following algorithm computes mark in
all nodes:

AvrcoritaMm 1 (FULL-BDD)
function Step(v:node; X: Boolean):node;
begin
if terminal(v) then return(v)
else if X=1 then return(v.hi)
else return(v.lo)
end;
function Traverse(v:-node): Boolean;
begin
if mark(v)="U" then begin
mark(v)="Traverse(Step(v,X[ind(v)]));
return{mark(v))
end
else return(mark(v))
end;
procedure FullEvaluation;
begin

foreach node v in V do
Traverse(v)
end.

The set of all possible events of certain rank
k
k we denote as A* and R* = |J A*. Total cardi-

i=1
b .-
nality of this set is obviously |R¥| = Y 1)’ =
i=1

2!

O(n*+'). Further we consider problem of pre-
evaluation of the function’s value for all the ar-
guments of R¥ that is termed as f(R¥). Straight-
forward estimation of this computation complex-
ity termed as C(n,k) gives C(n,k) < n|RF| =
O(n**?). Here it is assumed that evaluation of ev-
ery data combination takes only n steps as if BDD
traverse is accepted as way of function’s computa-
tion.

Assume that the function is defined by BDD
but computations done not independently that re-
duces complexity of computations. Consider sub-
set R¥(7, j) C R* such that Vo =< J13J25 ey Jp D€

n
R(i,1) « j; = I; Then R* = |J R¥(1,!). Given

=1
particular value of j; and v € I(A) : ind(v) = j;
pre-evaluation of the function f could be reduced
to that of the f_gtep(,,,m for events < ja, ..., jp >
with rank decreased by 1. So that complexity of
computations of f(R¥) is:

C(nk)=n+C(n—1,k—1)+
+Cn—=2,k=1)+ ..+ Clkk— 1)+ (1)
+C(k =1,k —1) +...+ C(1,1).

(There are n opportunities to select first
event argument and transition from the corre-
spondent node v to its idle successor by proce-
dure Step(v,Zj;) takes one step, so that all the
reduction adds n steps to the complexity expres-
sion plus recurrent references to computation com-
plexities of functions denoted by BDDs rooted in
Step(vj,,T3,), 7i=Tm)-

Having this recurrent dependency reduced we
eventually derive:

n

k n—k
Clnk)= 3%, _Elai-l(n—t—i+1)+

t=1 i=

L
+> ajCn—k—i+1,0)+ (2)

i=1
k i

+ X Clk—ik—i) Y apk,
=1 t=1

. i .
where coefficient o} = Y of | = ol +
p=1

ai™t = 0(it).

Thus, the first term of 2 can be estimated as
O(n**1). As far as C(p,p) is complexity of a
BDD interpretation when all the arguments are
changed:n = k then it requires full traverse of
the corresponding BDD that means C(p,p) =
p. So that the third term might be transformed

k i
to 3 (k—i) 3 a?* and also be estimated as

=1 . ot=1
O(n**1). The second term contains C(p,0) which
terms complexity of BDD traverse with absence of
any event that normally requires O(p) steps of in-
terpretation. Considering particular event process-
ing this interpretation to be done after last event
index j; is passed. The total value of the second
term does not exceed the complexity of full BDD
evaluation. Thus: C(n,k) = O(n**1) + O(|V]) <
O(nk*2). Thus, if |[V| < O(n**!) then depen-
dent evaluation technique is chosen and result is
C(n,k) = O(n**1) else independent traverse are
more preferable and C(n, k) = O(n*+2).

Recursive algorithm 2(MEP - Massive Event
Pre-evaluation) computes values f(R*) of the func-
tion defined by OBDD rooted in v. As v the root of
OBDD is termed to which the algorithm is applied.
Procedure store(ev : event, value : Boolean) used
for storage of the results of pre-evaluation in proper
place like k-dimensional table.

ALGORITHM 2
procedure doMEP(v: node; ev: event);
begin
if terminal(v) then store(ev, v.value)
else if ev[0]/=k then begin
v.mark="Traverse(v);
store(ev, v.mark)
end
else begin {ev[0] < k}
w=v;
repeat
wi=Step(w, not X[ind(w)]);
doMEP(wl,ev+ind(w));
until terminal(w);
if ev[0] > 0 then store(ev,w.value);
end
end;

Additional memory is required only for stor-
age of the k-dimensional table that could be as
large as actual memory size admits. Thus we had
shown how using OBDD can considerably reduce
massive preevaluations of Boolean functions. The
last notion to this method is idea of progressive
order of pre-evaluations. In every state there are
could be specified set of most probable events, for
which the function to be pre-evaluated at first. As

O U Pllogny

oD

$

goooopoopo

Figure 2: Pointers to all the vertices of PCI stored
in each vertex and optimized pointer pattern

far as the probability of the event, in general, is de-
creasing with its rank, following pre-computations
to be done with growing rank while time and mem-
ory allows.

