7 o I Y X LA 53—4
(1996. 9. 13)

HE . BEEICOWTEBEZ PRAM ED k<=7 VT X 4

D PEER AFIFY ATYY
LZEBRTEAS BREHTEN F-VFFI=F VKRS SHERMER

EERASHAN OV — P SN kBONET-VLTH LYY — RO LREY kv — VRS
LR, ARX T, BATHE - BRRIRES 3 2OPRAM Lok v~ VREEB (T LT X
A%FT. ¥, EREW-PRAM LT, O(logn) BM THERA O(nlogk) Dkv—V TN T XA
&. CREW-PRAM & CRCW-PRAM £ T O(loglogn + log k) RH THFERA O(nlogk) Dk 7 —
TSPNTYZLETTo F2. TNHEDOT AT XL HHEEN Onlogk) THIMY ., BHELIITE
&ll‘: k %7‘%‘?‘0

Work-Time Optimal k-merge Algorithms on the PRAM 1

Tatsuya Hayashi, Koji Nakano Stephan Olariu
Dept. of Electrical and Computer Engineering Department of Computer Science
Nagoya Institute of Technology Old Dominion University
Showa-ku, Nagoya 466, JAPAN Norfolk, Virginia 23529, USA
{hayashi,nakano}Qelcom.nitech.ac.jp olariu@cs.odu.edu

The k-merge problem, given a collection of k, (2 < k < n), sorted sequences of total length n,
asks to merge them into a new sorted sequence. The main contribution of this work is to propose
simple and intuitive work-time optimal algorithms for the k-merge problem on three PRAM models.
Our k-merge algorithms runs in O(log n) time and performs O(nlog k) work on the EREW-PRAM.
and in O(log log n+log k) time and O(nlogk) work both on the CREW-PRAM and on the CRCW-
PRAM. We also prove that the computing time of these algorithms cannot be improved provided

that the amount of work is bounded by O(nlogk).

1 Introduction

The problem of merging k sorted sequences is, along
with sorting and usual merging, one of the ubiqui-
tous tasks in computer science. Just as merging, the
k-merge problem finds applications to databases, in-
formation retrieval, and query processing [10, 19]. In
addition, the k-merge problem has a lot of theoreti-
cal appeal since it provides a natural bridge between
merging, corresponding to the case k = 2, and sorting
where one merges k = n single-item sequences. In the
light of this, it is somewhat surprising that the k-merge
problem has not received the attention it deserves. In
particular, until very recently, only suboptimal paral-
iel a.lgo]rithms for the k-merge problems were available
11, 18].

Consider a parallel algorithm that solves an in-
stance of size n of some problem in time Tp(n), with
p standing for the number of processors used. Tra-
ditionally, the main complexity measure for assessing
the performance of the algorithm is the work W(n)
performed, defined as the product p x Tp(n). The al-
gorithm is termed work-optimal if W(n) € ©(T*(n)),
where T*(n) is the running time of the fastest sequen-
tial algorithm for the problem. An algorithm is termed
work-time optimal [13] if it is work-optimal and, in ad-
dition, its running time Ty(n) is best possible among
the work-optimal algorithms in that model. Need-
less to say that one of the challenges of parallel al-

TWork supported, in part, by NSF grant CCR-9522093, by
ONR grant N00014-95-1-0779, and by Grant-in-Aid for Encour-
agement of Young Scientists(08780265).

gorithm design is to produce not only work-optimal

but, indeed, whenever possible, work-time optimal al-

gorithms. Occasionally, an even stronger complexity

metric is being used — the so-called time-optimality.

Specifically, an algorithm is termed time-optimal within
a model if no other parallel algorithm solving the same

problem and using a polynomial number of processors

can run faster in that model. To anticipate, one of the

algorithms that we design will turn out to be time-

optimal.

Clearly, the naive approach of solving the k-merge
problem by repeated pairwise merging may result, at
best, in a work-optimal algorithm running in O(logn *
log k) time, which is not work-time optimal [12]. Quite
recently, Wen [19] proposed an interesting and sophis-
ticated work-optimal k-merge algorithm. Specifically,
his algorithm merges a collection of &, (2 < k < n),

sequences of total length n in O Z'—L‘;ﬁi +logn | time,

using p processors on the CREW-PRAM. In partic-
ular, for p = %&5} his algorithm achieves a run-
ning time of O(logn). In spite of being work-optimal,
Wen’s algorithm is less than perfect, as we now point
out. For one thing, his k-merge algorithm is not work-
time optimal: it is well-known that the problem of
merging two sorted sequences of combined length n
can be solved in O(loglogn) time using O(n) work on
the CREW-PRAM [4]. For another, Wen’s algorithm
is complicated, relying on an intricate pipelining tech-
Exi]que similar to that in Cole’s merge-sort algorithm
7].

Our main contribution is to propose simple and in-

tuitive work-time optimal algorithms for the k-merge
problem on three PRAM models, thus settling the sta-
tus of the k-merge problem. Specifically, we begin
by devising a k-merge algorithm running in ©(logn)
time and performing ©(nlogk) work on the EREW-
PRAM. We then go on to show that this algorithm
is work-time optimal and, in fact, even time-optimal.
Next, we prove that Q(loglogn + logk) time is re-
quired for solving the k-merge problem on the CREW-
PRAM, provided that the amount of work is bounded
by O(nlogk). As it turns out, the same lower bound
holds for the CRCW-PRAM. Finally, we design a work-
time optimal CREW-PRAM k-merge algorithm that
runs in ©(log log n+log k) time and performs O(n log k)
work. This latter algorithm is also work-time optimal
on the CRCW-PRAM model.

