7 N T
(1996. 9.

Yy X AL 53-3
13)

BEEEEEA YL 2 FPOITR/MEFEDO-HOPHERI VT LT XA

hEF ARFTTY FF)Y
LEELERS BRAEHRIER F—VFFI=F VK% SRS

AEEmxn DT ADEEDT 475 (1 €i < j < n) K2WT, 17 j OR/MEMT | ByMEDLS
Michrbe i, 175 A PEATH L LIEE, KR T, KE¥Emxn (1< m < n) OFFHFRLKR
XSOERFREA v 21052 b0k X, 20T TEOR/MEERD 3 O(logn) B (m = 1,2
DEE) & O(LER loglogm) Bl (m > 20, X) D7V TY XL EFRT, E6IC, ZOMEE MY

logm

HITFIRRFIRICN T 2 EATR VEHERMO TR YR T .

An Efficient Algorithm for Row Minima Computations on Basic
Reconfigurable Meshes!

Koji Nakano

Stephan Olariu

Dept. of Electrical and Computer Engineering Department of Computer Science

Nagoya Institute of Technology
Showa-ku, Nagoya 466, Japan
nakano@elcom.nitech.ac. jp

Old Dominion University
Norfolk, Virginia 23529, USA
olariu@Qcs.odu.edu

A matrix A of size m X n containing items from a totally ordered universe is termed monotone if for
every i, j, 1 <i < j < m, the minimum value in row j lies below or to the right of the minimum
in row ¢. Qur first main contribution is to show that the task of computing the row minima of an
m X n monotone matrix, 1 < m < n, pretiled onto a Basic Reconfigurable Mesh of the same size

can be performed in O(logn) time if m = 1,2 and in O(XEL 1og1og m) time if m > 2. Our second

logm

contribution is to exhibit a number of non-trivial lower bounds for matrix search problems.

1 Introduction

Recently, in an attempt to reduce its large computa-
tional diameter, the mesh-connected architecture has
been enhanced with various broadcasting capabilities.
Some of these involve endowing the mesh with static
buses, that is buses whose configuration is fixed and
cannot change in response to specific processing needs;
more recently, researches have proposed augmenting
the mesh architecture with reconfigurable broadcast-
ing buses: these are high-speed buses whose configu-
ration can be dynamically changed to accommodate
various computational requirements. Among these,
the reconfigurable mesh and its variants have turned
out to be valuable theoretical models that allowed re-
searchers to fathom the power of reconfiguration and

its relationship with the PRAM. From a practical stand-

point, however, the reconfigurable mesh and its vari-
ants [11, 16] omit important properties of physical ar-
chitectures and, consequently, do not provide a com-

plete and precise characterization of real systems. More-

over, these models are so flexible and powerful that it
has turned out to be impossible to derive from them
high-level programming models that reflect their flex-
ibility and intrinsic power [8]. Worse yet, it has been
recently shown that the reconfigurable mesh and the
PARBS do not scale and, as a consequence, do not
immediately support virtual parallelism [9, 10].
Motivated by the goal of developing algorithms
in a scalable model of computation, we adopt a re-

tWork supported in part by NSF grant CCR-8909996, and
by ONR grant N00014-95-1-0779

stricted version of the reconfigurable mesh, that we
call the basic reconfigurable mesh, (BRM, for short).
Our model is derived from the Polymorphic Proces-
sor Array (PPA) proposed in [8]: the BRM shares
with the PPA all the restrictions on the reconfigura-
bility and the directionality of the bus system. The
BRM differs from the PPA in that we do not allow
torus connections. As a result, the BRM is potentially
weaker than the PPA. It is very important to stress
that the programming model developed in [8] for the
PPA also applies to the BRM. In particular, all the
broadcast primitives developed in [8], with the excep-
tion of those using torus connections, can be inherited
by the BRM. In fact, all the algorithms developed in
this paper could have been, just as easily, written us-
ing the extended C language primitives of [8]. We have
opted for specifying our algorithm in a more conven-
tional fashion only to make the presentation easier to
follow.

