7N T Y R A -2
(1996. 10. 17)

2EBIROEAD & PEFAH 4T 72 9 WHI 7)V T X 4
WE BE SEL EET MEBAL ER Bk

=B mBERN R K F B RE
T 630-01 ZEEAENTHEILET 8916-5

E-mail: akihir-f@is.aist-nara.ac.jp

FE 2 fEEEROIERAR L 13, FERICOVWTRDIVEEZE I TOHRET ROLUETH 5.
T72, BAER EERORLEER L L, FEFEICOV TR EVEEEOEE R KD UETH 5.
AlaTid, EAO SEHLHCT, BHARK ORI SERTTL) BH T VT X8 ZRT. &
DTN T) X a3 nx n OASTERIZK LT, EREW PRAM ETid O(logn) B, n2/logn 7’0
v ¥ THEITTE, common CRCW PRAM ETiZ, O(loglogn) B, n?/loglogn 70t v ¥ T
EATTED. 372, 27Uy DAY L aEF N, NAN—F 1 —TFF) ETIE O(n?/p® +n)
i, O(n?/p® + (nlogp)/p) B TENENETTE L. ZRLDERIY, ZO7 VT XLl
PRAM, AV a7 (1<p< /), BEF, NA13—F2—TEFNV (1<p<n/logn) LT
TAMFETHD.

X¥—7—F: $F7 VT X4, TR, SRS PRAM, Ay Yo N4 S—Fa2—7

A parallel algorithm for weighted distance transforms
of binary images

Akihiro Fujiwara, Michiko Inoue, Toshimitsu Masuzawa and Hideo Fujiwara

Graduate School of Information Science
Nara Institute of Science and Technology (NAIST)
8916-5 Takayama, Ikoma, Nara, 630-01 Japan

E-mail: akihir-fQ@is.aist-nara.ac.jp

The distance transform of a black and white binary image is an operation which computes,
for each pixel, the distance to the nearest black pixel. The nearest feature transform of the
image is also an operation which computes, for each pixel, the coordinates of the nearest black
pixel. This paper presents a parallel algorithm for the weighted distance transform and the
weighted nearest feature transform of an n x n binary image. We show that the algorithm runs
in O(logn) time using n?/log n processors on the EREW PRAM and in O(loglogn) time using
n?/loglogn processors on the common CRCW PRAM. We also show that the algorithm runs
in O(n?/p? + n) time on a p x p mesh and in O(n?/p? + (nlogp)/p) time on a p? processor
hypercube (for 1 < p < n). The algorithm is cost optimal on the PRAMs, on the mesh (for
1 < p < y/n) and on the hypercube (for 1 < p < n/logn).

Key words: Parallel algorithm, distance transform, nearest feature transform, PRAM,
mesh, hypercube

_9*

1 Introduction

The distance transform of a black and white
binary image is an operation which computes,
for each pixel, the distance to the nearest
black pixel. The distance transform is first
introduced by Rosenfeld and Pfaltz[16], and
is used in many image processing operations,
such as nearest neighbor interpolation, mor-
phological processing (skeletonization, thin-
ning) and pattern matching[13].

These distance transforms are based on
many kinds of distances functions because
the distance functions have different efficiency
or usefulness. The distance transform based
on the Fuclidean distance is preferred in
various applications, but the Euclidean dis-
tance transform is a time-consuming opera-
tion. Consequently, many approximations to
the Euclidean distance have been considered,
such as city block, chessboard and chamfer
distances.

For distance transforms of n x n binary
images based on these distances, many O(n?)
time sequential algorithms are proposed®. For
example, Borgefors[2] proposed a city block
distance transform algorithm. The algorithm
consists of only two scans; one is downward
scan from left to right and the other is upward
scan from right to left. Hirata[8] proposed an
algorithm which is applicable to a wide class
of distance transforms. The class contains al-
most all kinds of distance transforms for im-
age processing operations.

