Uy X A 54-3
10. 17)

7) I
(1996.

DERLE BREHF vV RA L FT N TY XA

Fsh 33
NTT ZBERF5EAT

H5%FL BEBNPFIFO LIZBOAVHHMIATAIIENT, —BlEOHLLBF = v 7 KA
YEERODZMEEEL L, HETULADF v ¥ RA Y MRS T 2 B0 H BB (B
HYEBF 2y I R4V PEETOLADF 2y 7RV PORAT—EMRZ DL, ADE 7T LA
DEFUR (L) OF =9 7 B4 ¥ " HUTREF v 7 /A v P e—BiEI 2V LI RELE
DD THb, EEDTULADERDF v 7RS¥ VRBIIH LT—Rit0H 2 Bh - BikE
BFzv I/ BRAVPREXBEVIEZBDOLET, EFULRATWEF 2y 7 #4 ¥ F OBOB/N
HERIETA0BF v 2 RA Y PP VT) X8 %FT,

A Distributed First and Last Consistent Global Checkpoint Algorithm

Yoshifumi Manabe
NTT Basic Research Laboratories

Abstract Distributed checkpoint algorithms for non-FIFO communication channel dis-
tributed systems are discussed. A first consistent global checkpoint for checkpoint initiation
is a set containing a checkpoint for each process in which any checkpoint before the ele-
ment is not consistent with the initiation. A last consistent global checkpoint for checkpoint
initiation is a set containing a checkpoint for each process in which any checkpoint after
the element is not consistent with the initiation. This paper presents distributed algo-
rithms that give a first and last consistent global checkpoint with a minimum number of

checkpoints taken in each process.

1 Introduction

Distributed checkpointing is a fundamental way
of achieving distributed system failure recovery [5].
It obtains a set of states as a consistent global check-
point [7], in which no message is recorded as re-
ceived in one process but not yet sent in another
process.

Most former algorithms assume that communica-
tion channels are FIFO (First-In, First-Out). For
example, in Chandy and Lamport’s algorithm [2],
an initiator process takes its checkpoint and sends
a marker message to all processes. When a non-
initiator process receives the marker for the first
time, it takes a checkpoint for the process and sends
a marker message to all processes. The set of taken
checkpoints is consistent. When the communication
is not FIFO, the following situation occurs: Initia-
tor p; takes checkpoint ¢;, sends marker m, and then
sends message m' to p;. m’ arrives before m. p; re-
ceives m’ and then takes checkpoint c; by receiving
m. (c;,c;) is not consistent since m' is sent after c;
and received before c;.

In order to execute checkpointing in non-FIFO
systems, the information for checkpointing must be
piggybacked on program messages. Venkatesh et
al. [9] and Baldoni et al. [1] have considered such
an approach, though both groups assume FIFO.

Venkatesh et al.’s algorithm deals each checkpoint
initiation independently. Thus the number of addi-
tionally taken checkpoints can be large. Baldoni et
al. have shown an algorithm in which any check-
point belongs to a consistent global checkpoint.
However, their algorithm takes further additional
checkpoints for an additional checkpoint which is
taken for an imaginary checkpoint initiation. If the
initiation is known not to exist, all further addi-
tional checkpoints are unnecessary. Their algorithm
does not consider the problem and the number of
additional checkpoints is not minimized.

This paper describes two distributed check-
point algorithms for non-FIFO communication dis-
tributed systems. The first gives a first consistent
global checkpoint for any checkpoint initiation, in
which any checkpoint before the element is not con-
sistent with the initiation. This global checkpoint
can be used for debugger rollback. The second al-
gorithm gives a last consistent global checkpoint for
any checkpoint initiation, in which any checkpoint
after the element is not consistent with the initia-
tion. This global checkpoint can be used for failure
rollback. The number of checkpoints taken in each
process is minimized.

Section 2 shows system model. Section 3 defines
the first and last consistent global checkpoint. Sec-
tion 4 and 5 show the first and last consistent global
checkpoint algorithm and its proof. Section 6 shows
additional procedures for failure rollback. Section
7 summarizes the paper.

2 System model

The distributed system is modeled by a set of
finite processes {p1,pz2,...,Pn} interconnected by
point-to-point channels. Channels are assumed to
be error-free and have infinite capacity. The com-
munication is asynchronous; that is, the delay ex-
perienced by a message is unbounded but finite.
Channels might not be FIFO.

Process p;’s execution is a sequence of events.
System execution is a set containing each process
execution. The events are internal events, send
events, and receive events. p;’s send event puts a
message to the channel from p; to the destination
process. p;’s receive event gets a message from one
of the channels connected to p;.

The “happened before(—)” relation between the
events are defined as follows [4].