Consider a two-dimensional array (i.e. a matrix)
A of size m x n with items from a totally ordered
universe. Matrix A is termed monotone if for every
i, Jj, <1 < j < m, the smallest value in row j lies
below or to the right of the smallest value in row ¢, as
illustrated in the figure below, where the row minima
are highlighted. A matrix is said to be totally mono-
tone if every 2 X 2 minor thereof is monotone. The
concepts of monotone and totally monotone matrices
may seem artificial and contrived at first. Rather sur-
prisingly, however, these concepts have found dozens
of applications to problems in optimization, VLSI de-
sign, facility location problems, string editing, pattern

recognition, and computational morphology, among
many others. The reader is referred to [1, 2, 3, 4, 5, 6]
where many of these applications are discussed in de-
tail.

271376 JIOTII
5 T3 1107975
10] 6 | 9187122
201 9147187117
16121 TIT]T 9119

Figure 1: A basic reconfigurable mesh of size 4 x 4

One of the recurring problem involving matrix search-

ing is referred to as row-minima computation [6]. In
particular, Aggarwal et al. [2] have shown that the
task of computing the row-minima of an m x n mono-
tone matrix has a sequential lower bound of Q(nlog m).
They also showed that this lower bound is tight by
exhibiting a sequential algorithm for the row-minima
problem running in O(nlogm) time. In the case ma-
trix is totally monotone, the sequential complexity is
reduced to O(m + n).

To the best of our knowledge, no time lower bound
for the row-minima problem has been obtained in par-
allel models of computation, in spite of the importance
of this problem. One of the main contributions of this
paper is to propose a non-trivial time lower bound for
the row-minima problem in the BRM model. Specifi-
cally, we show that every algorithm that solves the row
minima problem of a monotone matrix of size n x n
must take Q(/loglogn) time on a BRM of size n x n.
At present, we do not know whether this lower bound
is tight. Our second main contribution is to provide an
efficient algorithm for the row-minima problem: with
a monotone matrix of size m x n with m < n pretiled,
one item per processor, onto a BRM of the same size,

our row-minima algorithm runs in O(%f—g%log logm)
time. In case m = n° for some constant €, (0 < € < 1),
our algorithm runs in O(loglogn) time.

The remainder of this work is organized as fol-
lows: Section 2 introduces the model of computations
adopted in this paper; Section 3 presents basic algo-
rithms that will be key in our subsequent row-minima
algorithm; Section 4 discusses a number of relevant
lower-bound results; Section 5 gives the details of our
row-minima algorithm; finally, Section 6 offers con-
cluding remarks and poses open problems.

2 The Basic Reconfigurable
Mesh

A Basic Reconfigurable Mesh (BRM, for short) of size
m X n consists of mn identical SIMD processors po-
sitioned on a rectangular array with m rows and n
columns. As usual, it is assumed that every proces-
sor knows its own coordinates within the mesh: we
let P(i,j) denote the processor placed in row ¢ and
column j, with P(1,1) in the north-west corner of the
mesh.

Each processor P(i, j) is connected to its four neigh-
bors P(i—1,37), P(i+1,3), P(i,j—1), and P(i,j +1),
provided they exist, and has 4 ports N, S, E, and W,
as illustrated in Figure 1. Local connections between
these ports can be established, subject to the following
restrictions. Specifically, in every time unit:

1. at most one of the pairs of ports (N, S) or (E,W)
can be set; moreover,

2. all the processors that connect a pair of ports
must connect the same pair;

3. broadcasting on the resulting subbuses is uni-
directional. In other words, if the processors
set the (E,W) connection, then on the resulting
horizontal buses all broadcasting is done either
“eastbound” or else “westbound”, but not both.

Figure 2: Ezamples of unidirectional subbuses

We refer the reader to Figure 2(a)-(b) for an il-
lustration of several possible unidirectional subbuses.
The BRM is very much like the recently proposed
PPA multiprocessor array, except that the BRM does
not have the torus connections present in the PPA.
In a series of papers [8, 9, 10] Maresca et al. have
demonstrated that the PPA architecture and the cor-
responding programming environment is not only fea-
sible and cost-effective to implement, it also enjoys ad-
ditional features that set it apart from the standard re-
configurable mesh and the PARBS. Specifically, these
workers have argued convincingly that the reconfig-
urable mesh is too powerful and unrestricted to sup-
port virtual parallelism under present-day technology.
By contrast, the PPA architecture has been shown to
scale and, thus, to support virtual parallelism [8, 9].