For parallel computations, some algo-
rithms are proposed. Schwarzkof[17] pro-
posed an O(logn) time algorithm for the city
block distance transform and an O(log”n)
time algorithm for the chessboard distance
transform on the mesh of trees with n?
Processors. Lee and Horng [11] pro-
posed a chessboard distance transform al-
gorithm. The algorithm runs in O(logn)
time using O(n?/logn) processors on the
EREW PRAM, in O(log n/ loglogn) time us-
ing O(n?loglogn/logn) processors on the
CRCW PRAM and in O(logn) time on an
O(n?) processor hypercube.

Lee and Horng also showed in [12]
that computation of the chessboard distance

*Recently, some O(n?) time sequential algorithms
[31{4](8] are also proposed for the Euclidean distance
transform.

transform is interchangeable with compu-
tation of the medial axis transform. For
the medial axis transform, Fujiwara et
al. [7] proposed an efficient parallel algo-
rithm. By using the algorithm, the chess-
board distance transform can be computed
in O(logn) time using n?/ log n processors on
the EREW PRAM, in O(loglogn) time us-
ing n?/loglogn processors on the common
CRCW PRAM, in O(n?/p? + n) time on a
p x p mesh and in O(n?/p? + (nlogp)/p) time
on a p? processor hypercube (for 1 < p < n).

Some algorithms are also proposed for
real machines. Paglieroni[14] proposed a uni-
fied distance transform algorithm and its ar-
chitecture. Embrechts and Roose proposed
two algorithms, one is for the city block dis-
tance transform[5] and the other is for the
chamfer3-4 distance transform{6]. They im-
plemented their algorithms on a parallel com-
puter iPSC/2.

In this paper, we present a parallel al-
gorithm for the weighted distance trans-
form. The weighted distance is a generaliza-
tion of above mentioned distances, such as
city block, chessboard and chamfer distances,
which are approximations to the Euclidean
distance. Complexities of our algorithm are,

e O(logn) time, n?/log n processors
(EREW PRAM)
¢ O(loglogn) time, n?/loglogn proces-
sors (common CRCW PRAM)

o O(n?/p* + n) time, p* processors
(mesh)
e O(n?/p* + (nlogp)/p) time, p* proces-
sors (hypercube)

where 1 <p <=n.

The cost of a parallel algorithm is defined
as the product of the running time and the
number of processors of the algorithm. Also a
parallel algorithm is called cost optimal if its
cost is equal to a lower bound of sequential
time for the problem. Finding a cost optimal
parallel algorithm is an important objective
in parallel computation research. Our algo-
rithm is cost optimal on the PRAMs, on the
mesh (for 1 < p < /n) and on the hypercube
(for 1 < p < n/logn).

Our algorithm is also applicable to the
nearest feature transform[13] with the same
complexities. The nearest feature transform

is an operation which computes, for each
pixel, the coordinates of the nearest black
pixel. From the result of the nearest fea-
ture transform, we can easily solve the nearest
neighbor problem and the Voronoi diagram
problem in binary images. Our algorithm
first computes the nearest feature transform
of an input image, and then computes the
distance transform. Note that most of known
algorithms for computing distance transforms
cannot apply to the nearest feature trans-
form.

This paper is organized as follows. In Sec-
tion 2, we give definitions and models of par-
allel computation. In Section 3, we describe
our algorithm, and in Section 4, we discuss
complexities of the algorithm for each model.
We conclude this paper in Section 5.

2 Preliminaries

2.1 Weighted distance, dis-
tance transform and near-
est feature transform

Given an n x n image I, let If,j] € {0,1}
denote a value for a pixel (i,5) of I (0 <1: <
n—1,0 < j < n—1), where i (resp. j)
stands for the row (resp. column) index. We
assume the pixel (0, 0) is on the top left corner
of the image. For clarity of description, we
call a pixel (7,7) a black pixel if I[i, ;] = 1,
otherwise we call the pixel a white pixel.

