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Drawing a Rectangular Dual to Meet Prescribed Constraints
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Abstract : A rectangular dual is a dissection of a reétangle into several subrectangles, representing
a geometrical dual of a plane graph, called a PTP graph, where each subrectangle corresponds to a vertex
of this PTP graph, and two subrectangles share a boundary if and only if the corresponding two vertices
are adjacent in the graph. The subject of the paper is to propose a heuristic method for drawing a
rectangular dual so that the length and the width of the whole rectangle may be (optimally or nearly)
minimized, under the condition that those of each subrectangle are no less than given lower bounds.
Experimental results show that the proposed method produces sharp approximate solutions very bquickly.
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1 Introduction and Motivation

A rectangular dual {6] is a dissection of a rect-
angle into several subrectangles, representing a ge-
ometrical dual of a PTP graph (whose definition
will be given later), where each subrectangle corre-
sponds to a vertex of this PTP graph, and two sub-
rectangles share a boundary if and only if the cor-
responding two vertices are adjacent in the graph
(Fig.1). It has been widely used in placement al-
gorithms for VLSI design {9].

Since the two subrectangles, which correspond
to the two vertices of an edge, share a part of
boundary, if this edge represents connection re-
quirement then a layout, which assures feasible
routing required by a given PTP graph, can be
obtained. In [5, 12] for example, it is pointed
out that rectangular duals are useful in design-
ing printed wiring boards. Each of elements such
as ICs, resistors and condensers is actually placed
within the corresponding subrectangle, imposing
lower bounds on the length and width of each sub-
rectangle. Hence this application requires capa-
bility of drawing a rectangular dual such that the
length and width of the whole rectangle are mini-
mized, under the condition that those of each sub-
rectangle are no less than given lower bounds. This
is a quadratic programming problem, for which
several optimization techniques are existing.

The subject of the paper is to propose a heuris-
tic algorithm for this problem. Experimental re-
sults show.that the proposed one produces sharp
approximate solutions very quickly. Existing al-
gorithms for optimum solutions become very slow
as the number of vertices or edges increases. On
the other hand, there are some choices on which
the size of the resulting whole rectangle heavily
depends, such as selecting four corners, deciding
which side has the lower bound on length (or width),
and so on. Furthermore, incorporating routing
area may cause increase in the size of the whole
rectangle. Consequently it is a pair of fast and
sharply estimating the whole rectangle, with sub-
rectangles of feasible size, and efficiently improving
drawing of rectangular duals that meet our require-
ment in printed wiring.board design utilizing rect-
angular duals. This motivated and led us to do
research on the subject of this paper. The early

(b) (©

Figure 1: (a)An example of a PTP graph. (b),(c)
Two different rectangular duals of this PTP graph.

version appeared in {7].

We briefly summarize known results on the sub-
ject. A linear time algorithm to construct a rect-
angular dual of a given PTP graph [1, 3]; an al-
gorithm to draw a given plane graph on the grid
(2] and its extension to handle rectangular duals
without constraints on subrectangles (8]; an algo-
rithm to enumerate all rectangular duals of a given
PTP graph [9); an algorithm to find one of the
most area-efficient drawings of a given rectangu-
lar dual with all constraints on subrectangles sat-
isfied, as well as an algorithm to estimate the size
of the whole rectangle [10]. These algorithms of
[9, 10] spend a huge amount of computation time
as the number of subrectangles increases, as men-
tioned in [7]. The critical point is that, even if
any area-efficient drawing is obtained, we cannot
always place any element inside the corresponding
subrectangle, since the constraints on each subrect-
angle are given by lower bounds on the area size

and its aspect ratio.

2 PTP graphs and Constraints
2.1 PTP graphs and rectangular duals

A properly triangulated planar (PTP) graph
[1] is a connected planar graph satisfying P1-P3:

P1: Every face (except the exterior) is a triangle.
P2: All internal vertices have degree > 4.

P3: All cycles that are not contours of faces have
length > 4.

In this paper, we assume that any given PTP
graph is biconnected. (If a given PTP graph is not
biconnected then, by adding some edges, we can
make it biconnected.) The subrectangle represent-
ing a vertex v of a PTP graph is denoted by Rv.
For notational simplicity in the following, we often
denote Rv as just v unless any confusion arises.
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Figure 2: Schematic explanation of a virtual vertex
representing a multi-terminal net.

