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Abstract : This paper is concerned with polynomial time approximability of node-deletion problems
for hereditary properties. It has been known that when such a property has only a finite number of
minimal forbidden graphs the corresponding node-deletion problem can be efficiently approximated to
within some constant factor of the optimum. On the other hand when there exist infinitely many minimal
forbidden graphs no constant factor approximation has been known except for the case of the Feedback
Vertex Set (FVS) problem in undirected graphs.

We will focus our attention to such properties that are derived from matroids definable on the edge
set of any graph. It will be shown first that all the node-deletion problem for such properties can be
uniformly formulated by a simple but non-standard form of the integer programming. The primal-dual
approximation algorithm for all such problems is then presented based on this and the dual of its linear
programming relaxation. The performance ratios implied by this approach will be analyzed and given in
a general form. '

We will show next, as an application of the primal-dual approach to the node~deletion problems, that
the FVS problem is not the sole exceptional case; i.e., there exist other graph (hereditary) properties
with an infinite number of minimal forbidden graphs, for which the node-deletion problems are efficiently
approximable to within a factor of 2. In fact, we will show, there are infinitely many of them. Such
properties are derived from the notion of matroidal families of graphs and relaxing the definitions for
them. It will be observed at the same time that an infinite sequence of such properties is constituted with
those for both Vertex Cover and FVS problems at its basis and thus providing a proper generalization of
them.



1 Introduction

This paper is concerned with polynomial time approximability of node—deletion problems for hereditary
properties. The node—deletion problem for a graph property m (denoted ND{r) throughout the paper) is
a typical graph optimization problem; that is, given a graph G with weights on nodes, find a node set
of the minimum weight sum whose deletion from G leaves a subgraph satisfying the property =. Many
well known graph problems fall into this class of problems when desired graph properties are specified
appropriately. Lewis and Yannakakis proved a general result that whenever 7 is nontrivial and hereditary
on induced subgraphs ND(7) is NP-hard [12]. Here a property 7 is nontrivial if infinitely many graphs
satisfy 7 and infinitely many graphs fail to satisfy it. It is hereditary on induced subgraphs if, in any graph
satisfying 7, every node-induced subgraph also satisfies 7. When this general result of NP-hardness was
established in 1980, almost nothing was known about approximability of ND(7) with a sole exception of
good approximation algorithms for the Vertex Cover (VC) problem. Thus it was natural for them to pose
a question: can other node-deletion problems be approximated well ? This question is largely unanswered
even today, and more specific one is still open: what (of graph properties) separate the problems with
constant approximation ratios from others ?

There also exist some general results on approximability of node—deletlon problems within the recent
framework of complexity of approximating NP-hard optimization problems. As pointed out in [13] the
result cited above with those of [15] and [2] imply that ND() for every nontrivial hereditary 7 is MAX
SNP-hard, and hence, no polynomial time approximation scheme exists for any of them unless P = NP.
There exists, however, a stronger “lower bound” for an approximation ratio achievable in polynomial
time for any ND(r); namely the best possible approximation ratio for the VC problem because no ND(r)
can have one better than the one for VC (this is due to the generic reductions of [12]). The currently
known best lower bound (1.068 of {7]) for this ratio appears to be still quite weak. On the other hand the
situation for the upper bounds is not much better. A better approximation of the VC problem has been
a subject of extensive research over the years, yet the best constant bound has remained same at 2, which
a simple maximal matching heuristic [11] can achieve, while the best known heuristics can accomplish
only slightly better (2 — %ﬁ% of [4, 14]).

Another observation presented in [13] is that whenever hereditary 7 has only a finite number of
minimal forbidden graphs ND(r) can be efficiently approximated to within some constant factor of the
optimum. Lund and, Yannakakis in fact conjectured that those with finitely many forbidden graphs are
the only hereditary properties which yield such node-deletion problems that are amenable to constant
factor approximation (see also [19]). It was found later, however, that this conjecture does not hold as
is when the (unweighted) Feedback Vertex Set (FVS) problem in undirected graphs was shown to be
approximable to within a constant factor [5]. This approximation ratio was later on extended to the
one for the weighted FVS. and was further improved to 2 in [3, 6], matching the best constant factor
known for the VC problem. Recently Chudek et al. [8) gave a primal-dual interpretation of those 2-
approximation algorithms of [3, 6] for the FVS problem. They also provided a new primal-dual algorithm
for the problem, which has the same performance ratio but is slightly simpler than the previous two.