The BRM is easily shown to inherit all these attrac-
tive characteristics of the PPA, including the support
of virtual parallelism and the C-based programming
environment, making it eminently practical. As in [8],
we assume ideal communications along buses (no de-
lay). Although inexact, a series of recent experiments
with the PPA {8] and the GCN [13, 14] seem to indi-
cate that this is a reasonable working hypothesis.

3 Preliminaries

Data movement operations are central to many effi-
cient algorithms for parallel machines constructed as
interconnection networks of processors. The purpose
of this section is to review a number of basic data
movement techniques for basic reconfigurable meshes.

Consider a sequence of n items a;, ap, ..., an.
We are interested in computing the prefizx mazima
21,22, .,2n, defined for every j, (1 < 7 < n), by
setting z;=max{ay, a, ..., a;}. Recently Olariu et
al. [12] showed that the task of computing the pre-
fix maxima of a sequence of n numbers stored in the
first row of a reconfigurable mesh of size m x n can be

solved in O(logn) timeif m = 1, and in O(ll—:gs—:) time
if 2 < m < n. Since their algorithm is crucial for un-
derstanding our algorithm for computing the row min-
ima of a monotone matrix, we now present an adap-
tation of the algorithm in [12] for basic reconfigurable
meshes.

To begin, we exhibit an O(1) time algorithm for
computing the prefix maxima of n items on a BRM
of size n x n. The idea of this first algorithm involves
checking, for all j, (1 < j < n), whether a; is the
maximum of ay, a3, ..., aj. The details are spelled
out by the following sequence of steps. The reader
is referred to Figure 3(a)—(f) where the algorithm is
illustrated on the input sequence 7, 3, 8, 6.

Figure 3: Illustrating algorithm Prefiz-Mazima-1

Algorithm Prefix-Maxima-1;

Step 1. Establish a vertical bus in every column 7
(1<j<n-1),from P(1,j) to P(n+1— 7, 7); every
processor P(1,), (1 < j < n—1), broadcasts the item
a; southbound along the vertical bus in column j, as
illustrated in Figure 3(b);

Step 2. Establish a horizontal bus in every row ¢,
(1<i<n-1), from P(i,n+1—1i) to P(i,1); every
processor P(i,n+1—14), (1 <4 < n— 1), broadcasts
the item an41—; westbound along the horizontal bus
in row i (see Figure 3(c));

Step 3. At the end of Step 2, every processor P(3, j),
(437 < n), stores the items 6,41—; and a;; every pro-
cessor P(4,7), (i +j < n+1), sets a local variable b;;
as follows:

b,'j:{

Step 4. Every processor P(i,7), (i +j < n), with
bi; = 1 connects its ports E and W; every processor
P(i,5), (i + j < n), with b;; = 0 broadcasts a 0 east-
bound, as illustrated in Figure 3(d); every processor
P(i,n+1—1), (1 <3< n-1), that receives a 0 from
its W port sets b;; to 0, as illustrated in Figure 3(d);
Step 5. Every processor P(i,7), {i + j < n), con-
nects its ports N and S; every processor P(n+1—1,1),
(1 <£i < n—1), broadcasts b;; northbound on the bus
in column #; every processor P(1,:), (1 <: < n—1),
cc()p)ies the value received into &;;, as shown in Figure
3(e);

Step 6. Every processor P(1,1), (1 <i < n), with
b1y = 1 sets z; to a;; every processor P(1,1), (1 <
i < n — 1), with b;; = 0 connects its ports E and W;
every processor P(1,1), (1 <i<n—1), withb;; =1
broadcasts a; eastbound; every processor P(1,1), (1 <
i < n—1), with bj; = 0 sets z; to the value received
from its port W.

0 lfl+]$ n and Ont1-i < Ay
1 otherwise;

The correctness of the algorithm above is easily seen.
Thus, we have the following result.