2.2 Physical conditions

In printed wiring board design based on rectan-
gular duals, each element is placed inside its cor-
responding subrectangle and other subrectangles
are used for routing or just for placing terminals.
Therefore, lower bounds of their sizes are given as
a physical condition. More specifically they are as
follows:

o For each edge (u,v) of a PTP graph, Ru and
Rv share one boundary by length no less than
width(u,v), the width of the wire between u
and v. :

o Each'subrectangle v representing an element
has lower bounds height(v) and width(v) on
its height and width, respectively.

e Each subrectangle v', which represents a vir-
tual vertex inserted for decomposition of a
multi-terminal net into a set of two-terminal

nets, has lower bounds height(v') and width(v')

on its height and width, respectively. In Fig.2,
height(v") and width(v’) are given as follows:
height(v') « maz{width(v’, d) + width(v’, e),
width(v/, g)}

width(v') « maz{width(v', a) + width(v',b)
+ width(v’, ¢), width(¢’, f)}

(In this example, width(v’, b)=0.)

3 Estimating the size of a whole rectangle

Given a drawing of a rectangular dual with
each subrectangle satisfying the constraints, we es-
timate the sizes of the whole rectangle. As stated
in Section 1, the method proposed in {10] for such
estimation does not meet our purpose. In addition,

Figure 3: (a) The constraint left(v). (b) A rectan-
gular dual with size_y(v) shown within parenthe-
ses. (c) The vertical constraint graph.

this method is weak in identifying one or more sub-
rectangles that may be bottlenecks in reducing the
present size of the whole rectangle.

The propose algorithm can find such subrectan-
gles easily by searching all longest paths and, there-
fore, it is very useful to modify drawings of rect-
angular duals. Since each of the vertical and hor-
izontal operations can be executed independently,
the vertical operation is exclusively explained in
the following.

We estimate the height size_y(v) of each Rv as
follows. First, we initialize size_y(v) = height(v)
for all vertices v. Secondly, the whole rectangle
is divided into some columns and we process each
column one by one from left to right. For each
Rv in the current column, the constraint from the
left, denoted by left(v), to be imposed on size_y(v)
is computed by checking subrectangles sharing a
part of the left boundary of Rv. For example, if v
adjoins [, m and n as shown in Fig.3 (a) then we
set

left(v) = width(l,v) + size_y(m) + size_y(n)

If size_y(v) < left(v) then size_y(v) «— left(v). Ex-
ecute similar computation by conversely process-
ing each column from right to left, and obtain the
constraint from the right, right(v), for each Rv.
If size_y(v) < right(v) then size_y(v) « right(v).
Then set

size.y(v) = maz{height(v), left(v), right(v)}

Thirdly, find all longest paths from the top bound-
ary to the bottom one of the given whole rectangle.
The boundaries of the whole rectangle are called
the external boundaries. We make a directed graph
such that each vertex represents a subrectangle and



such that each directed edge (v, w) from v to w sat-
isfies (i) or (ii):

(i) Rv adjoins Rw so that they may share a part
~ of the top boundary of Rw;

(ii) Rv adjoins Rw so that (1) through (3) may
be satisfied:

(1) they share a part of the left or the right
boundary of Rw,

(2) the top boundary of Ruv is located strictly
upper than that of Rw, and

(3) the bottom boundary of Rv is located
no lower than that of Rw.

Finally we add new vertices s and ¢ which rep-
resent the top and the bottom boundaries of the
whole rectangle, respectively. A directed edge is
added from s to each subrectangle sharing the top

external boundary, and from each subrectangle shar-

ing the bottom external boundary to t.

We call this graph the vertical constraint graph
of the rectangular dual (see Fig.3 (b), (c)). We find
all longest paths of the vertical constraint graph in
which the following cost(v) is assigned to each ver-
tex v, where the term ”longest” means that the
total sum of costs of vertices is maximum.