Definition 1 e — €' if and only if

(1) e and €' are ezecuted in the same process and
e is before €.

(2) e is the send event s(m) and €' is the receive
event (m) of the same message m.

(3) e = € and e’ — €' for event €. |

When e and e’ are executed in different pro-

cesses and e — e, there is a sequence of
events e, s(m1),m(m1), s(ma),...,s(myg),m(my), €
in which e — s(my), r(m;) — s(mi1)@ =
1,...,k —1), 7(my) — €, these pair of events are

executed in the same process, and every s(m;) is
executed in a different process. This sequence is
called as a causal sequence from e to e'.

Two special events, L; and T;, are defined for p;.
L1; is an imaginary event before p;’s first event. For
pi’s any event e;, L; — e;. T, is p;’s current event
if p; is not terminated. If p; is terminated, T; is an
imaginary event after p;’s last event. There is no
event e which satisfiese — 1L; or T; — e.

For event e; on p;, two events on p;, causal-past
event, cp{*(j), and causal-future event, cf;*(7), are
defined as follows.

Definition 2 o ¢pf (i) = cf{ (i) = e;.
o cpii(j) is p;’s last event e; which satisfiese; —

e;. If there is no event e; which satisfies e; —

ei, cp; (7) = L;.

o cffi(j) tsp;’s first event e; which satisflese; —
e;. If there is no event e; which satisfies e; —
e, cfi(g) = T;. n

3 First and last consistent global
checkpoint

This paper considers T; and 1; as checkpoints.
L1, is p;’s O-th checkpoint. Let ¢;* be pi's zi-th
checkpoint. We sometimes denote it as z; in sub-
scripts if it is not ambiguous.

process

— . message
Figure 1: Consistent global checkpoint.

Definition 3 A pair of events (e, €e’) is consistent
if and only ife /> € and e A e.

Definition 4 A global checkpoint (c1,cz,...,cn) i3
n-tuple of checkpoints where ¢; is p;’s checkpoint.
A global checkpoint is consistent if and only if all
distinct pairs of checkpoints are consistent.

Figure 1 is a system execution example. G =
{ct,ci,c3} and G" = {c}, c, c2} are consistent, but
G' = {c},c}, 2} is not consistent because of mes-
sage m.

If each process takes checkpoints independently,
there cannot always exist a consistent global check-
point that includes a given checkpoint initiation.
Thus, each process must take some additional
checkpoints. Different consistent global checkpoints
can be obtained according to the additional check-
points. The question is: What kinds of consistent
global checkpoints do we need?

Two situations in which checkpoints are used are
considered. The first one is recovery from process
failure. Consider the case when p; has a failure and
rolls back to a checkpoint. Since the system has to
roll back to a consistent state, the other processes
might be forced to roll back. The additional roll-
back for the other processes must be as small as
possible in order to minimize the overhead of re-
execution. Thus, it is better for the other processes
to roll back to later checkpoints.

The second one is debugging. Consider the case
when an error is observed in p;. In order to detect
the bug that caused the error, p; must roll back to
the state when it is observed. p; rolls back to a
checkpoint. The other processes must roll back to a
consistent state. The debugger user tries to detect
the bug by examining each process. The bug might
be another process p; and a wrong message from p,
might have caused the error. If a later checkpoint
is used for p;’s rollback, the bug might be hidden
by p;’s further execution; for example, exiting from
a subroutine and deleting all variables that decided
the content of the wrong message [6]. Thus, it is

better for the other processes to roll back to former
checkpoints.

For these two problems, we introduce the first
and last global checkpoint.

Definition 5 The first global checkpoint for check-
point initiation ci*, FGE*, is defined as follows.
FGi*(k) = cf*. For i # k, if cpi*(d) = L,
FGF(i) = L1;. Otherwise, FG*(i) is p;’s first
checkpoint after cpi*(1). n

Since T, is a checkpoint, there is at least one check-
point after cpi* (1).

Definition 6 The last global checkpoint for check-
point initiation ¢;*, LG, is defined as follows.
LG (k) = cf*. For i # k, if cfg=(1) = Ty,
LG (i) = Ti. Otherwise, LG*(i) is p;’s last
checkpoint before cfy* (i). |

Since L; is a checkpoint, there is at least one check-
point before cfg*(z).

LGZ* (i) (or LGk (i)) = T; means that p; need
not roll back at all when py rolls back to ci*.

Any checkpoint of p; before cpi*(i) or after
cfZ*(4) is not consistent with ¢g*. Thus, FGF* and
LG3* are the best possible “former” and “later”
global checkpoints.