Proposition 3.1 The prefiz mazima of n items from
a totally ordered universe stored one item per processor
in the first row of a basic reconfigurable mesh of size
n x n can be computed in O(1) time. O

Next, following [12], we briefly sketch the idea in-
volved in computing the prefix maxima of n items a;,
az, ..., G ona BRM of size mxn with 2 < m < n. Be-
gin by partitioning the original mesh into submeshes
of size m xm, and apply Prefix-Maxima-1 to each such
submesh of size m x m.

We further combine groups of m consecutive sub-
meshes of size m x m into a submesh of size m x m?,
then combine groups of m consecutive submeshes of
size m x m? into a submesh of size m x m3, and con-
tinue until the original mesh is obtained. Note that
if the prefix maxima of a group of m consecutive sub-
meshes are known, then the prefix maxima of their
combination can be computed essentially as in Prefix-
Maxima-1. For details, we refer the reader to [12].

To summarize the above discussion we state the
following result.

Proposition 3.2 The prefiz mazima of n items from
a totally ordered universe stored in one row of a basic
reconfigurable mesh of size m x n with 2 < m < n can
be computed in O(]lfgg—:;) time. 0O

Proposition 3.2 has the following important consequence
that will be used again and again in the remainder of
this work.

Proposition 3.3 Lete be an arbitrary constant in the
range 0 < € < 1. The prefizc mazima of n items from a
totally ordered universe stored one item per processor
in the first row of a basic reconfigurable mesh of size
n® x n can be computed in O(1) time. O

N
K

Kl R Ry R; Rn/k

vk
vEK Ria
Ns74 R
vK
vEk R,vr

Figure 4: [llustrating algorithm Selective- Row-Minima

For later reference we now solve a particular in-
stance of the row-minima problem, that we call the
selective row minima problem. Consider an arbitrary
matrix A of size K x N stored, one item per pro-
cessor, in K rows of a BRM of size M x N. For
simplicity of exposition we assume that A is stored
in the first K rows of the platform, but this is non-
essential. The goal is to compute the minima in rows
1, VE+1, 2VK+1, ..., K- VK +1of A. We
proceed as follows.

Algorithm Selective-Row-Minima;

Step 1. Partition the BMR into N/K submeshes
Ry, Ry,..., Ry k each of size K x K; further parti-
tion each submesh R;, (1 < i < N/K), into submeshes
Ri,l,R,-,z,...,Ri'\/F each of size VK x K, as aillus-
trated in Figure 4;

Step 2. Compute the minimum in the first row of
each submesh R; ; in O(1) time using Proposition 3.3;
leta;1,ai2,..., o /R be the minima in the first row of
R;1,R;2,..., Ri, VK respectively; by using appropri-
ately established horizontal buses we arrange for every
a;j, (1<j< VvK), to be moved to the processor in
the first row and jvK-th column of R; j;

Step 3. We now perceive the original BRM as con-
sisting of VK submeshes T}, Ts,..., T s each of size
VM‘IF x N; the goal now becomes to compute for every
i, (1 € i < VK), the minimum of row (i — 1)K +1 of
A in Tj; it is easy to see that after having established
vertical buses in all columns of the BRM, all the par-
tial minima in row (i — 1)VEK + 1, (2 < i < VK), of
A can be broadcast southbound to the first row of T7;

Step 4. Using the algorithm of Proposition 3.2 com-
pute the minimum in the first row of each T}, (1 <4 <

VE)in O (ﬁfﬁ%) time.

Thus, we have proved the following result.

Lemma 3.4 The taesk of computing the minima in
rows 1, VK +1, 2VK +1, ..., K-VvVEK+1of
an arbitrary matriz of size K x N stored one item per
processor in K rows of a BRM of size M x N can be

performed in O (%4—1\:357’(?) time. 0

If K = M?® for some fixed constant &, (0 < & < 1),
Lemma 3.4 implies the following result.