The weighted distance d,,(p;, p2), between
a pixel py = (i1,41) and py = (42, J2), is de-
fined by the following expression,

il

wolir — 12| + wiljy — Jol
(if [i1 ~ 42| < |1 = 72|)

wy |4y — ga| + wolj1 — Ja
(otherwise)

dw(p1, p2)

where wy and w; are nonnegative constants.
The weighted distance can be considered as
a generalization of many distance functions.
For example, d, is

e a city block distance

(if (wo,wq) = (1,1))
¢ a chessboard distance

(lf (ZU(), wl) = (1, O))
¢ an optimal chamfer distance

(if (wo, w1) = (1,1/v2-14+/v2 - 1))

e a chamfer2-3 distance

(if (w0> wl) = (2= 3))

o a chamfer3-4 distance
(lf (wo,wl) = (3,4))
¢ a quasi-Euclidean distance
(lf (wﬁawl) = (L \/5 - 1))
and so on[13].

The distance transform of a black and
white binary image is an operation which
computes, for each pixel, the distance to the
nearest black pixel. In other words, the dis-
tance transform computes an array DTt j]
given by

DTTi, j| = min{d(p, ps)|ps € Black},

where d(p,pg) is the distance from the pixel
p = (1,7) to a pixel pg and Black is a set of
all black pixels in an input image’. If d = d,,
we call the distance transform the weighted
distance transform.

The nearest feature transform is an op-
eration which computes, for each pixel, the
coordinates of the nearest black pixel. In
other words, the nearest feature transform
computes an array NFT]i,j| of coordinates
given by

NFT[i,j] = (z,y) st. d(p,ps) = DT[i,j),

where p = (¢,) and pg = (z,y) € Black.

From these definitions, the DT of an input
image is uniquely defined, but the N FT may
not be unique. It is clear that the DT can
be derived from the NFT easily. Examples
of the DT and the NFT are in Fig.1.

2.2 Plarallel computation mod-
€els
Parallel computation models used in this pa-
per are the PRAM, the mesh and the hyper-
cube. The PRAM employs processors which
have the capability to access any memory cell
in a shared memory synchronously. Several
models of the PRAM have been proposed
with regard to simultaneous reading and writ-
ing to a single memory cell[9]. In this paper,
we use the EREW (exclusive read exclusive
write) PRAM and the common CRCW (con-
current read concurrent write) PRAM. The
EREW PRAM does not allow any concurrent
access to a single memory cell. Concurrent
accesses to the same cell for read or write in-
structions are allowed on the CRCW PRAM.

tWe assume Black # ¢.

312111012 0,310,310,310,30,310,3

3t211})14213 2,2(2,212,2]0,310,3]0,3

2(110}11]2(3 2,212,212,212,212,212,2

2(1]10f(1}2(2 3.213,213,23,2[3,215.5

3(21112(12]1 3,213,213,2[3,2]5,5[5.5

41312121110 3,213,213,2{5,515,515.5
(a) (b) ©

Figure 1: Examples of the DT and the NFT: (a) an input image I, (b) the DT of I and (c)
the NFT of I. (The DT and the NFT are based on city block distance, i.e. wo = w; = 1)

In the case of concurrent writing, different as-
sumptions are made to resolve the write con-
flict. On the common CRCW PRAM, proces-
sors are allowed to write values to the same
memory cell only when they are attempting
to write the same value.

The p x p (two-dimensional) mesh is a
SIMD machine with p? processors arranged
intop xpgrid. Let P,, (0<z<p-1,0Z
y < p — 1) represent a processor located in
arow z and a column y. A processor P, is
connected to processors Py y_1, Po—1y, Pry+1
and P,;1,, whenever they exist.

The p processor hypercube is also a SIMD
machine, which consists of p = 2¢ processors
interconnected into a d-dimensional Boolean
cube. The d-dimensional Boolean cube is
defined as follows. Let 24124 2°:-% be
the binary representation of z, where 0 <
z < p— 1. Then processor P, is con-
nected to processors P, (0 < k < d —1),
where z(¥) Zg124-n-Zx+ 2t In this
paper, we assume a 2-D indexing scheme
of the processors[15], that is, processor P,
is denoted by P.,, where 24 124-2---20 =
Ty 1Tg -2 ToYd-1Yd'—2""" Yo and d = 2d'.

On the mesh and the hypercube, each pro-
cessor can send or receive a word to or from
one of its connected processors in a unit time.

3 An algorithm for weight-

ed distance transforms
3.1 Basic idea

First we introduce a basic idea of our algo-
rithm.

1Zy is the complement of z.