FG7* and LGL* can be consistent by taking some
additional checkpoints. Venkatesh et al.’s algorithm
[9] obtains consistent LGE* and Baldoni et al.’s al-
gorithm [1] obtains consistent FG¢*, though they
did not define the concept of LG¢* or FG}* and the
number of additional checkpoints is not minimized.

In this paper, the following assumptions are
made.

(1) Any process can initiate a checkpoint at any
time.

(2) All information for taking checkpoints is pig-
gybacked on program messages.

(3) p: decides the element of FGE* (i) (or LGE* (1))
at cf;* (i) and it cannot be changed.

(4) The number of checkpoints other than the
checkpoint initiations must be minimized.

The reason for assumption (3) is as follows. Since p;
cannot be aware of initiation ci* before cfg* (i), it
cannot decide FG3* (i) (or LG*(4)) before cfc* (3).
Since rollback requests might occur at any time, the
elements of FG{* (or LG{*) must be decided as
early as possible. Thus, we assume that p; decides
FGy* (i) (or LG (1)) at efg* (1).

The present algorithms deal with checkpoint ini-
tiations and additional checkpoints differently. If
a user wants to deal with an additional checkpoint
as an initiation, this can be done by executing the
checkpoint initiation procedure for the additional
checkpoint.

Py P
il
1
Xk
Ck g cx1
1
mY r(m)

Figure 2: Rule F1.

4 First consistent global checkpoint
algorithm

Throughout the paper, the value of a variable v
when p; executes event e is denoted as v;.

p; maintains a variable ck;(j,k). ck;(j, k) =z if
p; currently knows that p; knows pi’s checkpoint
c§. Thus ck;(3,4) is p;’s current checkpoint number.
ckf(j, k) = ck;p‘(])(j, k) is always satisfied. When
ckg(i,j) = z, ¢§ — e holds.

The first global checkpoint is obtained as fol-
lows. For a checkpoint initiation cf*, FGE* (i) =
ckpk (k,i) + 1(# k). If (ck*(k,7) + 1)-th check-
point does not exist in p;, FG{*(3) = T;. In order
to make it consistent, additional checkpoints must
be taken.

Now consider the case when a message m from
p; arrives at p;. Here, assume that p; has taken
(z; — 1) checkpoints before the message arrival.

The first case when z;-th checkpoint must be
taken before r(m) is shown in Fig. 2. p; knows pi’s
checkpoint initiation ¢;* and cki* (k1) = z; — 1.

Since p; knows the initiation, ci* — r(m) is sat-
isfied. In this case, if p; does not take z;-th check-
point before r(m), ci* — r(m) — (= FGE* (i)
and FGE* is not consistent.

This condition is represented as follows. Con-
sider a variable ins;(7). ini;(§) = true if p; knows a
checkpoint initiation ¢ that satisfies c;j — cfor p;’s
current checkpoint cjj . The following is the rule for

p; to take a checkpoint before r(m).

(Rule F1) ini;(7) = true.

The updating of ini is done by sending the cur-
rent value of in: in every message.

The second case is shown in Figs. 3 and 4. This
case is when p; might initiate a checkpoint after

cp:(m)(k) and p; must take z;-th checkpoint for the
initiation. Though the checkpoint is unnecessary if
pr. actually does not initiate, p; cannot predict py’s

execution after cp[(™ (k) at r(m).
This case is divided into two subcases. The first
case is ck;(k,i) = z; — 1. px initiates checkpoint

cp* just after cp:(m)(k). Assume that there is a

P Pn B
Xi-—l
cpli 5

x.
cxk T ch Ci 1
k r(n})) mY r(m)
CPi

Figure 3: Rule F2 (1).

Figure 4: Rule F2 (2).

checkpoint ¢§ that satisfies ¢ — 7(m) and cf /A
cp; ™) (k). Since g A cp:(m)(k) FGi*(h) £ =.
If p; does not take z;-th checkpoint before r(m)
& = r(m) - (= FGE* (1)) and FG{* is not
consistent.

The second case is cki(k,i) < z; — 1. In or-
der for p; to initiate a checkpoint that satisfies
FG3*(i) = z;, pr must first receive a message that
carries the information of ¢Z*~! and then initiate.
Assume that there is a message m’ that carries the
information about ¢!, and that it is sent to py

(m)

before cp; "’ and is not received before cp:(m)(k).

Assume also that py receives m’ just after cp:(m)(k)
and then initiates a checkpoint c;*. Further as-
sume that there is a checkpomt c,L that satisfies
¢ — r{m) and ¢ # r(m'). Since ¢f A r(m'),
FG3?*(h) < z. If p; does not take z;-th checkpoint
before r(m), ¢ — r(m) — ¢* and FG{* is not
consistent.