Corollary 3.5 The task of computing the minima in
rows1, VK +1, 2VK +1, ..., K—-VE+1ofan
arbitrary matriz of size M® x N stored one item per
processor in M® rows of a BRM of size M x N can be

log N} 4ime. O

performed in O (log T

4 Lower bounds for matrix min-
ima problems

This section shows non-trivial lower bounds for the
several matrix minima problems. Since the proofs
for the lower bounds do not use the restriction of
a BRM, they hold for more powerful reconfigurable
meshes that allow any local connections. Furthermore,
the lower bounds hold for an oo x oo reconfigurable
mesh, which has infinitely many processors in two di-
mensions. Formally, this section deals with the follow-
ing problems:

Problem 1 Given an n X n matrix to an n X n sub-
mesh of an co X co reconfigurable mesh, find the
minimum item of the matrix,

Problem 2 Given an n X n matrix to an n X n sub-
mesh of an oo X oo reconfigurable mesh, find the
minimum item of each row,

Problem 3 Given an n X n monotone matrix to an
n x n submesh of an co X co reconfigurable mesh,
find the minimum item of each row,

Problem 4 Given an n x n totally monotone matrix
to an n X n submesh of an co X oo reconfigurable
mesh, find the minimum item of each row.

We will show that Problems 1 and 2 have an Q(loglog n)-
time lower bound, and Problem 3 has an Q(+/Toglog n)-
time lower bound. The lower bound for Problem 4 1s
still open.

The proofs are based on the techniques in [7, 15]
that uses the following lemma to prove the lower bounds
for computing the minimum.

Lemma 4.1 For a graph G = (V,E), U C V is an
independent set if no two vertices of U are joined with
an edge. There exists an independent set U such that

Uz VI IE + V).

This lemma is used to evaluate the number of candi-
dates for the minimum. In other words, for a set V of
candidates and a set E of pairs that are compared by a
minimum finding algorithm, items in the independent
set U have possibility to become the minimum. So, all
items in U are still candidates for the minimum after
comparing all pairs in E.

For simplicity we assume processors on a reconfig-
urable mesh execute the following three phases in a
unit of time:

Phase 1 reconfigure bus,

Phase 2 send at most a piece of data to each port,
and receive a piece of data from each port,

Phase 3 select two elements stored in the local mem-
ory, compare them and change internal status.

We first prove the following lemma as a prelimi-
nary.

Lemma 4.2 Problem 1 requires 2(loglogn) time.

Proof. We will evaluate the number of pairs that can
be compared by an algorithm at Phase 3 of time ¢. In
each unit of time, at most 4n item can be sent to the
outside of the submesh at Phase 2. Hence, at most
4nt items can be sent before the execution of Phase 3
at time t. Therefore, the outside of the submesh can

4nt
compare at most)

< 16n%t? pairs of items.
The inside of the submesh can compare at most n?
pairs in each Phase 3. Totally, at Phase 3 of time t, at
most 16n2t2 4+ n? < 17n%t? pairs can be compared by
the oo x coreconfigurable mesh. Let ¢; be the number
of candidates that can be the minimum after Phase 3
of time £. Then, from Lemma 4.1 we have,

Ct ct_lz/(Z . 17n2t2 +Ct-1)

2
> c12/(35n%Y). (from ¢;—y < n?)

By applying logarithmic, we have

loge; > 2logci—1 — (log35 + 2logn + 2log t)
t
> 2logn—) (2" log35 + 2" logi)
=1
(from cq = n?)
> 2logn — 2'(log 35 + logt)

To complete the algorithm at time T, cr must be less
than or equal to 1. Therefore, 2logn < 27(log 35 +
logT) must hold. Consequently, T = Q(loglogn)
holds. o

Lemma 4.3 Problem 2 requires Q(loglogn) time.

Proof. We assume that Problem 2 can be solved
in o(loglogn) time, and show a contradiction. After
solving Problem 2, the minima of all rows are com-
puted. Then, the minimum of them can be computed
in O(1) time. Therefore, Problem 1 can be solved in
o(loglogn) time, a contradiction. a]

Lemma 4.4 Problem 3 requires Q(v/Toglogn) time.

Proof. Since there is an algorithm that solves Prob-
lem 3 in O(loglogn) time, we can assume that the
lower bound for the Problem 3 is O(loglogn). As-
sume that a row-minima algorithm spent ¢t — 1 time
and it have found no row-minima so far, and now try
to execute the Phase 3 of time ¢ where ¢ < eloglogn
for small fixed € > 0. At most n1~1/4' rows have been
assigned at least

17n2i2/(nl=1/%') = 17n1+1/4";2 comparisons each at
time 7 (1 < i £ ¢). Hence, at time i, at least n —
in!~1/%" rows have been assigned at least 17n!+1/4%;2
comparisons. Assume that the topmost row assigned
at most 17n1*1/4';2 at every time i (1<i<t)and
let ¢; be the number of candidate in the top row after
Phase 3 of time ¢.