Let cost(v) be the length from the top external
boundary to the bottom boundary of Rv: cost(v)
will be computed by processing subrectangles in
each column from the top to the bottom. If Rv is
the first to be processed then cost(v) «— size_y(v).
Any other subrectangle Rw will be processed as
follows:
maz{cost(v) + size_y(w),

cost(w)} in (i)
maz{cost(v) + left(w) — width(v, w),
cost(w)} in (ii)

cost(w) «

With these costs on vertices except s and ¢ of
the (vertical) constraint graph, we find all longest
paths from s to t, and, for every edge (u,v) on
each path, we maintain parent {v] = u. In or-
der to modify drawings of a rectangular dual ef-
ficiently, we use the {vertical) longest path graph.
The longest path graph is a directed graph consist-
ing of vertices and edges contained in any longest

path. In Fig.3 (c), if the edge (E,F) is deleted then

the longest path graph is obtained. Reducing the
cost(v) of any vertex v in a longest path may re-
sult in decrease in the (vertical) size of the whole
rectangle. )

Computing left(v) for all subrectangles v and
constructing the constraint graph can be done in
O(|V| + |E|) time, where |V | and | E| are the num-
ber of vertices and of edges in a given PTP graph.
We can find all longest paths and construct the
longest path graph in O(|V:| + |E.|), where |V|
and |E,| are the number of vertices and edges in
the constraint graph, and {V| < [V|. Since both
the PTP graph and the constraint graph are pla-
nar graphs, |E| or |E.| is O(]V]) or O(1V,}), re-
spectively. Hence the total time of this estimating
operation is O({V]).

4 Modifying drawings of rectangular duals

By utilizing the estimate and the longest path
graph given in Section 3, we explain how to reduce
sizes of drawings of rectangular duals. We com-
pare prescribed sizes with those estimated ones,
and the direction (that is, vertical or horizontal)
with larger difference is selected as the target of
reduction. Next, for each edge of the longest path
graph, we try to apply any one of the three local
modifications to be given in the following. For each
edge, we estimate how the local modification un-
der consideration can reduce the whole rectangle
size in the target direction. The local modification
will be applied to the edge or the vertex having the
largest estimated value in the longest path graph.
These operations are repeated until estimated size
falls within the prescribed size or reduction cannot
be obtained any more.

Each local modification can be done in O(1)
time. Both checking whether or not any local mod-
ification can reduce the whole rectangle size and
estimating the reduction size can be done in O(1)
time. These checking and estimating operations
are executed on the longest path graph. Hence the
time complexity of local modification is O(|V}| +
|Ei]), where |Vi| and |E}| are the number of ver-
tices and of edges in the longest path graph, and
[Vi| < |V|. Since the longest path graph is a planar
graph, [E;| is O(]Vi]). Local modification may be
repeated if necessary. Hence the total time of mod-
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Figure 4: Modifying PDGs.

ifying a drawing is O(k|V|), where k is the number
of repetition.

We explain each of the four local modifications
in the vertical direction only.

4.1 Modifying PDGs

Suppose that we construct a rectangular dual
by using the method proposed in [1]. This method
constructs a directed graph called the path digraph
(PDQG) from a given PTP graph. Then, a draw-
ing of its rectangular dual is obtained based on
this PDG. The directed edges of the PDG reflect
the “on top of” relation defined by the rectangular
dual. (See [1] for the details.)

Lemma 4.1 1] If (Z,j) is an edge in a PTP graph,
then:

1. 4 is not a distant ancestor of j in any PDG.

2. j is'not a distant ancestor of 1 in any PDG.

In this section, we execute modifications without
violating Lemma 4.1.

In general, a PTP graph has one or more PDGs,
each representing a rectangular dual. We consider
reducing the height and/or width of the whole rect-
angle by modifying adjacency structure of a given
PDG.

Fig.4 (a) shows a rectangular dual and its PDG.
In this figure, by transforming the rectangular dual
(a) to (b), the height of the whole rectangle is re-
duced from 16 to 10. This is a basic operation
for modifying a PDG. This idea of transformation
has already appeared in enumerating all possible

rectangular drawings in [9].

Figure 5: Adjacency relations for subrectangles A
and C in the PDG of Fig.4.