This condition is represented as follows. Intro-
duce a variable ad;(j, k,h). adi(J,k, h) z if
cky(k, h) becomes at least z when py recelves a mes-
sage that carries information about p;,’s ck;(7, 7)-th
checkpoint and is sent to pi but not yet recelved

H py already knows ck;(1, j)-th checkpoint, that is,
cki(3,7) = cki(k,j) or such a message does not ex-
ist, ad;(j,k,h) = -1

g ule F2) maz(ck; (k 1),ad; (1, k,1)) = cki(s,1)

maz(ck;(k, h),ad;(s, k h)) < ck; (z h) for some

pair of (k,h).

Updating ad and ck is done by sending the cur-
rent value of ad and ck in every message.

Algorithm FCGC is shown in Fig. 7. The proof
is shown below.

Theorem 1 FG* is the first global consistent
checkpoint for checkpoint initiation ci*. []

(Proof) It is obvious that FGZ* is the first global
checkpoint.

Next assume that FGP* is not consistent and
there is a pair of checkpoints (cir, < ¢;*) in FGE*
which satisfies ¢;* — c;*. Since there is no event e
that satisfies e A J_,, a:z > 0.

(Case 1) z =k.

If ¢f* — cp*, ckz*(k,h) > zp. Thus, ¢
selected for FG’“c (h).

(Case 2) h = k
There is a causal sequence from ci* to ¢f*. Let
p;’s receive event in this causal sequence be €.
ck;*(i,4) < z; — 1 holds. From the definition of
FGP, ck”c (k,1) = z;—1. Since iniZ* (i) = true and
ck:"(k z) = z; — 1, ini(¢) = true for every event
e in the causal sequence and ins;*(¢) = true. Thus
from (Rule F1), p; must have taken z;-th checkpoint
before e;. It contradicts the definition of e;.

(Case 3) i # k and h # k.

There is a causal sequence from c;* to ci*. Let

p;’s receive event in this causal sequence be €;.
ck&(i,i) < z; — 1 and &' — cf* holds.
ck{i(i,h) = zp since ci* — €.

First, we show that ¢*~* is before e;. If ¢ 7! is
after e;, since ¢~ — ¢i*, zi* — e; — cf*. This
cannot occur from (Case 1). Therefore, ck;(i,1) =

i— 1.

Next, if cf* is before cpf'(k), ¢ and
this cannot occur from (Case 2). Thus, ¢;* is after
cp;’ (k).

(Case 3-1) ck* (ki) = z; — 1.
iince ckii (k1) = ck{i(4,1), adi (i, k, h) =

Since ckp*(k,h) = zn — 1 and c* is after cpj* (k),
ckii(k,h) < < zp — 1. Thus, cke‘(k h) < cki (i, h) is
satisfied and pi must have taken z,;-th checkpomt
before e; by (Rule F2). It contradicts ck{*(i,i) =
xTr; — 1.

(Case 3-2) cki*(k,i) < z; — 1.

Since cki*(k,i) = z; — 1, there is a causal sequence
from ¢ to ¢f*. Take one of the above causal
sequences in which for each receive event in the se-
quence, ck;(l,7) < z; — 1 before the receive event,
where p, is the receiver process.

First, consider the case when no send event in
the causal sequence is before ¢p{*. In this case, the
first send event s(ml), which is p;’s event is after e;
and ci* — s(mp) is satisfied. Thus, ¢f* — ¢* and
this cannot occur from (Case 1). Thus, some send

* cannot be

k . T
E & TG

—1 for all

events are before cp;*. Let the last one be s(m) and
the receiver process be pys.

(Case 3-2-1) r(m) is before cpf (k').
Note that k' # k and k' # i. From the assumption,
lckf"(k’,z’) = ck;'(4,1) and ad{* (3, k’,]) = —1 for any

Since the next send event in the causal sequence
is after cp®(k), ckZ*(k,) > ck® (g, 1)(=
ck;*(k',1)) for any I. Thus, ck§*(k',h) < z — 1
and (Rule F2) is satisfied for (k’, h). Therefore, p;
must have taken z;-th checkpoint before e; and it
contradicts ck;*(i,7) = z; — 1.

(Case 3-2-2) r(m) is after cp§* (k).

Let the sender of m be pgn. First, cki*(k,1) >
ki ™ (K, 1) > maz(ckd (K1), cki™ (k" 1)) for
any [Thus, cki*(K',h) < =z, — 1 and
ck,is,m)(k” ,h) < zp — 1 are satisfied.

In addition, since ck{*(k',7} < z;-1, ck,if,m)(k”, 1)
z; — 1, and s(m) is before cpf*, ad{* (i, k',1) = z; ~ 1
and ad;*(z, k', h) < zn — 1 because of m.

Thus, (Rule F2) is satisfied for (k’, k) and p; must

have taken z;-th checkpoint before e;. This contra-
dicts ck{*(¢,1) = z; — 1.]