\

ci1?/(2- 170!V e))

¢ 2
> c.~_12/(35t2n1+1/4ti2)

(from ¢;—; < n)
By applying logarithmic, we have

logc;
> 2logei; — (log35 + 2logi + (1+1/4") logn)

1
(1—2'/4")logn — > (217" log 35 + 2°~ log 5)
=1
(from ¢p = n)
(1-1/2%)logn — 2(log 35 + log3).

v

[\

Hence, for small fixed € > 0, ccloglogn > 1 for large

n. Therefore, at least n — tn!~1/4' rows including the
topmost row cannot find the row-minima at Phase 3
of time t. That is, at most tn!~1/4" rows can find
the row-minima at Phase 3 of time ¢. There exist
n/(tnl~1/4) = n/% [t consecutive rows that cannot
find the row-minima at Phase 3 of time ¢. From this
fact, we can find n!/4 [t x n'/4"/t sub-matrix such
that all of the n}/4' row-minima are in it but no row-
minima is found. Let d; x d; be the size of sub-
matrix such that all d; row-minima are in it but no
t
row-minima is found at time t. Then, d; > dyy /% /t

(> dpy M 8" for large t) holds. By applying logarithmic
twice,)

loglogd, > loglogd;—; — 3t
t
> loglogn — Z 31
i=1
> loglogn — 3t?

Hence, T = Q(y/loglogn) holds to satisfy dr < 1. ©

5 The algorithm

The goal of this section is to present the details of an
efficient algorithm for computing the row-minima of
an m X n monotone matrix A. The matrix is assumed
pretiled one item per processor onto a BRM R of the
same size, such that for every ¢, j, (1 <i<m; 1<
J < n), processor P(i,7) stores A%, j).

We begin by stating a few technical results that will

replacing for every j, (1 < j < i) —4;_; — 1), en-

come in handy later on. To begin, consider a subset try Ag(ix_; + 7y 3(fk=1)) of Ay, with min{ Ag(ig-1 +
i1,%2,...,1p of therows of A and let 5(z;), (32), .. ., j(ip) 3»3(ik=1)); Ak(tk~1 + 7,3(i))} and by dropping col-

be such that for all k, (1 < k < p), A(ik, j(ik)) is the
minimum in row r. Since the matrix A4 is monotone,
we must have

36@) < 5(2) < ... < j(ip)-

Let Ay, As,..., A, be the submatrices of A defined as
follows:

e A, consists of the intersection of the first 5, — 1
rows with the first j(i;) columns of A4;

e for every k, (2 < k < p— 1), Ai consists of the
intersection of rows #;_; + 1 through 7, — 1 with
the columns j(ix_1) through j(ix);

e A, consists of the intersection of rows ip+1
through m with the columns j(i,) through n.

The following result will be used again and again in
the remainder of this section.

Lemma 5.1 Every matriz Ay, (1 < k < p) is mono-
tone.

Proof. First, let k£ be an arbitrary subscript with
2 < k < p and refer to Figure 5. Let B consist of
the submatrix of A consisting of the intersection of
rows ix-1 + 1 through iy — 1 with columns j(ir—1)
through 5 (7). Similarly, let C;, be the submatrix of A
consisting of the intersection of rows 45_; + 1 through
ix — 1 with columns j(i5_;) through j(ix).

Jlik-1)

i1

.
L

Q

B

J(ix)

Figure 5: Illustrating the proof of Lemma 5.1

Since the matrix A is monotone and A(i 1, 7{ix-1))

is the minimum in row i, it follows that none of the
minima in rows 7;_; +1 through i; — 1 can occur in the
submatrix By. Similarly, since 4(ig, j(ix)) is the min-
imum in row ¢, no minima in rows i, _; + 1 through
iy — 1 can occur in the submatrix Cj. It follows that
the minima in rows i;—; + 1 through iz — 1 must oc-
cur in the submatrix Ag. Consequently, if A is not
monotone, then we violate the monotonicity of A.