4 Optimized BDD traverse

The drawback of above stated approach is that its
effect shows itself in massive computations. Fur-
ther we consider ways optimizing traverse of BDD
in order to evaluate particular event.

4.1 Dynamical path pointing

Assume the function p(v,m) returns pointer to
node w with index m if such a node is contained
in interpretation path starting from v or nil oth-
erwise.

ALGORITHM 3
function p(v,m):*node;
begin
w = v;
while ind(w) < m do w:=Step(w,X[ind(w)]);
if ind(w)=m then return(w)
else return (nil)
end;

In this case handling of k-rank event could be
done as f = pass(root, 1), where function pass is
defined recursevly as:

ALGORITHM 4
function pass (v,cnt):Boolean;
begin
if (terminal(v)) return(v.value)
else
while ((cnt < k) and

((ev]ent] < indez(v)) or (p(v, cnt)=nil)
do inc(ent);
if (cnt > k) then return (*p(v,n+1).value)
/* way to terminal from the last event */
else
return(pass(Step(v,not X[ind(v)]),cni+1));
end;

If we keep all the values of the function p stored
as array P[1 : n] of pointers for every node then
access to p takes only one step. Totally the pro-
cedure requires to pass 2k + 1 vertex and to keep
up to O(n|V]) of additional pointers. However,
recalculation time is spent for update the array of
pointers in every node that has active path to those
nodes, which have the outgoing path changed as a
result of event, i.e. in nodes of P(¢t + 1) with in-
dices ji, ja,...jk. This leads to pass as many as all
vertices of the BDD. Thus pre-evaluation time is
estimated as O(|V}]).

This ratio could be changed to suit some re-
quirements with applying of half-dividing tech-
nique. - The optimization allows to store only
log, (2) of pointers in a node with index i (Fig.2).
In this case each traverse between two consequent
events takes as many as log,(n) steps but response
time increases to k - log,(n).

4.2 Static pointer lattice in BDD

An idea of static lattice we illustrate at first in the
case of queries processing in one dimensional di-
rected and ordered array. To reach cell with certain
number in the linear structure with single pointer
p(A[i]) = Ali +1] to the neighbor takes as many as
N steps. In fact, A[j] = p(A[j - 1]) = p(p(A]j —
) = p(p(--p(A[L]))) = pa(A[1]) if we assign to
the every cell access function a(cell,indez) return-
ing pointer to the cell with certain index then in the
linear structure a(A[é], indez) = a(A[i + 1], indez)
Vi < index.

Employing the technique of successive approx-
imations with half dividing we split the array on
two segments of equal size. First cell of the array
has pointers to itself, to the middle and to the end
of array ordered with index of referred cell. Each of
two segments obtained as a result of half-dividing
is treated with the same way. Procedure of half-
dividing is applied until the length of segments
is equal to 1. As a result every cell keeps direct
pointer to all the cells which are the other edges of
segments starting in it and whole the structure of
references we obtain illustrated at Fig.3.

Every node v is assigned with array of pointers
P[0 : 1.}, where P,[0} = I, < log, N -length of
the array, P[1] =* v - pointer to the cell itself, and
P{l,] is pointer to the last cell of segment. P{P[0]—

Figure 4: Modification of static pointers after event

1] refers to the middle of segment, P{P[0] — 2] to
the middle of segment [P[1], P[P[0] — 1]] and so on.
These pointers accelerate evaluation of the access
function from N to log, (V) steps at worst.

If we have a query defined as k - indices j; <
J2 £ ... £ jrits processing is consequent access to
values of array cells with indices j1,...jx. Its pro-
cessing can be estimated as O((k + 1)log, [£37])-
(The proof of this is almost obvious: Pass be-
tween two consequent cells A[j;), Alji+1] in the
given structure can be estimated as log,(ji+1 —
ji). Then the total duration of access is propor-
tional to log, 71 + logy(jo — 71) + ... + logy(n —
Jx) = logy [j1(j2 = j1)--(n — jk)] . This can be up-

. k+1
i1+ Gamds)bt ln—ie) | ¥ _
kE+1 -

per bounded by log, [

(k + 1) logy(52)).