In this paper we shall concentrate on such hereditary properties that can be derived from (independent
sets of) matroids definable on the edge set of any graph (details given later). The class of ND(7)’s for such
properties includes VC, FVS, and many others. It will be shown then that all ND(7)’s in this class can
be formulated by a simple and identical form of the integer programming using matroid rank functions.
Moreover the primal-dual approximation algorithm for ND(7) designed based on such a formulation and
the dual of its linear programming relaxation becomes even simpler than those for the FVS problem given
in [8]. An analysis of this algorithm reveals that its performance ratio bound can be reduced to the one
arising from the combinatorial structure underlying problems of interest.

We will show next, as an application of the primal-dual approach to ND(x), that the FVS problem is
not the sole exceptional case; i.e., there exist other graph (hereditary) properties with an infinite number
of minimal forbidden graphs, for which the node-deletion problems are efficiently approximable to within
a factor of 2. In fact, we will show, there are infinitely many of them (at least countably many). Such
properties are derived from the notion of matroidal families of graphs and relaxing the definitions for
them (details later). It will be observed at the same time that an infinite sequence of such properties is
constituted with those for both Vertex Cover and FVS problems at its basis and thus providing a proper
generalization of them.



2 Preliminaries

2.1 Notation and Definitions

A subgraph of G = (V, E) induced by X C V is denoted by G[X]. For X C V let E[X] denote the set
of edges induced by X, and conversely, let V[F] for F C E denote the set of vertices incident to some
edge in F. E[X,Y] is the set of edges with one end in X and the other in Y. For any graph G let V(G)
and E(G) denote the vertex set and the edge set, respectively, of G. The set of edges incident to a node
u is denoted §(u), and when those edges are restricted to the ones in a subgraph G[X] we denote it by
6x (u)(= 6(u) N E[X]).

For a hereditary property = any graph which does not satisfy 7 is called a forbidden graph for 7, and
it is a minimal one if, additionally, every “proper” induced subgraph of it satisfies 7. Any hereditary
property 7 is equivalently characterized by the set of all minimal forbidden graphs for .

It is customary to measure the quality of an approximation algorithm by its performance ratio, which
is the worst case ratio of the optimal solution value to the value of an approximate solution returned by
the algorithm.

2.2 Matroidal Properties

One way to represent a matroid M is by a pair of a ground set E and a rank function r defined on 2%. A
set F' C Eis called independent in M iff r(F) = |F|, and conversely, r(F) is the cardinality of a largest
independent subset of F for an arbitrary F C E. A set which is not independent is called dependent.
A maximal (and hence, maximum in any matroid) independent set is called a base, whereas a minimal
dependent set is called a circuit, of the matroid. For any tnatroid M = (E,r) there is a dual matroid
M? = (E,r?) defined on the same ground set E. The rank functions r and r¢ are related s.t.

(B = F) = (IE| - r(E)) ~ (|F| = r(F))

for any F' C E (For more on matroid theory see, for instance, [18]).

Let M be a matroid which can be defined on the edge set of any graph (called an edge set matroid)
and denote‘by M(G) the matroid defined by M on the edge set of G. We say that a graph property 7 is
matroidal if for some edge set matroid M a (sub)graph G satisfies 7 iff its edge set is independent in M(G)
(Such a property is said to be derived from the matroid M). Such a property is hereditary on induced
subgraphs because a subset of an independent set is independent in .any matroid. . Therefore, node-
deletion problems for any nontrivial matroidal properties are NP-hard and MAX SNP-hard according
to the results of [12] and [13]. Also note that the family of minimal forbidden graphs for such a property
7 corresponds to the family of circuits of the corresponding matroid M(G) for all possible G.