A perfectly similar argument shows that 4; and
Ap are also monotone, completing the proof of the
Lemma. o

The matrices Ag, (1 < k < p defined above pair-
wise share a column. The following technical result
shows that one can always transform these matrices
such that they involve distinct columns. For this pur-
pose, consider the matrix A} obtained from A; by

umn j(ix). In other words, A is obtained from A;
by retaining the minimum values in its first and last
column and then removing the last column. The last
matrix A is taken to be A, The following result,
whose proof is omitted will be used implicitly in our
algorithm.

Lemma 5.2 Every mairiz A}, (1 <k < p) is mono-
tone.

In outline, our algorithm for computing the row-
minima of a monotone matrix proceeds as follows.
First, we solve an instance of the selective row min-
ima, whose result is used to partition the original ma-
trix into a number of monotone matrices as described
in Lemmas 5.1 and reflemma;disitnct. This process is
continued untils the row minima in each of the result-
ing matrices can be solved directly.

If m = 1, then the problem has a trivial solution run-
ning in O(log n) time, which is also best possible even
on the more powerful reconfigurable mesh [12].

We shall, therefore, assume that m > 2. exposition

we shall assume that

Algorithm Row-Minima(A);

Step 1. Partition R into /m submeshes T}, T3, ...,
T /m each of size \/m x n such that for every i, (1 <
i < /m), T; involves rows (i — 1)y/m+1 through i/m
of R, as illustrated in Figure 6;

c1

vm| Ty
N €2
N
/| N
N Cit1
Vi | Tym

Figure 6: Illustrating the partition into submeshes T;
and R;

Step 2. Using the algorithm of Lemma 3.4 compute
the minima of the items in the first row of every sub-

mesh T;, (1 <4 < v/m), in O(;22) time;

Step 3. Letcy,cy,..., ¢ /m be the columns of R con-
taining the minima in T3,T%,..., T/, respectively,
computed in Step 2. The monotonicity of A guaran-
teesthatc; <3 < ... <c . Let R, (1 <0 < /m),
be the submesh of consisting of all the processors
P(r,c) such that (i — 1)y/m +2 < r < iy/m and
¢; < ¢ < c+i + 1. In other words, R; consists of the in-
tersection of rows (i—1)y/m+2, i1—1)/m+3,...,iy/m

Cit1

Figure 7: Illustrating the submeshes S;

with columns ¢, c; + 1,¢; + 2,..., ciy1, as illustrated
in Figure 6;

Step 4. Partition the mesh R into submeshes Sy, S,
vy S m with S; of size m X (ciy1 —c;), as illustrated
in Figure 7; for loglogm iterations, repeat Steps 1-3
above in each submesh S;.

The correctness of algorithm being easy to see, we
now turn to the complexity. Steps 1-3 have a com-

bined complexity of O (1:8 :1) In Step 4, c;y; —ciyn

and so, by Lemma 3.4 each iteration of Step 4 also
runs in O (110%%) time. Since there are, essentially,
loglog m such iterations, the overall complexity of the

algorithm is O (I—°ulog log m). To summarize our

logm

findings we state the following result.

Theorem 5.3 The task of computing the row-minima
of a monotone matriz of size m x n with 1 <m < n
pretiled one item per processor in a BRM of the same
s1ze can be solved in O(logn) time if m =1, 2 and in
o (I%’g‘—"'; loglogm) time if m > 2. [

If m = n® for some fixed € < 1 then Theorem 5.3 has
the following consequence.

Corollary 5.4 The task of computing the row-minima
of a monotone matriz of size mxn withm =nf, e <1,
pretiled one item per processor in a BRM of the same
size can be solved in O(loglogn) time. O

6 Conclusions and open prob-
lems

We have shown that the problem of computing the
row-minima of a monotone matrix can be solved ef-
ficiently on the basic reconfigurable mesh (BRM) - a
weaker variant of the recently proposed Polymorphic
Processor Array [8].