At the heart of our algorithms lies a novel deter-
ministic sampling scheme reminiscent of the one devel-
oped recently by Olariu and Schwing [15]. The main
feature of our sampling scheme is that, when used for
bucket sorting, the resulting buckets are well balanced,
making costly rebalancing unnecessary.

To put our contribution in perspective, we note
that our k-merge algorithms improve on Wen’s algo-
rithm in several respects: first, we solve the problem
in a weaker model of computation (EREW-PRAM);
second, our algorithms are work-time optimal, while
Wen’s algorithm is not; third, our approach is simple
and does not rely on a complicated pipelining strat-
egy. As the results in this work were being written,
we became aware of a similar and independent effort
by Chen et al. [6]. As it turns out, our algorithms are
simpler and more intuitive than the algorithm in [6].

The remainder of this paper is organized as follows.
Section 2 states the problem formally and provides
a review of basic results that will be used in subse-
quent sections. Section 3 offers a number of non-trivial
lower bounds for the k-merge problem both sequen-
tially and in parallel. Section 4 describes our sampling
scheme that underlies the proposed optimal k-merge
algorithms. Section 5 presents the details of our time-
and work-optimal algorithm on the EREW-PRAM;
Section 6 presents the work-time optimal algorithm
for the CREW-PRAM and for the CRCW-PRAM.

2 Problem statement and back-
ground

Consider a collection A of n items consisting of k, (2 <
k < n), sorted sequences A, As,..., Az. The k-merge
problem is to merge A;, As,..., A; into a new sorted
sequence. The k-merge problem is fundamental, since
it provides a common generalization of the well known
merging problem, corresponding to k = 2, and of the
problem of sorting, in case k = n.

For definiteness, we write for every ¢, (1 < i < k),
A; =(a;1,0i2,8i2, ..., @i n,). We note that, in gen-
eral, each of the k sequences may have a different num-
ber of items. We assume, without loss of generality,
that the items in A are distinct: should this not be
the case, we convert each item a; ; in A; to the triple
(@i,j,4, 7). Clearly, all the resulting triples are distinct.

lI‘he prefiz computation problem turned out to be
one of the basic techniques in parallel processing, be-
ing a key ingredient in many algorithms. The problem
is stated as follows: given an associative binary opera-

tion o and a sequence zy, Zq, ..., &, of items, compute
all the “sums” of the form z, zy 029, xy020023, ...,
T10Z30...0Z,. In many contexts one is interested in
prefix sums (i.e. o operation is addition), or in prefix
maxima, etc. Cole and Vishkin [8] showed that the
prefix computation problem can be solved optimally
in parallel. More precisely, they proved the following
result.

Proposition 2.1 The task of computing the prefiz sums
of an n-item sequence can be performed in O(2) time
using p, p <]%5, processors on the EREW-PRAM.
O

The task of merging two sorted sequences is, along
with sorting, one of the fundamental operations in
computer science [14]. The following result [12] shows
that merging can be performed efficiently in parallel.

Proposition 2.2 The task of merging two sorted se-
quences of size n can be performed in O(2) time using

P, p £ ==, processors on the EREW-PRAM. 0O

log n?

Borodin and Hopcroft {4] showed that merging can
be performed faster on the CREW-PRAM, while pre-
serving work-optimality. Specifically, they proved the
following result.

Proposition 2.3 The task of merging two sorted se-
quences of size n can be performed in O(loglogn) time

and O(n) work on the CREW-PRAM. O

The first optimal parallel sorting algorithm (actu-
ally, a sorting network) was obtained by Ajtai et al.
[2]. Their sorting network of I/O size n featured a
depth of O(logn). However, the constant hidden in
the Big-O was rather forbidding. This motivated Cole
[7] to devise a sorting algorithm (not a sorting net-
work) that sorts a sequence of n items in O(logn)
time using O(nlogn) work. For later reference, we
now state an equivalent version of Cole’s result.

Proposition 2.4 The task of sorting of n items can
be performed in O(%log n) time using p, 1 < p < n,
processors on the EREW-PRAM. O

The following classic result, referred to as Brent’s
scheduling principle [5, 13] asserts that, under fairly
general conditions, a parallel algorithm can be simu-
lated by a p-processor algorithm.

Proposition 2.5 A parallel algorithm that performs
T(n) computational steps and performs W(n) work
can be translated into a parallel algorithm to solve the

same problem running in lﬁéﬂ + T(n)J parallel steps,

whenever the assignment of the p processors to their
jobs can be done in constant time. 0

3 Work-time lower bounds for
the k-merge problems

The purpose of this section is to establish non-trivial
lower bounds, both sequential and parallel, for the k-
merge problem.

We begin by establishing a sequential lower bound.
Our arguments rely on the well-known {)(n log n) lower

![)(iund for sorting n items in the algebraic tree model
1].

Lemma 3.1 The task of merging k, (2 < k < n),
sorted sequences of total length n requires Q(nlogk)
sequential time.

Proof. We plan to derive a contradiction from the
assumption that the k-merge problem can be solved
in o(n logk) time.