Traverse of OBDD PCI is like to above consid-
ered pass of linear array. The distinctive feature of
PCI is that vertices of all consecutive indices not
necessary included in the path. For that purpose
let us consider rarefied array where indices are or-
dered but not consequent. Nevertheless, references
are remained according the same idea as considered
above. If any index is not presented in rarefied
array, corresponding reference points to the first
existed cell with larger index. Similarly for outgo-
ing references - its start is assigned to next existed
cell. Obviously, those references which started and

pointed inside segment of consequent skipped in-
dices are not being taken in account.

In the any cell of array except the first and
the last, number of outgoing references coincides
with the number of incoming ones. Consequently,
for any index the total number of references in ar-
ray, which points further it (outgoing and jump-
ing over) is constant and equal to log, N. That
means in the rarefied array maximal number of
outgoing references for every cell does not exceed
log, N because those are formed as cell’s own out-
going references and ones jumping over it from the
skipped segment.

Theorem 4.1 Number of nodes in processing a
rarefied array is less or equal to that of consistent
one.

Thus consider procedure of the paths reorder-
ing that to be implemented after all required ver-
tices had been passed. Consider any particular
event with index j,. Let the path of current in-
terpretation is P, and in node with index j, it
switches to path PN as this shown at Fig.4. There
are also some paths PF1,PF2,... which falls in
P before j, and some others that falls in P af-
ter j,. It is required to redirect pointers from
P,PF1,PF?2,... that pass over j, from nodes of P
tonodes of PNN. To do that it is required to pass all
the nodes of OBDD and check whether they have

such pointers. Then we find corresponding vertices
of PN with the same or larger indices and change
pointers to them. Thus, the complexity of this
path modification also estimated as O(log, n|V]).
In order to improve this estimation we outline sub-
set of nodes V' € V termed as critical nodes - hav-
ing more than one incoming edge. If these nodes
store a number of pointers for all incoming edges
then the pass of OBDD to modify pointers can be
done in O(log, n |V']).]

5 Event decision diagrams

Event Decision Diagram (EDD) has a structure
based on structure of BDDs. It is built for par-
ticular BDD in current state A of the input vector.
EDD is a graph, having the same set of nodes V'
as parent BDD. EDD has the following structure:

1. Each variable node v in V has n —ind(v) +1
outgoing edges uniquely labeled by ind(v) +
1,ind(v) +2,...,n,n+ 1.

2. Multiple edges are allowed, that is, the same
two nodes may be connected by two or more
edges.

EDD recursively denote the following Boolean
function:

1. If v is either 0-node or 1l-node then f
value(v);

2. Let

Tind(v)+1s Yind(v)+2 =

s Y = [V V.yialzia,

vy Ynt1 = [Vy2V..yal If v is

variable node with n — ind(v) outgo-

ing edges: (v, Vind(v)+1)» -+ (¥, Un+1) such that

l(v,v;) =i for all 1 : (ind(v) + 1 < i <), then
n+1

fo= V

i=ind(v)

Yind(v)+1 =
= Vind(v)+1Tind(v)+2s

y‘ifu,'

Note that 4 = 1 iff Zinduyr1 = Tindie)s2 =
-=xz;.1=0and z; = 1;

Given an input vector A, the value of
fo(Aind(vym) for v(€ V) can be computed recur-
sively as follows: if v is terminal node then f, =
value(v), otherwise, a child u such that yy,) =1
is selected and then f, is computed recursively.
Every such transition to recursive function is called
as the step of computation. On the each step v is
added to the path of interpretation I’(A). The first
step adds to I’(A) the root of EDD, and the last
also one of terminal nodes.

Lemma 5.1 EDD computation is done in O(|X]|)
steps, where as |X| it is the number of z; = 1 in
vector X.

Figure 5: EDD edges for root node of OBDD

Proof: Consider I'(A) generated during interpre-
tation. For every node v; (1 < i < n+ 1) it is fol-
lows from the definition of EDD that z;,4(,;) = 1
if ind(v;) < n. On opposite for any z; = 1 there is
node included in the interpretation path. There-
fore number of z; = 1 is exactly equal to |I'(4)|—2.

||

The following algorithm implements the map-
ping ¥ : G’ = G generating unique EDD G’ for
given OBDD G:

ALGORITHM 5 Foreach v(€ V) we search (n —
ind(v)) its children. To do that we pass OBDD
with the following input date: X9 = {(z; = 1)i =
j, (.’L‘.‘ = O)l # j}m,js;sn. Each inter-
pretation is done by k;j—times applied function
Step(v,z):I(X7) = (v], s v3,), where kj — 1 <
j <kj; vl = Step(v]_,,6]),6] =1 iff i =j;6! =0
otherwise. It means that interpretation of X7 ter-
minates in first node with index greater or equal to
j. This node last included in I(X7) accepted as v;
- child of v.