First, we find four vertices A, B, C, D which
have adjacent relations as shown in Fig.4 (a) in the
vertical longest path graph, where the edge (A,D)
is contained in the longest path graph. Secondly,
these four vertices are divided into two pairs, the
upper pair A, C and the lower one B, D. We esti-
mate how this height can be reduced. We explain
this estimation only for the upper pair A, C, and
similarly for the other pair. There are three situa-
tions as shown in Fig.5 (a)-(c). For each of these
cases, the feasibility condition for reduction and its
estimated value of reduction are given as follows.

Case (a)
feasibility condition : size_y(A) > right(A)
estimated value : size_y(A) — right(A) .
Cases (b) and (c)
size_y(C) = left(C)

estimated value : min{size_y(A)—width(A, C),
size_y(C)—maz{height(C), right(C)}}

feasibility condition :

Finally, we compare the estimated value of the
upper pair A,C with that of the lower pair B,D,
and the smaller one is adopted as the estimated
value of these four vertices.

There is possibility that the transformation for
reducing the height may increase the width. Our
method tries to keep such a secondary effect as
small as possible. By using the costs computed in
estimating the height of the whole rectangle, we
can estimate the increase of the width, and we
choose the one with the smallest increase in the
width. Let costI(v) (cost_r(v), respectively) be
the distance from the left (right) external boundary
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Figure 6: Modifying PTP graphs.

to the right (left) boundary of Rv. The only possi-
ble secondary effect of this transformation concern-
ing A, B, C, D is that an edge (A,D) may be added
to the horizontal constraint graph, possibly result-
ing in inserting the edge to the horizontal longest
path graph. The length of this path in the hor-
izontal longest path graph can be represented as
cost_I(A) + cost_r(D).

Similarly we estimate another secondary effect
of increasing the height in the transformation to
reduce the width of the whole rectangle, and we
execute the one with the least secondary effect.

4.2 Modifying PTP graphs

Usually some vertices or edges, called virtual
vertices or virtual edges, are added to any given
planar graph in order to construct a PTP graph.
Virtual edges can be added arbitrarily as long as
a PTP graph is obtained. By making use of this
arbitrariness, we change incidence relation of vir-
tual edges so that the height or width of the whole
rectangle may be reduced.

In the PTP graph in the lower part of Fig.6
(a), let (A,D) be a virtual edge. The corresponding
rectangular dual is shown in the upper part. By
transforming the PTP graph from (a) to (b), the
height of the whole rectangle can be reduced from
16 to 10. This is a basic operation to be used in
modifying a PTP graph.

One important point to be taken into consid-
eration is that changing the incidence relation of a
given PTP graph may result in either

(i) a graph that is not a PTP graph, or

(ii) a PTP graph that has no rectangular dual.

Figure 7: Adjacency relations for subrectangles A
and C in the PTP graph of Fig.6.

A necessary and sufficient condition for any PTP
graph to have a rectangular dual is given in [6],
and we have to check this condition. The details
are omitted due to shortage of space: see [7].

First, find four vertices A, B, C, D as shown in
Fig.6 (a), where the edge (A,D) is a virtual edge in
the vertical longest path graph. Secondly, we check
whether or not changing incidence relation breaks
the necessary and sufficient condition of [6]. If it
holds then divide four vertices into two pairs, the
upper pair A, C and the lower one B, D. For A
and C in Fig.6, there are three situations as shown
in Fig.7 (a)-(c). Then the feasibility condition for
reduction and its estimated value are given as fol-
lows.

Case (a)

feasibility condition : size_y(C) > left(C)

estimated value : size_y(C) — left(C)
Cases (b) and (c)

feasibility condition : size_y(A) = right(A)
estimated value : min{size_y(C)—width(A, C),
size_y(A)—maz{height(A),left(A)}}

We compare the estimated value of the upper
pair A,C with that of the lower pair B,D, and the
smaller one is adopted as the estimated value of
these four vertices.

There is no secondary effect, differently from
the PDG transformation.