Consider } unsorted sequences G1,Ga,...,Gp of

k items each!. Clearly, at least }(klogk) time is re-
quired to sort each of the G;’s. Therefore, the task of
sorting all the G;’s independently requires Q(nlogk)
time. However, as we are about to point out, this task
can be performed in o(nlogk) time by using the as-
sumption that the k-merge problem can be solved in
o(nlogk) time.
For every 7, (1 < j < k), write G; = {g;1,95,2
.., 9k} and construct a collection Aj, Ag,..., A
of sequences of % items each, such that for every i,
(1 S 1 S k)v Ai = {(lvgl,i)v (2,92,1')3' o ’(%79-’;'-,1')}-
Notice that each sequence A, is sorted in lexicographic
order of its items. By assumption, there exists a k-
merge algorithm that sorts A = 4; U4 U---UAg in
lexicographical order in o(nlogk) time. In the result-
ing sorted sequence, the items in each G; must occur
consecutively and in sorted order. Therefore, all the
G;’s can be sorted independently in o(nlog k) overall
time, a contradiction. o

Next, we show that the sequential lower bound of
Lemma 3.1 is tight by exhibiting a optimal sequential

algorithm for the k-merge problem running in ©{nlogk)

time.

Lemma 3.2 The task of merging k, (2 < k < n),
sorted sequences of total length n can be performed in
O(nlogk) sequential time.

Proof. Consider k sorted sequences A;, 4s,..., Ag,
and write 4; = (ai1,qi2,...,8in,) With a;) < a;2 <

- £ ajn,. Begin by constructing a bottom-heavy
heap containing the items a;),@2,,...ak,. Clearly,
this can be done in O(k) time [1]. Let a;,; be the
minimum. Remove a;; and add a;; to the heap. In
other words, remove the minimum from the heap, pick
a new item from the sequence to which the removed
item belongs, and add it to the heap. It is easy to see
that all the items are removed by iterating this pro-
cedure O(n) times. Moreover, the order of removal
corresponds to the sorted order. Since each iteration
needs O(log k) time to maintain the heap, the k-merge
can be performed in O(k + nlogk) = O(nlogk) time
which, by Lemma 3.1, is optimal. o

By Proposition 2.5, a o(nlogk)-work parallel al-
gorithm on any PRAM model yields, by simulation, a
o(n log k)-time sequential algorithm. Thus, Lemma 3.1
implies the following result.

Corollary 3.3 The task of merging k, (2 < k < n),
sorted sequences of total length n requires Q(n logk)
work on the PRAM. O

Next, we establish a time lower bound for the k-merge
problem on the EREW-PRAM.

Lemma 3.4 The task of merging k, (2 < k < n),

sorted sequences of total length n requires Q(logn) time
on the EREW-PRAM.

*To simplify the notation, in the remainder of this work we
shall omit the ceiling and floor operators.

Proof. A time lower bound of Q(logn) for merging
two sorted sequences of total length n on the EREW-
PRAM follows from a fundamental result of Snir [16].
Consequently, Q(logn) must be a time lower bound
for the k-merge problem as well. s]

Further, we show a non-trivial lower bound on the time
required to solve the k-merge problem on the CREW-
PRAM within wark-optimality.

Lemma 3.5 Any CREW-PRAM calgorithm that per-
forms O(n log k) work requires Q(loglog n+log k) time
to merge k, (2 < k < n), sorted sequences of total
length n.

Proof. Since the task of merging two sequences of
size n, within work-optimality, has a time lower bound
of Q(loglogn) on the CREW-PRAM [4, 13, ?], the
same time lower bound holds for the k-merge problem.

On the other hand, by using the k-merge algo-
rithm, the OR of k bits can be computed by consider-
ing each bit as a one-element sequence and by merg-
ing the resulting sequences. It is well known [9] that
the task of solving the OR problem has a time lower
bound of Q(logk) on the CREW-PRAM, regardless
of the number of processors and memory cells avail-
able. Thus, the k-merge problem inherits the same
time lower bound. The conclusion follows. a

Finally, we exhibit a non-trivial lower bound on the
running time of a CRCW-PRAM algorithm solving
the k-merge problem within work-optimality. For this
purpose, we rely on the lower bound on the amount of
work needed for sorting n items on the parallel com-
parison model. Specifically, in [3] it is shown that for
the task of sorting of n items, WTn!*+1/T) work is re-
quired to achieve T, (T < logn), parallel time on the
parallel comparison model. Since the parallel com-
parison model is more powerful than the PRAM for
comparison problems, this lower bound holds for the
CRCW-PRAM. Thus, we have the following result.

Lerama 3.6 Any CRCW-PRAM algorithm that per-
forms O(nlog k) work requires (loglog n+log k) time
to merge k, (2 < k < n), sorted sequences of total
length n. 0

Proof. Since the task of merging two sequences of
size n on the CRCW-PRAM, within work-optimality,
has a time lower bound of {)(loglogn) {17], the same
lower bound holds for the k-merge problem. As shown
in the proof of Lemma 3.4, the task of sorting of k&
sequences of length # items each can be reduced to
the k-merge problem; on the other hand, Q(Tk'+1/T)
work is required to sort k items using T, (T < logk),
time. Therefore, Q(Tnk'/T) work is required to solve
the k-merge problem in O(T'), (T < logk) time. Since
Tnk'T = w(nlogk) for every T € o(logk), Q(log k)
time is required to solve the k-merge problem if the
amount of work is bounded by O(nlogk). The con-
clusion follows. o

It is interesting to note that the lower bounds of
Lemmas 3.5 and 3.6 only hold for algorithms per-
forming within work-optimality. For example, it is
straightforward to design a CREW-PRAM algorithm
that solves the k-merge problem in O(log k) time if n?
processors are available. Similarly, Cole argues [7] the

k-merge problem can be solved in O(logk/loglogk)
time using n> CRCW-PRAM processors.