@\ Pg
4 N
N

Pg \\

N

Figure 2: A pixel p and Py(3,5), Ps(i,j),

To compute the weighted distance trans-
form and the nearest black pixel easily, we
divide an input image into four set of pix-
els for each pixel (3,j), which are Py(3,J),
Ps(i,5), Pe(i,j) and Pw(i,j). These four
sets are given by

Py(i,j) = {(E-g,j+h0<g<i,

max{—j, —g} < h < min{n —1-j,g}}

{G+g,i+M0<g<n—-1-4
ma-x{_ja _g} S h S min{n -1 —j;g}}

Pxg(4,5) {(i+g,j +h)|max{—i,—h} < g
Smin{n—l—i,h},OShSn—l—j}}

Pw(i,j) = {(i+g,j—h)|max{—i,~h}<g
Snﬁn{n_l_iah}’0§ hSJ}}

PS(i,j)

These sets are illustrated in Fig.2.

By using these four sets, we can compute
the weighted distance transform in following
six steps.

Algorithm for computing the weighted
distance transform

(1) Find the nearest black pixel in Py for
each pixel.

(2) Find the nearest black pixel in Ps for
each pixel.

(3) Find the nearest black pixel in Py for
each pixel.

(4) Find the nearest black pixel in Py for
each pixel.

(5) Compute the nearest feature transform,
i.e. select the nearest black pixel among
the above four pixels for each pixel (4, j)
and store the coordinates to NFT[s, j].

(8) Compute the weighted distance trans-
form, i.e. compute weighted distance
to NFTi, j] for each (7, 7) and store the
distance to DTz, j].

It is apparent that the first, second, third
and fourth steps can be processed in a simi-
lar fashion. And in the fifth and sixth steps,
NFT and DT can be easily computed in par-
allel: NFT[i, j} and DTYi, j] can be computed
independently from the other elements of the
arrays. Thus we describe how to find the
nearest black pixel in Pg only, in the rest of
this section.

We consider a pixel p = (4, 7) and Pg(4, 7).
The weighted distance d,, from p to a pixel
(iz, &) € Pli,j) is given by

dy = wolig — 3| + wi(je — J)

because |ig —i| < |jg — j| and jg > j for any
(iz: JE) € PE(1, J).

From this property, we can obtain the fol-
lowing lemma.

Lemma 1 Let p = (4,j), p1 and ps be
three pizels such that py,ps € Pr(i,j) and
du(p,p1) < du(p,p2). Then dy(p',p1) <
dy(p', pa) holds for any pizel p' = (1,k) (0 <
k<j).

Proof o o
Let p1 = (i1,71) and p; = (i3, J2).
dw(p7p1) .<_ dw(p7p2)a

From

woliy — | + w1(j1 — 4)
L woliz — i + wi(s2 — J)
S woliy — | +wi(j1 ~ k) + wi(k ~j)
< ‘wo‘iz — ll =+ ’U)l(jz - k) +w1(k —])
& woliy — 3| +wi(j1 — k)
< 11)0|i2 - 1.| + wi(j2 — k)

Figure 3: A pixel (7,) and pixels in DI(, j)

Since p1,p2 € Pg(1, k), du(p',p1) < du(p', p2)
holds.]
Let NFTg[i, 7] denote the coordinates of
the nearest black pixel in Pg(7, j), DI(3,7) de-
note the set of pixel ((Pg(%,7) — Pr(i,7 + 1))
and NFTgpli,j] denote coordinates of the
nearest black pixel in DI(4,7). (DI(7,7) is
illustrated in Fig.3.) The lemma 1 implies
that NFTg[, 7] is equal to nearer one of
NFTgli,j + 1] and NFTgpli, 5], ie.

NFTgli,j) = NFTg[i,j+1]
(If dw(ps NFTE[iaj + 1]) < dw(Pv NFTED[%]]))
= NFTgpli,j] (otherwise)

(We assume N FTg[i,n] = (o0, 00), and also
assume NFTgpli,j] = (00,00) if no black
pixel is in DI(3,j).)

Consequently, once NFTgpli, k] (0 <
k < n — 1) are obtained, we can compute
NFTgli, k] (0 < k <n—1) by a prefix min-
ima operation} from right to left.