4.3 Combination of the two local modifications

Since the modification to be presented in this
section is a combination of the two previous modifi-
cations, their conditions and estimated values can
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Figure 8: The two-step modification.

be used. In Fig.8, transforming (a) to (b) does
not reduce the height of the whole rectangle. Now
transform (a) to (c) instead. The height of the
whole rectangle is still unchange. Transforming (c)
to (d), however, can reduce the height from 16 to
10. We can modify drawings by using this two-
step transformation as a basic operation. In Fig.8,
only transformation from (c) to (d) can reduce the
height, and this is the same as the PDG modifica-
tion shown'in Section 4.1. The feasibility condition
and the estimated value can be considered indepen-
dently for each pair of {A,C} and {B,D}. Hence,
even for the adjacency relation shown in Fig.8 (a),
we transform it to (c) and then we try to excute the
size reduction in the same way as the PDG mod-
ification. Similarly for estimating the secondary
effects.

4.4 Rotation of elment-subrectangles

An element-subrectangle is a subrectangle in
which an element is actually placed. Unless the
direction of placing the element is specified, we can
interchange the lower bounds on the height and the
width so that the size of the whole rectangle may
be reduced. Fig.9 shows that rotating the lower
left subrectangle with (6,3) in (a) to the one with
(3,6) in (b) can reduce the size from 12x 7 to 9x9.

We explain only reduction of height(v). Let
sizex(v) be the current width of Rv. And let
up(v) or down(v) denote the constraint, to be im-
posed on size_x(v), from the top or the bottom, de-
fined similarly to left(v) or right(v) by interchang-
ing columns, the left and the right with rows, the
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Figure 9: Reducing the size by rotating an element-
subrectangle, where the pair (height,width) de-
notes the corresponding lower bounds.

top and the bottom, respectively. The feasibility
condition for reduction, its estimated value and the
secondary effect are given as follows.
feasibility condition :
height(A) > maz{width(A), left(A), right(A)}
estimated value :
height(A) — maz{width(A), left(A), right(A)}
secondary effect :
maz{height(A),up(A),down(A) } — sizex(A)

5 Experimental results

The proposed method have been implemented
on a personal computer GATEWAY2000 (CPU:
Pentium/120MHz, OS: FreeBSD 2.1) with the C
programming code. Randomly generated circuits
are used as input data.

Let Sa denote the whole rectangle area esti-
mated by our method, while let Sb denote the one
obtained by applying Lemke's method [4]. For each
randomly generated circuit, Table 1 shows the av-
erage, the minimum and the maximum of the ratio
Sa/Sb. The column "CT(s)” shows the average
computation time (in second) of our method and
the Lemke's method over 50 input data, where the
graph models have the number of vertices in the
intervals given in the column " #node”.

We have actually constructed layouts of printed
wiring boards from rectangular duals by using
MULTI-PRIDE [11, 12]. Let La denote layout area
obtained from the drawings of rectangular duals
given by our method. Let Lb denote layout area
obtained by applying a linear programming (as in



Table 1: Experimental results on Sa/Sh.

CT(s)
#node | Ave | Min | Max | MW | Lemke
1-100 099 {094 | 1.03 | 1.88 5.27
101-200 | 0.98 | 0.95 | 1.01 5.62 68.40
201-300 | 0.96 | 0.89 | 1.00 | 14.53 | 265.37
301-400 | 0.96 | 0.96 | 1.01 | 24.46 | 946.52

Table 2: Experimental results on La/Lb.

#node | Average | Minimum | Maximum
1-100 0.89 0.63 1.00
101-200 0.92 0.78 0.98
201-300 0.93 0.89 0.99
301-400 0.90 0.88 0.99

[11, 12]) to rectangular duals given by the method
of [1]. Table 2 shows the average, the minimum
and the maximum of the ratio La/Lb over 50 in-
put data, where the graph models have the num-
ber of vertices in the intervals given in the column
?#node”.

It is observed that our method produces sharp
approximate solutions to the quadratic program-
ming problem in shorter time.

6 Concluding remarks

This paper has proposed a heuristic method for
drawing a rectangular dual so that the length and
the width of the whole rectangle may be (opti-
mally or nearly) minimized, under the condition
that those of each subrectangle are no less than
given lower bounds. Experimental results show
that the proposed method produces sharp approx-
imate solutions very quickly.

Some problems left for future research are as

follows:

e improving of the proposed method so as to
make the whole rectangle closer to the pre-
scribed or mimimum size;

e providing a method to estimate the board
size with area of routing incorporated.
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