4 Our sampling scheme

The main goal of this section is to present our sam-
pling scheme that is key in designing our k-merge al-
gorithms.

Given a collection A of k, (2 < k < n), sorted
sequences Ay, Ay,.. Ak of total length n, we write
forevery i, (1<i < k), = (i,1,0i,2,8i2,- - i,
Let s be a positive mteger We begin by extra.ctmg
a sample of size I_';J by retaining every s-th item in
each A;. We let sample (A;) denote the corresponding
sample and write sample (A;) = (@is) Qi s, Bigey---s
at,s[n./sj)

Writing e = Ef_l [2£], we let sample (A) = (si,
S2, ..., 8e) be the sequence obtamed by sorting the
set sample (A1) U sample ,(A3) U- - - U sample ,(Ar) of
samples extracted from all the Aj’s.

For later reference, we now state the following tech-
nical result,

Lemma 4.1 For every integer k, k # 0, we have
L&l = L]

Consider, again, the collection A of k, (2 < k < n),
sorted sequences Ap, Aj,...,A; of combined length
n, and assume that for every i, (1 £1 < k), we
have extracted sample (A;) and have sorted the set of
resulting samples to obtain sample (A) as discussed
above. From the sorted sequence sample (A) we ex-
tract a new sample, denoted sample k(sample s(4)), by
retaining every k-th item in sample (A). By construc-
tion, and by Lemma 4.1, samplek(.samples(A)) con-
tains ‘_ J lslkj items from A. Clearly, we have
sample,(sample ,(A)) = (s, s2 - - -, 5|5 |&)- To avoid
handling boundary conditions we write so = —oo0 and
(g J+1)k = 100

Next, having obtained sample;(sample (A)), we
proceed to partition the set A into [%| + 1 buck-
ets Cy,C1,...,C| 5 such that for every j, (0 < j <

L%
Cj = {a € Alsjk <a< s(j+1)lc}- (1)

In other words, we place into bucket C; all items in A
larger than s;; and smaller than or equal to s(j 1)k,
ie. Cj = AN (8jk 5j+1k]- It is easy to confirm
that, by virtue of (1), all the buckets obtained are
disjoint, and that every item of A belongs to exactly
one such bucket. We refer the reader to Figure 1 for
an illustration of our sampling scheme.

Our next result shows that the sampling scheme we
just described results in buckets that are surprisingly
well balanced.

Lemma 4.2 No bucket C;, (0 < j < | %)), contains
more than 2sk items of A.

Proof. 1If sample (A:) N (sjk, 8j(k+1)] is empty, then
each black A; N (sjk,8j(k+1)] contains at most s — 1
items: this is because no group of s consecutive items
from A; contains more than one item in sample ,(A;).
Similarly, if sample ,(A;)N(sjk, 5j(k+1)] has exactly one
item, then A; N (sjk, 5j(k+1)] contains at most 25 — 1

items. More generally, if sample,(A;) N (85k, $j(k+1)]
has m items, then A; N (sjk, Sj(k4+1)] contains at most
(m+1)s—1items. In other words, m sample items in
sample ,(A;)N(s;k, 8j(k+1)] correspond to at most (m+
1)s —1 items in A; N (8jk, Sj(k+1)]- Since sample (A)N
(sjk, 8(k+1)] has exactly k sample items, it follows that
bucket C; = A N (sjk,5j(k4+1)] contains at most 2sk
items from A. This completes the proof. 0

In turn, the sampling scheme that we just pre-
sented suggests, in quite a natural way, the follow-
ing generic algorithm for solving the k-merge problem.
This algorithm will be instantiated in various ways in
subsequent secmons to yield work-time optimal algo-

mhﬂ on the PRA
orithm Basxc-k-merge(A, s);

Step 1. Foreveryi (1 < ¢ < k) compute sample (A;);

Step 2. Merge the k sorted sequences sample, (Al)
sample,(Az), - -+, sample ,(Ar) to obtain
sample,

Step 3. Construct sam})lek(sample,(A)) and partition
Ainto | &] + 1 buckets, each containing
no more than 2ks items from A;

Step 4. Sort each bucket and concatenate the result-
ing sorted sequences.

5 The EREW-PRAM k-merge
algorithm

Consider a collection A of k, (2 < k < n), sorted
sequences Aj, Ay,..., Ay of total length n. We as-
sume that %L‘iﬁ—'i processors are available. OQur time-
and work-optimal k-merge algorithm on the EREW-
PRAM amounts to the call: Basic-k-merge(4,]og o F
We now present a detailed implementation of the

four steps of the algorithm on the EREW-PRAM.
Writing for every i, (1 < ¢ < k), |Ai] = ny, Step 1
can be performed in O(1) time by assigning fﬁl—;—'ﬁi
processors to each A;. The total amount of work is

clearly bounded by O(%%sn—k) C O(nlogk).