Now we describe how we compute
NFTgplt, j] for each (2, 7) by showing the fol-
lowing lemma.

Lemma 2 Let p = (i,7), pr = (41,51) and
p2 = (i2,72) be three pizels such that py,ps €
DI(i,7) and d(p,p1) < d(p,p2). Then ji < j2

holds.

Proof

$The prefiz minima of a sequence (zg, T1,. .., Tn-1)
is defined to be the sequence (mg,my,...,mn_1) such
that mg = min{z, | 0 < h < k}

Let j; = j + k; and j, = j + ky. Then,

dw(pwpl) S d‘w(paPZ)

< wo -k +wy -k < wo ka4 wy ks

(Since p1,p2 € DI(3,7).)
=2 kl('wo -+ ’U.)l) S kz(’l[)o + wl)
< ky < ky

O

This lemma implies that the nearest black
pixel to (i,) has the smallest column index
among all black pixels in DI(z,5). By using
the method described in the next subsection,
we can find the pixel using two diagonal prefix
minima operations.

As a consequence, we compute NFTg as
follows. First we compute the nearest black
pixel in DI(3, 7) for each (7, j) by using two di-
agonal prefix minima operations. Second we
compute NFTg on each row by using hori-
zontal prefix operations, which process from
right to left.

3.2 The algorithm for comput-
ing the NFTg

In this subsection, we describe details of our
algorithm for computing the N FTg.

The algorithm consists of three steps. In
the first and second steps, we compute the
nearest black pixel in DI(%, j) for each pixel
(,7). In the first step, we compute the near-
est black pixel, for each (¢,7), in DIp(3,5) =
{(i+k,j+k)|(i+k j+k) € DI(435)} From
lemma 2, the pixel can be computed by prefix
minima of column indeces on each diagonal
sequence from lower right to upper left. We
call this operation UR-prefiz.

In the second step of the algorithm, we
compute the nearest black pixel, for each
(iaj)a in DIU(L]) = {(7' - k>] +k)](2 - k;] +
k) € DI(,7)} by computing prefix minima of
indeces on each diagonal sequence from upper
right to lower left, which we call LL-prefiz.
Since DIp(i,j) U DIy(i,5) = DI(i,7), the
nearest pixel to (7, j) in DI(4,j) is one of the
results of the first and the second step, which
is the nearer one to (2, j).

In the third step, we compute the NFT%.
We assume that NFTgpli,] stores coordi-
nates of the nearest black pixel to (4,j) in
DI(i,7). From lemma 1, NFTgl,j] is equal

to one of NFTED[l,]], NFTED[Z,] + 1], ey,
NFTED[i,n - 1]

Let = (z]) NFTED[)]] = (g’h)7
NFTED[Z 71] = (91, 1) and NFTgp[i, js] =
92, h2), and assume] < Ji1,J2 and
du(p, NFTgp[i, j1]) < du(p, NFTgpli, jo).
Letting function f(7,7) = wolg — t| + wy - A,
the followings hold.

dw(p,NFTED[iajll) < dw(paNFTED[ia.h])
& wolgl—i|+w1(h1 —])
< wolgz2 — i| + w1(hz — 7)
& wolgr — i + w1 hy < wolgz — i +wihy
o fi,51) < f(i,52)

Since the function f(i, j) is independent on j,
we can compute the nearest pixels on row ¢ by
computing prefix minima of values of f(i,k)
(0 < k < n—1). We call this prefix operation
L-prefiz.

The followings are details of the algo-
rithm.