Theorem 2 Every additional checkpoint taken by
FCGC is necessary for obtaining the first consis-
tent global checkpoint for a checkpoint initiation. B

(Proof) The proof is done by induction on the
additional checkpoints. When p; takes additional
checkpoint ¢’ just before a receive event e, we show
that the checkpoint is necessary under the assump-
tion that all previously taken additional checkpoints
before cp{ are necessary.

ckf(i,1) = x; — 1 is satisfied before taking the
checkpoint.

(Case 1) (Rule F1) is satisfied at e.

From (F1), there is a checkpoint initiation c§* that
satisfies cf* — e and cki*(k,i) = z; — 1. If p; does
not take z;-th checkpoint before e, ¢;* — ¢f* and
FG3* is not consistent.

(Case 2) (Rule F2) is satisfied at e.

(Case 2-1) ckf(k,1) = ckf(1,1).

p; cannot know py’s event sequence after cpf at e.
Suppose that pj initiates checkpoint ci* just after
epf(k). FGEF (i) = x; since ckf(k,i) = z; — 1. Let
FGy*(h) be zj,. zp = ck(k,h) + 1.

Since ck{(k,h) < ckf(i,h) from (F2), ci* — e.
Therefore, if p; does not take z;-th checkpoint be-
fore e, c;* — ¢;' and FG3* is not consistent.

(Case 2-2) ckg(k,1) < ckg(4,1).

From (F2) and the definition of ad, there is a mes-
sage m sent from a process py to pi that sat-
isfies ckg ™ (K',i) = ckg(d,4) and cki™(k' h) =
adf (i, k, h).

Suppose that pp receives m after cpf(k) and
then initiates a checkpoint cf*. In this case,
FGF(3) z;. Let FG{*(h) be zp. =z,

maz(ckf(k, h),adf (i,k, b)) + 1 < ckf(s, h).
it — e

Therefore, if p; does not take z;-th checkpoint
before e, ¢;* — ¢ and FGE* is not consistent. M

Thus,

The minimality of the number of additional
checkpoints is shown below.

Theorem 3 For any distributed first consistent
global checkpoint algorithm A, there is a system ez-
ecution in which additional checkpoints are fewer by
FCGC than by A.

Proof) Consider a consistent global state G =
€1,...,€n) in which A and FCGC execute differ-
ently about taking checkpoints at some e; € G and
equivalently at any e fore — ¢;(j = 1,...,n). From
Theorem 2, the case when FJ CGC takes a check-
point and A does not take one at e; does not occur.
Thus, A takes a checkpoint and FCGC does not
=take one at e;. Counsider the following execution af-
ter G. p;j(j = 1,...,n) initiates a checkpoint just
before every event when p; must take an additional
checkpoint by FCGC. In this case, FCGC takes no
additional checkpoints after G and there are fewer
additional checkpoints than in A.]

5 Last consistent global checkpoint
algorithm

This algorithm does not need a matrix ck;(7, k),
instead, it uses a vector ck;(j) that satisfies ck;(7) =
Ck,’ (’L,]).

Consider the case when p; realizes p;'s checkpoint
initiation ci* at receive event cfy*(t). Let the mes-
sage be m and its sender be p;. p; sets LG}* (1) as
pi’s latest checkpoint or takes an additional check-
point before 7(m) and sets LG* (7) as the new one.
In either case, LGE*(z) is the last checkpoint before
cfi*(¢) and LG3* is the last global checkpoint.

To make LGY* consistent and minimize the
number of additional checkpoints, p; must decide
whether p; takes a new checkpoint before r(m). As-
sume that p; has taken (z; — 1) checkpoints before
the message arrival.

The first case when z;-th checkpoint must be
taken before r(m) is shown in Fig. 5. This case
is when LGE* (i) has not been decided and ¢¥*~! —
LG{*(h) for some (k,h). Since LGF*(h) — r(m)
is satisfied, if p; does not take a ckheckpoint be-
fore r(m), there is no checkpoint consistent with
LG (h).

’.[khis condition is represented as follows.

Consider variables lg;(k, h) and dp;(k, h). lg;(k,h)
has the element of LG7*(h). lgi(k,k) = —1 means
pr does not initiate a checkpoint. lg;(k,h) = ~1
means LG *(h) is unknown to p;. dp;(k,h) has the
dependency information, which means if dp;(k, h) =
z, ¢ — c for some ¢ € LG}*.

(Rule L1) lg;(k, k) # -1, lgi(k,i) = —1, and
cki(i) = dp;(k,1) for some k.

lg; and dp; are piggybacked on each message.
When a message arrives, if dp(or lg) on the message
is larger than the current one, the value is stored to

Figure 6: Rule L2.

dp;(or lgig. When lg;(k,7) is set to x;, dp; k,jg
is updated by taking maximum of current dp;(k, j
and ckli(k,j).