Since sample EE'E(A) contains %‘;lni items, it can
be sorted (Proposition 2.4) in O(log ';—(1)':;5;’5) C Of(logn)
time and O(logn* "l—i‘;jn—k) = O(nlog k) work, using the
processors available to us. At the end of Step 2, we
obtain the sorted sequence sample FL'E(A) = (s1, 2,

og

8n]cs k)
By Temma 4. 1, our sampling scheme yields the se-
quence

samplek(sampleé%gg_g(A)) = (Sk, S2k, - - -

skm:gs:)

containing M%&% jtems from A. In turn, this sequence

klogn
is used to generate :T;’E—:+l buckets Cy, C4, . . ., C’..x:E: .

By Lemma 4.2, no bucket contains more than 2—’%‘5’5’}

bucket
[@) @) 17, 7 % A Re) @)] A
| O @) l/\ % 7R)] Ay
E |0 O O Y78 4. A3
[@) @) O VA_Q @) O O 1 A4
C (@) O (@) m7 7 m A

Figure 1: Our sampling scheme

items from A. It is easy to see that the task of con-
structing samplek(sample;ﬂ_;(A)) can be performed
og

in O(1) time, using i’—%ogg—s of the processors available.

To complete Step 3, two issues need to be ad-
dressed:

1. first, for each item in A we must identify the

bucket to which it belongs;

. second, we must place the items of A into the
corresponding buckets.

The task of determining for each item in A the
identity of the bucket to which it belongs is handled
as follows. Each A; is partitioned into blocks, 4; N
(—o0,8k], Ai N (sk, s2], ---, 4i N (snncskk,+oo). Re-

call that for each j, (0 < j < nlog k"

— klogn

the k blocks Al n (Sjk7s(j+1)k] A2 n (Sjk,S(j+1)k],
- Ak N (8jk,3(j+1)k] belong to bucket C;. To par-
tition the A;s into blocks, we need to compute the
rank of every item in sample,,(sample 1o togn (A)) with re-

), the items in

spect to each A;. For this purpose, we plan to merge
samplek(sample%_g_:(A)) with each of the A;s. No-
tice, however, that in order to perform the merging
in parallel, k copies of sample k(sample{iF(A)) must
be made beforehand. This latter task can be per-
formed by ™°8E of the processors available in O(log k)

logn

time. The total amount of work used is bounded by

O(logk -'iﬁg—k) = O(%‘%f%—’i) C O(nlogk).
Once the k copies of sampleh.(samplex »(A)) are
available, each of them is merged with one of Al, A,

, Ag. More precisely, we assign to each pair con-
sxstmg of A; and of a copy of sample k(samplen » (A)),

nlog k

pi = B{E + Tlogin PTOCESSOIS. In this arrangement
letting V; = |A; U samplek(samplex »(A))|, we have

pi € O(- fozw;) and, consequently, by Proposition 2.2,

the task of merging A; and the corresponding copy
of samplek(sample\ (A)) can be performed by the

Pi processors in O(log n) time and at most O(n; log k)
work. Therefore, the task of determining the identity
of the bucket to which each item of A belongs can be
performed in O(logn) time and O(nlogk) work.

What remains to be done is to move the items in A
to their buckets. For this purpose, consider a generic
bucket C; consisting of the items in the k blocks 4; N
(8ik> 3G +1)k)s A2N (858, Gk -+ 5 AR (858, (i1 1)k]-
To determine the position of each item in bucket C; we
must compute the prefix sums of |A; N (sjk, s(j41)x]]
|Az n (Sjk, 3(j+1)k]|$ con |Ak n (Sjk, S(j+1)k”. Once this
is done, we broadcast the prefix sum to the corre-
sponding blocks, letting each item 1dent1fy its position
within the bucket.

To implement this plan, we shall assign to each
bucket C; containing c; items - “primary” and k
“secondary” processors. To see that this processor as-

n loj lc+
signment is possible, note first that 3 T s e =0
and so the specified number of primary processors can

be assigned; moreover, since there are -;%g—: +1 buck-

ets and at least %ﬁ—k unassigned processors, it is easy
to verify that we can assign k secondary processors to
each bucket.

By virtue of Proposition 2.1, the k secondary pro-
cessors assigned to bucket C; can compute the cor-
responding prefix sums in O(logk) time, with work
optimality. The broadcasting task will be handled
by the primary processors assigned to bucket Cj in
O(logn) time with optimal work. In addition, the &
secondary processors will be employed to move the
items in bucket C; to their corresponding position in

2klogn n .

O(Freg) = O({%i—k-) C O(logn) time. The overall
work performed is bounded by O(nlogk).

The task of sorting the buckets in Step 4 is trickier
to perform in O(logn) time. There are, essentially,
two sorting strategies that come to mind:

1.

sort each bucket from scratch using Cole’s algo-
rithm;

. apply Algorithm Basic-k-merge a second time to
sort each bucket.

As it will turn out, we will use both these strategies,
depending on the values of k.