Algorithm for computing NFTg
Step 1: (Computation of UL—prefix)

(1) For each pixel (3,7), set Af,j] =
(1,7) if a pixel (i,j) is black oth-
erwise set Afi, j] = (o0

(2) Compute the prefix minima of A
for each diagonal sequence from
lower right to upper left by com-
paring the column indeces, and
store the result in ULP, i.e. set

ULPL,j] = Ali +m,j +m] = (im, jm)
st jm = min{ji |Ali +k,j + k] = (ix, Ji),
0<k<min{n—-1-4i,n—-1-j}}

for each (4,7} (0<i<n-1,0<
j<n-1)
Step 2: (Computation of LL-prefix and
NFTgp)

(1) Compute the prefix minima of A
for each diagonal sequence from
upper r1 ht to lower left by com-
paring the column indeces, and
store the result in LLP, i.e. 'set

LLP[Z,]] = A[l - m,] +m] = (2m7]’m)
st jm=min{jr | Ali — k, 7+ k] = (ix, Jk),
0<k <min{i,n—1-j}}

for each (4,7) (0 <i<n—-1,0<

j<n—1)

(2) Set NFTgpli, j] to the nearest one
of the ULP[i, j] and LLPli, j], i..

set
NFTgpli,j] = ULP[i,j]
(if du((3,7), ULPIi, 5]) < dw((i,5), LLP[i, j]))
(otherwise)

for each (1,7) (0<i<n—-1,0<

j<n—1).
Step 3: (Computation of L-prefix and
NFTg)

(1) For each (z,7), set B[i, j] = (wo|g—
i| + wy - h, g, h) where (g,h) =
NFTgpli, jl-

(2) Compute the prefix minima of B
for each row from right to left by
comparing the first indeces, and
store the result in LP, i.e. set

LP[%,]] = B[Zv] +m] = (fm:gmyhm)
0<k<n-1 —]}

for each (4,7) (0 <i<n—-1,0<
j<n-1)

(3) Set NFTg[i,j] = (b,c) such that
LP[i,j] = (a,b,c) for each (7,7) (0 <
i<n-1,0<j<n-1)

4 Complexities of the al-
gorithm

By applying the algorithm which computes
NFTE to NFTN, NFTS and NFTw, we
can compute the weighted distance transform
and the nearest feature transform. If we use
the algorithm directly, eight diagonal prefix
minima and four horizontal or vertical prefix
minima operations are needed. However, by
reusing the results of the diagonal prefix oper-
ations, we can compute the transforms using
four diagonal prefix minima and four horizon-
tal or vertical prefix minima operations.

For asymptotical complexity, it is appar-
ent that the computation of N FTr dominates
the whole complexity. Thus we describe the
complexity of the computation of NFTg in
the rest of this section.

—15=

4.1 Complexities on the
PRAM

In the algorithm for computing the NFTg,
we mainly use three prefix minima oper-
ations, UL-prefix, LL-prefix and L-prefix.
The other computations can be processed
O(1) time using n® processors on any PRAM
obviously. Thus, the complexity of these pre-
fix minima operations is asymptotically equal
to the entire complexity.

It is well known that a prefix minima com-
putation of m numbers can be performed in
O(logm) time using m/logm processors on
the EREW PRAM][10] and in O(loglogm)
time using m/loglogm processors on the
common CRCW PRAM][1]. Therefore, we
can process the prefix minima operations of
our algorithm in O(log n) time using n?/ logn
processors on the EREW PRAM and in
O(loglogn) time using n%/loglogn proces-
sors on the common CRCW PRAM by ap-
plying these known algorithms to each diag-
onal sequence or each row, because both the
length of each sequence and the number of the
sequences are O{n). Consequently we obtain
the following theorem.

Theorem 1 The weighted distance trans-
form of an n X n binary image can be com-
puted in O(log n) time using n*/logn proces-
sors on the EREW PRAM and wn O(loglogn)
time using n?/loglogn processors on the
common CRCW PRAM. O

4.2 Complexities on the mesh
and the hypercube

First we describe partition of an input image.
For simplicity, we assume that the number of
processors is p? and that n = L - p for some
positive constant L. We also assume that P, ,
(0<z<p-1,0<y<p-1)denotes each
processor. An input image is partitioned into
p? subsquares of the same size, and that each
processor P, , has a subsquare I, defined as
follows.
Lylg,hl=Iz*L+g,yxL+h
0<g<L-1,0<h<L-1)
In the similar manner as the PRAM, each
processor can independently process all com-
putations except for three prefix minima op-
erations. Thus the complexity of the prefix

minima operations dominates the entire com-
plexity.