The second case is shown in Fig. 6. This case is
when p; sends a message m; to a process p, after
¢®~! and neither LG*(3) nor LGE*(h) has been
decided. This additional checkpoint is necessary if
there occurs the situation in which p; sends message
my to p, after 7(m) and p, executes r(m;), takes a
checkpoint cf*, and then executes 7(mz).

Now, since cff*(h) = r(my), LG*(h) is ci* or
an additional checkpoint that is taken just before
r(ms). In either case, ¢ ™" — c;* and LGE* is not
consistent if LG}*(i) = z; — 1. Therefore, p; must
take an additional checkpoint before r(m).

This condition is represented as follows. Consider
a variable st;(j). st;(j) = true if p; has sent a
message to p; after p;’s latest checkpoint.

Rule L2) lgi(k,k) # -1, loi(k,i) = —1,
lg: k,h; = —1, and st;(h) = true for some pair
of (k,h).

LG3* is obtained as follows. For a checkpoint
initiation cp*, if cfg*(2) = Ty, LGF*(i) = T:. Oth-
erwise, LG+ (i) = I+ O (k,4).

Note that cfg*(i) = cf;*(¢) in some cases, that
is, the information for two different initiations by

the same process arrives to a process at the same

time. In this case, LG3*(i) = LG}*(i) and these
two initiations are handlied by one procedure.

Algorithm LCGC is shown in Fig. 8. The proof
is shown below.

Theorem 4 LG3* is the last global consistent
checkpoint for checkpoint initiation ci*.

(Proof) It is obvious that LGY* is last global
checkpoint.

Next assume that LGE* is not consistent and
there is a pair of checkpoints (c;",cf*) in LG}* that
satisfies ¢j* — ¢*. Since there is no event e that
satisfies Tp — e, ci* # T holds.

(Case 1) h = k.

p;’s event e; that satisfies ¢f* — e; must be af-
ter cfy*(¢). Since LG%*(3) is a checkpoint before
cfi* (i), cg* — ¢f* is not satisfied.

(Case 2) 1 = k.

Since cf* — cf*, dpr(k,h) > xp at c;* and pi’s
later checkpoint initiations. Thus, dps(k,h) > zp
at cff*(h) and py does not select c;* as LG (h)
from (Rule L1).

(Case 3) h # k and i # k.

Let a causal sequence from c;* to cf* be ¢i*, s(my),
r(my), ..., s(ma), 7(my,), ¢i*. Call a the length of
the causal sequence. Without loss of generality, let
the pair (cf*,c{*) be a pair with a shortest-length
causal sequence.

Let er, = cff*(h). Note that s(m,) is before es.
If not, ci* — ep — s(my) — ;' is satisfied and it
contradicts (Case 1).

Let the receiver of m; be py. First, assume that
lgpt(k,d) = z4 # —1, that is, lgn(k,d) has been
decided at e;. If a # 1(thus, d # i) and ¢}? is
before r(m;), ci* — ¢f* and this contradicts that
(ci*,cf') is a pair with a shortest-length causal se-
quence. Thus, c§? is after r(m;) (or ¢ = 1) and
cih — c5¢ holds. Since lgg*(k,d) = za, there
is pg’s event ey that satisfies ¢j? — eq — ey,
Ig5% (k,d) = x4, and lg3*(k, k) = lgg"(k, k). Since
cih = ¢34, dpi*(k,h) > zp, and py does not select
ci* as LG*(h) from (Rule L1).

The remaining case is when lg;" (k,d) = —1 at ep.
In this case, since st;"(d) = true and lg;* (k,d) =
—1, pr does not select ci* as LG;*(h) from (Rule
L2). u

Theorem 5 Every additional checkpoint taken by
LCGC is necessary for obtaining the last consistent
global checkpoint for a checkpoint initiation. |

(Proof) We show that when p; takes an additional
checkpoint just before a receive event e, the check-
point is necessary under the assumption that all
previously taken additional checkpoints before cp{
are necessary.

Assume that p; has taken z; — 1 checkpoints.
Thus ck{ (i) = z; — 1. Let lgf(k, k) = x&.

(Case 1) (Rule L1) is satisfied at e.
Since ckf(¢) = dpf(k,1), ¢! — LGi*(h) is sat-

3

isfied for some h. If p; does not take a checkpoint

before e, LG* (i) — LGg*(h) is satisfied. There-
fore, p; must take an a,dcfitional checkpoint before
e.
(Case 2) (Rule L2) is satisfied at e.