To begin, let us investigate the first strategy Con-
sider a generic bucket C;, and assume that k (sec-
ondary) processors have been assigned to C;. Re-
call that by Lemma 4.2, C; contains no more than

.%;151‘. items. Now Proposition 2.4 guarantees that

with the available resources, bucket C; can be sorted
from scratch in

2klogn 2klogn
0 (klogk]°g(Tog &))
logn logn
= k
(0] (logk (1 +logk + log]ogk))

logn log log n)

0 (IOg nt logk ~ logk

time. Therefore, as long as
klogk > logn

we have

logn
<logk
logk — o8

and, consequently, the task of sorting bucket C; can
be completed in O(logn) time and O(klogn) work.
Therefore, if k satisfies (2), the total amount of work

. . . . 1
involved in sorting the buckets is bounded by O(gﬁﬁ*
klogn) = O(nlogk).

For values of k satisfying

log

klogk < logn (3)
the strategy above cannot be used, if we are to restrict
the running time to O(logn). Instead, we shall rely
on the second strategy outlined above.

Consider again a generic bucket C;. The reader
should have no difficulty confirming that, by virtue of
our sampling scheme, bucket C; consists, in turn, of
k sorted sequences. It is natural, therefore, to ap-
ply Algorithm Basic-k-merge to bucket C;. Along
this line of thought, we assume that C; consists of
the k sorted sequences A}, Aj,..., A} and that C;
contains a total of ¢; (< -Z%ﬁ-’—'-) items. This new
application of Basic-k-merge corresponds to the call
Basic-k-merge(C;, 7}%5;'—‘;;) Accordingly, we begin by
constructing for every j, (1 < j < k), the sequences

le 10gn (AY).
samp e‘n < (4%) '

Notice thatA sample togn (Gy) = samp{e tesn (Ahu
sample log (Ay) U - ~le] s:ﬂnple2 ,:}gg.. (A}ck)l 1r;volves a
total of at most c; - lo‘;gn < log"gk" . h‘;gn = 2k?
items. By Proposition 2.4, the k processors assigned to

. 2

bucket C; can sort sample togn (Cy) in O(L‘k— log k2) =
O(klogk) time. By (3), the running time of Step 2
is bounded by O(logn), and the amount of work is
optimal.

In Step 3, sample,(sample 1cn (C;)) is constructed

og

and C; is partitioned into k+1 buckets each containing
at most 41[7‘;5,:—" items of A. At this moment, each such
bucket is being assigned one of the k processors which

proceeds to sort the corresponding bucket by perform-
ing the sequential k-merge. By Lemma 3.2, this takes

o ({%E—Z *Ing‘) = O(logn) time and optimal work.

Thus, irrespective of which of the conditions (2) or X’:)
holds, the task of sorting the buckets in Step 4 of Al-
gorithm Basic-k-merge can be completed in O(logn)
time and O(nlogk) work.

Once sorting is done, we need to concatenate the
(sorted) buckets. We shall only demonstrate how this
is done in the case of condition (2), the complemen-
tary range being similar. In order to do this, the rank
of each item in samplek(sample}gs_,i_(A)) with respect

to A must be computed. This can be done by com-
puting the prefix sums of |Cyl,|Ci],...,|Cricgx| and
TToen

by broadcasting the prefix sum to the corresponding
bucket. By using Proposition 2.1 the prefix sums can

be computed in O(log %‘—E—E—:) C O(logn) time and

O(%ﬁ%) work, while the broadcasting can be done

in 0(11%:—’,:) time and O(n) work. Since each item
knows its rank, it can be moved to the correct po-
sition in O(%%E—’,:—) C O(logn) time and O(n) work.
Hence, Step 4 can be completed in O(logn) time and
O(nlog k) work. Therefore, the entire algorithm can
be performed in O(logn) time and O(nlogk) work.
By Lemma 3.4 and Corollary 3.3 this is time- and
work-optimal.

‘We summarize our findings by stating the main result
of this section.

Theorem 5.1 The task of merging k, (2 < k < n),
sorted sequences of total length n can be performed
in O(logn) time and O(nlogk) work on the EREW-
PRAM. Furthermore, this is both time- and work-optimal
on this model. O

6 The CREW-PRAM k-merge
algorithm

The main goal of this section is to exhibit a work-time
optimal parallel algorithm solving the k-merge prob-
lem in O(loglogn + logk) time and O(nlogk) work
on the CREW-PRAM.

The input to the algorithm is a collection A of k sorted
sequences A;, As,..., Ay of total length n. We write
for every i, (1 <1 < k), |Ail = n;. We assume that

1——5—;‘,3120';1: +{°og processors are available. At this point,
we note that if

k?logn > nlogk, (4)

applying the logarithm through, we obtain
O(logn) C O(logn + loglog k) C O(loglogn + log I(c)
5)

Consequently, if (4) holds, we apply Cole’s sorting al-
gorithm directly. From now on, we shall assume that

(6)

The algorithm is very close in spirit to the EREW
algorithm detailed in the previous section, and amounts
to the call Basic-k-merge(A4, %L—‘;&,})

The remainder of this section is devoted to a de-
tailed implementation of the fours steps of the algo-
rithm on the CREW-PRAM. To begin, Step 1 can
be performed in O(1) time by assigning f’k—"lﬁ"gﬁni pro-
cessors to each A;. By Proposition 2.5, the same
task can be performed in O(loglogn + log k) time by

n;logk . .
sgnlloglog n¥log k) Processors associated with 4;.

k%logn < nlogk.

To see that this latter processor assignment is feasible,
observe that

&
z n;logk _
“ klog n(loglogn + logk) —
nlogk
klogn(loglogn + log k)

nlogk
loglogn + logk”

In both cases, the total amount of work is bounded by

O(HEE) € O(nlogk).