Specifically, we have exhibited an algorithm that,
with a monotone matrix A of size m x n, 1<m<
n), stored in a BRM of the same size, as input solves
the row-minima problem in O(logn) time in case m €

O(1), and in 0(1_031 1og10gm) time otherwise. In

logm

particular, if m = n° for some fixed ¢, (0 < € < 1),
then our algorithm runs in O(loglogn) time.

Our second main contribution was to exhibit a
number of non-trivial lower bounds for the task of ma-
trix searching on reconfigurable meshes. In particular,
we obtained an Q(y/Toglogn) time lower bound for the
problem of computing the row minima of a monotone
matrix of size n x n stored in n contiguous rows and
columns of an infinite platform. This is the first non-
trivial lower bound of this kind known to the authors.

There is a discrepancy between the lower bound
obtained and the upper bound provided by our algo-
rithm. narrowing this gap will be a hard problem that
we leave for future research. Yet another problem of
interest would be to solve the row-minima problem for
the special case of totally monotone matrices. trivially,
our algorithm for monotone matrices alse works for to-
tally monotone ones. Unfortunately, to this date we
have not been able to find a non-trivial lower bound
for this problem.

,Acknowledgement: The second author
wishes to thank Mike Atallah for many useful com-
ments and for pointing out a number of relevant ref-
erences.

References

[1] A. Aggarwal and M. M. Klawe, Applications of
generalized matrix searching to geometric prob-
lems, Discrete Applied Mathematics, 27, (1990),
3-23.

A. Aggarwal, M. M. Klawe, S. Moran, P.
Shor, and R. Wilber, geometric applications of
a matrix-searching algorithm, Algorithmica, 2,
(1987), 195-208.

A. Aggarwal and J. Park, Notes on searching
in multidimensional monotone arrays, Proc. 29th
Annual Symposium on Foundations of Computer
Science, October 1988, 497-512,

A. Apostolico, M. J. Atallah, L. L. Larmore,
and S. McFaddin, Efficient parallel algorithms for
string editing and related problems, SIAM Jour-
nal on Computing, 19, (1990), 968-988.

(5] M. J. Atallah, A faster parallel algorithm for
a matrix searching problem, Algorithmica, 9,
(1993), 156-167.

[6] M. J. Atallah and S. R. Kosaraju, An efficient
parallel algorithm for the row minima of a to-
tally monotone matrix, Journal of Algorithms, 13,
(1992), 394-413.

(7] J. JéT’a, An Introduction to Parallel Algorithms,
Addison Wesley, pp.188-189, 1992.

[8] M. Maresca, Polymorphic processor arrays, IEEE
Transactions on Parallel and Distributed Sys-
tems, 4, (1993), 490-506.

[9] M. Maresca and H. Li, Virtual parallelism sup-
port in reconfigurable processor arrays, Univer-
sity of California at Berkeley, UCB-ICSI Tech.
Report-91-041, July 1991.

(2l

(3l

(4]

[10] M. Maresca and H. Li, Hierarchical node cluster-
ing in polymorphic processor arrays, University of
California at Berkeley, UCB-ICSI Tech. Report-
91-042, July 1991.

[11] R. Miller, V. K. P. Kumar, D. Reisis, and Q. F.
Stout, Parallel Computations on Reconfigurable
Meshes, IEEE Transactions on Computers, 42,
(1993), 678-692.

[12] S. Olariu, J. L. Schwing, and J. Zhang, Fun-
damental Data Movement on Reconfigurable
Meshes, International Journel of High Speed
Computing, 6, (1994), 311-323. ‘

[13] D.B. Shu, L. W. Chow, and J. G. Nash, A content
addressable, bit serial associate processor, Pro-
ceedings of the IEEE Workshop on VLSI Signal
Processing, Monterey CA, November 1988.

{14] D. B. Shu and J. G. Nash, The gated intercon-
nection network for dynamic programming, S.
K. Tewsburg et al. (Eds.), Concurrent Compu-
tations, Plenum Publishing, 1988.

[15] L. G. Valiant, Parallelism in comparison prob-
lems, SIAM Journal on Computing, 4, (1975),
348-355.

[16] B. F. Wang and G. H. Chen, Constant time algo-
rithms for the transitive closure problem and its
applications IEEE Transactions on Parallel and
Distributed Systems 1, (1990), 500-507.