Let m; be the message sent from p; to p, after
¢!, Since lg§(k,h) = —1, p; does not know the
element of LG}*(h) at e. Consider the case that
p; does not taf(e an additional checkpoint before
e and LG*(i) = z; — 1. There is an imaginary
execution after cp{ as follows. p; sends message mo
to py. pn executes r(my), takes a checkpoint cf,
and then executes r(mg). Note that p, might take
an additional checkpoint ¢ at r(m;). In either
case, cfg*(h) is 7(m3) and LG3*(h) is cf or cf .
Thus, cF7l - 5(mg) — cE(— ¢f') and LGF* is not
consistent.

The proof of the minimality of the number of ad-
ditional checkpoints is exactly the same as the one
for first consistent global checkpoint.

Theorem 6 For any distributed last consistent
global checkpoint algorithm A, there is a system ez-
ecution 1n which additional checkpoints are fewer by
LCGC than by A.

6 Rollback procedures

This section shows additional procedures for roll-
back using LG.

The outline of a rollback state decision, which
is similar to the one in [3] is as follows. When p;
initiates a rollback, p; selects its checkpoint for roll-
back. Let the checkpoint be LG}* (i), that is, it is
initiated by pr. Each process has a set R;. Ini-
tially, R; = ¢. p; sends a message to py to roll back
from LGP*(k). pr sets Ri as the set of processes
to which py has sent a message after LG * (k). px
sends rollback message (LGL*, Ri) to every pro-
cess in Ry. Process p;, which receives the rollback
message (LGE*, R), calculates the set of processes,
R;, to which p; has sent a message after LG}*(7)
and sends a rollback message (LG*, RUR;) to ev-
ery process in R; — R. With this procedure, only
the processes that might need to rollback execute
the rollback procedure and the other processes do
nothing.

In order to re-execute after the rollback state, the
messages sent and not received before the rolled-
back consistent global checkpoint are necessary.
The message retransmission method is similar to
the one in [8]. During the execution, each process
saves every sending message with a sequence num-
ber for each channel. Each message contains the se-
quence number and an incarnation number for each
channel which increments when a rollback occurs.
When process p; is rolled back to ¢;, p; informs pro-
cess p; of the sequence numbers of unreceived mes-
sages by sending the maximum sequence number
n; ; received from p; before c¢; and missing sequence
numbers before n; ; (since the communication is not
FIFO). p; resends messages sent before ¢; and not
received before ¢; with a new incarnation number.

p; discards messages with an old incarnation num-
ber.

7 Conclusion

This paper showed checkpoint algorithms for ob-
taining a first and last consistent global checkpoint.
The number of additional checkpoints is shown to
be minimized. One of the remaining problems is ob-
taining a consistent global checkpoint, which does
not have to be the first or the last, with the mini-
mum number of additional checkpoints.

Acknowledgment The author would like to
thank Dr. Hirofumi Katsuno of NTT for his en-
couragement and suggestions.

References

(1] Baldoni, R., Helary, J.M., Mostefaoui, A.,
and Raynal, M.: “Consistent Checkpointing in
Message Passing Distributed Systems,” INRIA
Technical Report No. 2564 (June 1995).

[2] Chandy, K.M. and Lamport, L.: “Distributed
Snapshots: Determining Global States of Dis-
tributed Systems,” ACM Transaction on Com-
puter Systems, Vol. 3, No. 1, pp. 63-75 (Feb.
1085).

[3] Higaki, H., Shima, K., Tachikawa, T., and Tak-
izawa, M.: “Checkpoint and Rollback in Asyn-
chronous Distributed Systems,” IPSJ Technical
Repcirt SIGDPS, 96-DPS-76, pp. 43-48 (May
1996).

[4] Lamport, L.: “Time, Clocks, and the Ordering
of Events in a Distributed System,” Commu-
nications of ACM, Vol. 21, No. 7, pp. 558-565
(July 1978).

[5] Manabe, Y. and Aoyagi, S.: “Distributed
Checkpoint and Rollback Algorithms,” Journal
of IPS Japan, Vol. 34, No. 11, pp. 1366-1374
(Nov. 1993) (in Japanese).

Manabe, Y. and Imase, M.: “Global Conditions
in Debugging Distributed Programs, ” Journal
of Parallel and Distributed Computing, Vol. 15,
No. 1, pp. 62-69 (May 1992).

[7] Netzer, R.H. and Xu, J.: “Necessary and Suf-
ficient Conditions for Consistent Global Snap-
shots,” IEEE Trans. on Parallel and Distributed
Systems, Vol. 6, No. 2, pp. 165-169 (Feb. 1995).