The implementation of Step 2 differs substantially
from that of Step 2 in the EREW-PRAM implemen-
tation of Basic-k-merge. To wit, while the EREW-
PRAM implementation uses Cole’s optimal sorting,
we shall rely, instead, on the doubly-logarithmic merg-
ing algorithm of Proposition 2.3. In outline, the idea
is to sort sample klogn (A1) U sample Klogn (Ap)U---U
sample riog n (Ag) by computing the rank of each item.

o€
To implement this idea, we plan to merge, pairwise,
le k1o n (A; d leriogn(A;) for 1 < ¢
sample yioq (Ai) and samp € klox (Aj) for 1 £ i <

j < k. This, of course, allows each item in a generic
sample x105n (A;) to compute its rank with respect to
og K

each sampleriosn(A;), 1 # j. What remains to be

done is to add the corresponding ranks. To see how
this is done efficiently, let V; = |sample x105» (A;)] and
og

let N; = |sample%i_:EE(Aj)|.

By Proposition 2.3, We can merge sample %‘%&:(A;)
and sample%%grn(Aj) in O(loglog(V; + NN;)) time and
O(N; + Nj) work. By Proposition 2.5, the same task
can be performed in O(loglog(N; + N;) +loglogn) =

O(loglogn) time using p;; = g—é% Processors as-
sociated with the pair consisting of sample 105 (A;)
Tog k

and sample k10 (A;). Observe that the total number
T3
of processors thus assigned is bounded by:

Y opi= e S (miny).)

W klognloglogn i<isi<k
Now a simple counting argument shows that

> (nitn)=(k-n

1<i<j<k

8)

(To justify (8), note that each n; occurs exactly k — i
times as the first term of a sum and exactly 1 — 1 as
the second term of a sum. Thus, altogether, n; occurs
k — 1 times, as claimed.)

By virtue of (8), equation (7) becomes

> (ni+ny)

1<i<j<k

o logk
" klognloglogn

nklogk

< nlogk
klognloglogn

loglogn + logk’

As a result, for each item in sample xiog» (A;), the
T3
number of items in sample klog n (4;j), i # J, smaller

than it can be determined directly. By adding up

these values, the rank of each item in sample x10g n (A4)
og

can be obtained. By Proposition 2.1 this task can be

performed in O(logk) time and O(k) work by assign-

ing processors to each item in sample x1ogn (A).

log k

By Lemma 2.5 the same task can be perforr;ed by
E

TogTogrTlogk Processors in O(loglogn+logk) time and
optimal work. Therefore, the total amount of work
involved in the second phase of Step 2 is bounded by
O(nlogk), confirming that Step 2 can be implemented
to run in O(loglog n+log k) time and O(nlogk) work
on the CREW-PRAM. At the end of Step 2, we ob-
tain the sorted sequence mmple%x_a_&ﬂ(A) = (s1, 82,
g

ooy Snloag'l:).
By Lemma 4.1, our samplinig scheme yields the se-
quence

sample,(sample Elogn (A)) = (8k, S2k,--- 8 et ")

containing 7 1;:75’:' items from A. In turn, this sequence

is used to generate F"rlffg—k; + 1 buckets Co, Ci, ...,
C niogk . By Lemma 4.2, no bucket contains more than

*Tlog n
2
%Eﬂ items from A. It is easy to see that the task
of constructing sample(sample kiogn (A)) can be per-
og &

k nlog k
n < log log n+log & of

formed in O(1) time, using ;’,lﬁi
the processors available.
Similarly to the implementation on the EREW-
PRAM, to complete Step 3, we have to address the
issues of identifying the bucket to which each item
belongs and that of moving the items to their buckets.
First, the task of determining for each item in A
the identity of the bucket to which it belongs can be
performed by merging in exactly the same way as
in the EREW-PRAM implementation: the only dif-
ference is that here, because of concurrent read ca-
pabilities, we do not have to make extra copies of
sample (sample k10 » (A)). Specifically, for each i, (1 <
og
i < k), we plan to merge sample;(sample riogn (A))
o8
and A;. Notice that, by Proposition 2.3, the task at
hand can be performed in O(loglog(n;+ F"%gs%)) time
and O(n;+ -E'}ll%%‘-) work. By Proposition 2.5, the same
task can be performed in O(log log n+log k) time using
Toglog ntlogk Processors and optimal work. To confirm

that this latter processor assignment is feasible, we
only need observe that for k > 2,

Xk: _+nlogk' _ +nlogk
n‘ Klogn) " klogn

i=1

< 2nlogk.

Next, we have to move the items in A to their
buckets. In the same way as in the EREW-PRAM im-

confirming that the processor assignment specified above plementation, the prefix sums of |[A; N (sjk, 3(541)4]},

is feasible. Moreover, the total amount of work in-
volved in the merging phase of Step 2 does not exceed

is O(m:gl_‘:f-l—legF *loglogn) C O(nlogk).

IAZ n (sijS(j+1)k]|7 Ceey |Ak N (Sjk, 3(j+1)k“ are com-
puted in O(log k) time. Once this is done, we broad-
cast the prefix sum to the corresponding blocks, letting

each item identify its position within the bucket. This
completes the O(loglog n +log k) time and O(nlogk)
work implementation of the Step 3.