Fragment of algorithm 5 implementation’s re-
sult is shown at the Fig.5

Lemma 5.2 EDD derived by the algorithm 5 de-
notes the same Boolean function as the parent
BDD.

Proof: Consider certain input vector A =<
a3,02,...,85 >. Let number of a; # 0 is equal
to k and indices of non-zero elements are <
J15725 -y Jk >. Thus EDD interpretation path is

Memory Reaction on event Pre- Evaluation
Conventional singb BDD-traverse o) n -
Messive pre-computations using oy +n**) om on**)
Independent single traverses of
OBDD
Massive pre-computations using oy} +n**) o min(O(n**?),
dependent traverses of OBDD max(O(n**),0(7})
Dynamic-N pointers omrh k omy)
Dynamic-og(N) pointers O(log, H¥)) O(klog, n) Olog, n}Y)
Static pointer lattice Otlog, V) ockog, Ty OQlog, n7Y)
EDD traverse o k oY)

Figure 6: Parameters of developed methods compared to those of conventional traverse

consisted of < vy,vy,...,uy > . Obviously these
nodes also included in the interpretation path of
BDD. Consider EDD and BDD rooted in v, . As
far as last 1 in the Awas with index j; all inputs
with greater indices are equal to 0 and by the def-
inition of EDD they have the same result u

Let us introduce displaced function fx_4 :
F(A) = fx—a(0)'and f(o(4)) = fx—a(E). Using
that function the re-evaluation problem of fcan be
reduced to the problem of evaluation of fx_4(X).

Lemma 5.3 For given BDD G denoting f(A), a
BDD G° denoting fx—a(0) has the same number
of nodes V' = V and its edges have the follow-
ing property: Yv(€ V) : Ginaw) = 0 = lo(v?)
lo(v),hi(v°) = hi(v); V(€ V) : Ginge) = 1
= lo(v®) = hi(v), hi{v®) = lo(v);

Leaning upon this lemma the algorithm may
be suggested to transform given OBDD denoting
function f to OBDD denoting fx_ . For all nodes
uof the given OBDD such that 2;,4(y) = 1 marking
of edges (v,lo(v)) and (v, hi(v)) is trading places.
That action can be done in O(|V[) time.

Then EDD E = ¢(G®) constructed for G by
above stated algorithm 5, also denotes displaced
function fx_4 that follows from lemma 5.2. The
function’s computation for event ¢ € A¥ may be
complete in ¢t ~ O(k). The preprocessing time
elapsed to built EDD is proportional to O(n|V]).

6 Conclusion

Paper proposed methods to process tuple-events
in logic control systems using OBDD. Estimated
complexity of the methods collected in the table
on Fig.6. For the control algorithm with about

!We denote vector of dimension n filled with zeros as O
and filled with ones as 1.

n = 2000 input signals and query of 10 entries
conventional OBDD (row 1) traverse return result
after has passed all n vertices, whereas developed
methods returns output in: (2,3)- constant time,
(4,7) about 10 steps, (5,6) about 80-110 steps. Es-
timation of other parameters is strongly dependent
on size of the OBDD which for some functions
might be polynomially dependent on n.

References

[1] P. Baracos, R. Hudson, ” Advances in binary
decision based programmable controllers”,
IEEE Transactions on Industrial Electronics.,
vol.35, pp.415-425, Aug.1988, 1988.

[2] R. E. Bryant, "Graph-based algorithms for
Boolean Function Manipulation”, IEEE Trans-

actions on computers, vol. C-35, No.8, 1986

John T.Welch, *The Clause Counter Map:
An Event Chaining Algorithm for Online
Programmable Logic”, IEEE Transactions on
Robotics and automation, February, 1995.

8l

[4] V.Viatkin, N.Ishii, T.Hayashi, ”Event oriented
evaluations of binary decision diagrams”, Inter-
national workshop on discrete event systems,

IEE, Edinburgh, 1996
[5

—_—

V.Viatkin, K.Nakano, T.Hayashi, ” Evaluation
of logic expressions based on event-oriented in-
terpretation of marked functional diagrams”,
Society for instrumentation and control engi-
neering of Japan, 35th annual international
conference, Tottori, 1996