[8] Sistla, A.P. and Welch, J.L.: “Efficient Dis-
tributed Recovery Using Message Logging,”
Proc. of 8th Symp. on Principles of Distributed
Computing, pp. 223-238 (Aug. 1989).

[9] Venkatesh, K., Radhakrishnan, T., and Li, H.F.:
“Optimal Checkpointing and Local Recording
for Domino-Free Rollback Recovery,” Informa-
tion Processing Letters, Vol. 25, No. 5, pp. 295—
303 (July 1987).

6

program FCGC; /* program for p;. */
const n = ...; /* number of processes */
var ck(n,n), ad(n,n,n): integer;
ini(n): boolean;
procedure checkpoint begin
take a checkpoint;
ck(i, 1) := ck(i,7) + 1;
for each k,h do ad(i, k, h) := —1;
ini(z) :=false
end; /* end of subroutine */

/* main */

initialization begin
for each k,h do ck(k,h) := —1;
ck(z,1) :=0;
for each k, h,! do ad(k, h,l) := —1;
for each k do ini(k) :=false;

end /* end of initialization */

when p; initiates a checkpoint begin
checkpoint;
for each k # i do ini(k) :=true;
end /* end of checkpoint initiation */

when p; sends m to p; begin
send(m, ck, ini, ad) to p;;
for each k do
if ck(j, k) < ck(i, k) and ad(k, j, k) = —1
then for each h do ad(k, j, h) := ck(3, h);
end /* end of message sending */

when message (m, mck, mint, mad)
arrives from p; begin
for each k do begin
if ck(i, k) < mck(j, k) then ini(k) := mini(k);
if ck(i, k) = mck(j, k) then
ini(k) := mini(k) V ini(k);
end
for each k,h do
ck(k, h) := maz{ck(k, k), mck(k, h));
for each k do ck(i, k) := maz(ck(i, k), mck (34, k));
for each k,h do begin
if ck(i, k) = ck(h, k) then
for each ! do ad(k,h,l) := -1
else if ck(i, k) = mad(k, h, k) and
ck(i, k) = ad(k, h, k) then for each | do
ad(k, h,1) := min(ad(k, k,1), mad(k, h,1))
else if ck(i, k) = mad(k, h, k) and
ck(i, k) > ad(k, h, k) then
for each I do ad(k, h,1) := mad(k, h,1)
else if ck(i, k) > mad(k,h, k) and
ck(i, k) > ad(k, h, k) then
for each I do ad(k, h,l) := —1;
end;
if ini(i) or for some (k,h),
(maz(ck(k, 1), ad(i, k,1)) = ck(i,i) and
maz(ck(k, h), ad(i, k, b)) < ck(i, b))
then checkpoint;
receive m;
end /* end of message arrival */

Figure 7: Algorithm FCGC.

program LCGC; /* program for p;. */
const n = ...; /* number of processes */
var ck(n), lg(n,n), dp(n,n), ock(n): integer;
/* ock has the value of ck
when the latest checkpoint is taken */
st(n): boolean;
procedure checkpoint begin
take a checkpoint;
ck(i) := ck(3) +1;
for each k do st(k) :=false;
for each k do ock(k) := ck(k)
end; /* end of subroutine */

/* main */

initialization begin
for each k # i do ck(k) :== —1;
for each k # i do ock(k) := —1;
ck() == 0; ock(s) :=0;
for each k,k do lg(k,h) := —1;
for each k do st(k):=false;

end /* end of initialization */

when p; initiates a checkpoint begin
checkpoint;
for each k # i do Ig(s, k) := —1;
lg(i,1) := ck();
for each k do dp(i, k) := ck(k);

end /* end of checkpoint initiation */

when p; sends m to p; begin
send(m, ck, lg, dp) to p;;
st(7) :=true;

end /* end of message sending */

when message (m, mck, mlg, mdp)
arrives from p; begin
for each k do begin
if lg(k, k) = mig(k, k) then
for each h do begin
lg(k, h) := maz(lg(k, h), mig(k, h));
dp(k, k) -= maz(dp(k, h), mdp(k, h));
end
else if Ig(k, k) < mlig(k,k) then
for each h do begin
lg(k, k) := mlg(k, h); dp(k, h) := mdp(k, h);
end
end /* end of loop by k */
if for some k, lg(k,k) # —1 and Ilg(k,i) = -1
and (ck(i) = dp(k,i) or
(for some h, lg(k,h) = —1 and st(h)))
then checkpoint;
for each k do
if lg(k, k) # —1 and lg(k,i) = —1 then begin
lg(k,) := ck(i);
for each h do
dp(k, h) := maz(dp(k, h), ock(h));
end;
for each k do ck(k) := maz(ck(k), mck(k));
receive m;
end /* end of message arrival */

Figure 8: Algorithm LCGC.