In [7], Fujiwara et al. showed that these
prefix minima operations can be processed in
O(n?/p? + n) time on a p X p mesh and in
O(n?/p* + (nlogp)/p) time on a p* proces-
sor hypercube, using basic divide and conquer
method and row and column shifts. Thus,
from the result, we can process the prefix min-
ima operations in the same complexities.

In consequence, we obtain the following
theorem.

Theorem 2 The weighted distance trans-
form of an n x n binary image can be com-
puted in O(n?/p® + n) time on a p X p mesh
and in O(n?/p? + (nlogp)/p) time on a p?
processor hypercube (for 1 <p < n). a

5 Conclusion

In this paper, we presented a parallel algo-
rithm for computing the weighted distance
transform. The algorithm can be also applied
to the nearest feature transform. The algo-
rithm runs in O(logn) time using n?/logn
processors on the EREW PRAM and in
O(loglogn) time using n?/loglogn proces-
sors on the common CRCW PRAM. We also
showed that the algorithm runs in O(n?/p? +
n) time on a p x p mesh and in O(n?/p* +
nlogp)/p) time on a p? processor hypercube
for 1 < p < n). Consequently the algorithm
is cost optimal on the PRAMs, on the mesh
(for 1 < p < y/n) and on the hypercube (for
1< p < nflogn).

References

[1] O. Berkman, B. Schieber, and U. Vishkin. Op-
timal doubly logarithmic parallel algorithms
based on finding all nearest smaller values.
Journal of Algorithms, 14:344-370, 1993.

[2] G. Borgefors. Distance transformations in arbi-
trary dimensions. Computer Vision, Graphics
and Image Processing, 27:321-345, 1984,

[3] H. Breu, J. Gil, D. Kirkpatrick, and M. Wer-
man. Linear time Euclidean distance trans-
form algorithms. [EEFE Transactions on Pattern
Analysis and Machine Intelligence, 17:529-533,
1995.

{4] L. Chen and H. Y. H. Chuang. A fast algorithm
for Euclidean distance maps of a 2-D binary im-
age. Information Processing Letters, 51:25-29,
1994.

[5] B. Embrechts and D. Roose. MIMD divide-
and—conquer algorithms for the distance trans-
formation. Part I: City Block distance. Parallel
computing, 21:1051-1076, 1995.

[6] H. Embrechts and D. Roose. MIMD divide-
and—conquer algorithms for the distance trans-
formation. Part II: Chamfer3-4 distance. Par-
allel computing, 21:1077-1096, 1995.

[7] A. Fujiwara, M. Inoue, T. Masuzawa, and
H. Fujiwara. A simple parallel algorithm for the
medial axis transform of binary images. In Proc.
IEEE Second International Conference on Algo-
rithms and Architecture for Parallel Processing,
pages 1-8, 1996.

[8] T. Hirata. A unified linear-time algorithm for
computing distance maps. Information Process-
ing Letters, 58:129-133, 1996.

[9] J.J4aJ4. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, 1992.

[10] R. E. Lander and M. J. Fisher. Parallel pre-
fix computation. Journal of ACM, 27:831-838,
1980.

[t1] Y.-H. Lee and S.-J. Horng. Fast parallel chess-
board distance transform algorithms. In Proc.
1996 International Conference on Parallel and
Distributed Systems, pages 488-493, 1992.

[12] Y.-H. Lee and S.-J. Horng. The chessboard dis-
- tance transform and the medial axis transform
are interchangeable. In Proc. 10th International
Parallel Processing Symposium, pages 424428,
1996.

(13] D. W. Paglieroni. Distance transforms: Prop-
erties and machine vision applications. CVGIP:
Graphical Models and Image Processing, 54:56—
74, 1992.

[14] D. W. Paglieroni. A unified distance transform
algorithm and architecture. Machine Vision
and Applications, 5:47-55, 1992.

[15] S. Ranka and S. Sahni. Hypercube algorithms
with applications to image processing and pat-
tern recognition. Springer-Verlag, New York,
1990.

[16] A. Rosenfeld and J. L. Pfalz. Sequential oper-
ations in digital picture processing. Journal of
the ACM, 13:471-494, 1966.

[17] O. Schwarzkopf. Parallel computation of dis-
tance transform. Algorithmica, 6:685-697, 1991.