Finally, in Step 4, the task of sorting the resulting
buckets can be performed by employing the optimal
k-merge algorithm on the EREW-PRAM discussed
in the previous section. More precisely, since each

bucket has at most %%Eﬂ items, Theorem 5.1 guar-

antees that it can be k-merged in O(log(%fﬂ)) =

O(loglogn + log k) time and O(k?logn) work. Thus,
by Proposition 2.5, the same task can be performed by
k21 s k?logn
@Tog_:g-;:)—g’; processors in O(ﬁ + loglogn +
log k) = O(loglogn + logk) time.
The total number of processors thus assigned is

nlogk k%logn _ nlogk
bounded by (Ic logn +1) loglog n+logk — loglog n+log £ +
kZlogn k?logn nlogk
log log n+log k - By (4) * loglog n+log k < log log n+log k?

confirming that the total number of processors as-
signed to all the buckets is bounded by Wli—';%ﬁ—“.

Therefore, the task of sorting the buckets in Step
4 can be performed in O(loglogn + logk) time and
O(nlogk) work. What remains to be done is to con-
catenate the sorted buckets into the final sorted se-

quence. Thisis done, in the obvious way, in O(log log n+

log k) time and O(nlogk) work by computing prefix
sums as discussed in the previous section.
Consequently, the algorithm runs in O(loglogn +
log k) time and performs at most O(nlogk) work on
the CREW-PRAM. By Lemma 3.5 and Corollary 3.3
the algorithm is work-time optimal.
To summarize our findings we state the main result of
this section.

Theorem 6.1 The task of merging k, (2 < k < n),
sorted sequences of total length n can be performed in
O(loglogn + log k) time and O(nlogk) work on the
CREW-PRAM. DO

Since every CREW-PRAM algorithm also runs with-
out loss of time on the CRCW-PRAM, the algorithm
developed in this section translates into a k-merge al-
gorithm for the CRCW-PRAM. By Lemma 3.6 and
Corollary 3.3 combined, this algorithm is work-time
optimal. Thus, we have the following result.

Theorem 6.2 The task of merging k, (2 < k < n),
sorted sequences of total length n can be performed in
O(loglogn + log k) time and O(nlogk) work on the
CRCW-PRAM. O

References

[1] A. Aho, J. E. Hopcroft, J. Ullman, Data Struc-
tures and Algorithms, Addison-Wesley, Reading,
Massachusetts, 1984.

[2] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting
in clogn parallel steps, Combinatorica, 3, (1983),
1-19.

[3] Y. Azar and U. Vishkin, Tight comparison bounds
on the complexity of parallel sorting, SIAM Jour-
nal on Computing, 16, (1987), 458-464.

(4] A. Borodin and J. E. Hopcroft, Routing, merg-
ing and sorting on parallel models of computa-
tion, Journal of Computer and System Sciences,
30, (1985), 130-145.

[5] R. P. Brent, The parallel evaluation of of general
arithmetic expressions, Journal of the ACM, 21,
(1974), 201-208.

[6] D. Z. Chen, W. Chen, K. Wada, and K.
Kawaguchi, Parallel algorithms for partitioning
sorted sets and related problems, to appear in
ESA96.

R. Cole, Parallel merge sort, STAM Journal on
Computing, 17, (1988), 770-785.

R. Cole and U. Vishkin, Approximate parallel
scheduling. Part 1: the basic technique with ap-
plications to optimal parallel list ranking in log-
arithmic time, SIAM Journal on Computing, 18,
(1988), 128-142.

[9] S. A. Cook, C. Dwork, and R. Reischuk, Upper and
lower time bounds for parallel random access ma-
chines without simultaneous writes, SIAM Journal
on Computing, 15, (1986), 87-97.

[10] E. Dekel and I. Ozsvath, Parallel external sorting,
Journal of Parallel and Distributed Computing, 6,
(1989), 623-635.

[11] J. Y. Fu and F. C. Lin, Optimal parallel exter-
nal merging under hardware constraints, Proc. In-
ternational Conference on Parallel Processing, St-
Charles, Illinois, August 1991, III, 70-74.

—

[7

{8

[12] T. Hagerup and C. Rub, Optimal merging and
sorting on the EREW PRAM, Information Pro-
cessing Letters, 33, (1989), 181-185.

[13] J. J4J4, An Introduction to Parallel Algorithms,
Addison-Wesley, Reading, Massachusetts, 1991.

[14] D. E. Knuth, The Art of Computer Programming,
Vol. 1, Pundamental Algorithms, Second Edition,
Addison-Wesley, Reading, Massachusetts, 1973.

[15] S. Olariu and J. Schwing, A new deterministic
sampling scheme with applications to broadcast-
efficient sorting on the reconfigurable mesh, Jour-
nal of Parallel and Distributed Computing, 32,
(1996), 215-222.

[16] M. Snir, On parallel searching, SIAM Journal on
Computing, 14, (1985), 688-708.

[17] Y. Shiloach and U. Vishkin, Finding the maxi-
mum, merging and sorting in parallel computation,
Journal of Algorithms, 2, (1981), 88-102.

[18] P. Valduriez and G. Gardarin, Join and semijoin
algorithms for multiprocessors database machines,
ACM Transactions on Database Systems, 9 (1984),
133-161.

[19] Z. Wen, Multi-way merging in parallel, /EEE
Transactions on Parallel and Distributed Systems,
7, (1996), 11-17.