2.3 Matroidal Families of Graphs

A matroidal family of graphs is a non-empty collection P of finite, connected graphs with the following
property: given an arbitrary graph G, the edge sets of the subgraphs of G that are isomorphic to some
member of P are the circuits of a matroid on E(G). The matroid defined this way by the matroidal
family P on the edge set of graph G will be denoted by P(G).

The following four matroidal families, Py, P, P2, and Pj, are those that were discovered first [16, 17].
The family Py consists of one graph only, namely two node with one edge in between. This is also the only
finite matroidal family. The family P; consists of all the cycles; thus, P;(G) is the cycle matroid defined
on E(G). The family P, consists of all the bicycles, where a bicycle is a graph formed by minimally
connecting two independent cycles. These two cycles can be joined together by either (1) sharing only
a single node, (2) sharing only a connected path, or (3) having a simple path attached only at each end
of it. The family P; consists of all the even cycles (i.e. cycles of even length) and the bicycles with
no even cycle. The matroidal properties derived from these families thus correspond, respectively, to “a
graph has no edge” (P,), “a graph contains no cycle” (Py), “every connected component contains at most
one cycle” (P,), and “every connected component contains at most one odd cycle and no even cycle”
(Ps). Therefore, ND(r) is actually the VC (FVS, respectively) problem when 7 is the matroidal property
derived from Py (Pi, respectively).

It has been known that in fact there exist infinitely many (uncountably many) matroidal families of
graphs, and the first description of them (countably many matroidal families) was obtained by Andreae [1]:



Proposition 1 Let s and t be integers, s > 0 and —2s+1 <t < 1. Let P, be the set of all graphs G
s.t.

@) s[V(G)| +1t = |E(G)], and

(ii) G is minimal with respect to property (i); i.e., no graph isomorphic to a proper subgraph of G satisfies
property (i).

Then P, is a matroidal family.

It is not so hard to verify that Py = P, Py = P11, and Py = P, _3,41 (P is not of the form P, ;).

3 Primal-Dual Approximation for Matroidal Properties

Chudak et al. gave new primal-dual formulations and the algorithms based on them for the FVS problem
in undirected graphs [8]. These algorithms are not new ones but actually are primal-dual “interpretations”
of the previously known algorithms from [3, 6]. We shall show below that in fact every ND(r) with
matroidal 7 has simple and identical primal-dual formulation as well as algorithm based on it. Chudak
et al. also gave a new algorithm for the FVS problem which is a modification and slight simplification of
the previous algorithms cited above. Our algorithm for ND() is even simpler than theirs.

We claim that ND(7) on graph G = (V, E) can be formulated by the following integer programming
when 7 is-a matroidal property derived from M = (E(G),rg):

Min E Wy Ty

uevV
subject to:
(IP) Zsras](as(u»mu > ré 5 (EIS)) Scv
ue
z, € {0,1} vueV

Theorem 2 When 7 is a matroidal property F is a solution of ND(r) iff z¥ € {0,1}V (incidence vector
of F) is a feastble solution to (IP).

Consider now the dual of the linear programming relaxation of (IP):

Max E TdG[S](E[S])yS

scv
subject to:
(D) Z Tg:[s] (6s5(u))ys < wu ueV
S:ues

The primal-dual approximation algorithm, based on (IP) and (D) above, for ND() with matroidal 7 is
presented in Figure 1. We elaborate more on it below. The algorithm starts with F' = @, the original
graph G[S'] = (V, E) and the dual feasible solution y = 0. Given F, if it is not yet a solution of ND(x)
there must exist some set S C V corresponding to a violated constraint of (IP). In particular the set of
all the remaining nodes S'(= V — F) must be always such a set, and thus we can always choose §’ as
a “violated set”. The algorithm then increases the dual variable ys as much as possible until for some
vertex u in S’ the dual constraint for u becomes tight; i.e., Y ¢..c5 ré[sl(és(u))yg = w,. The algorithm
adds u into a solution set F and at the same time removes it from S’. Clearly F eventually becomes a
solution of ND(7) (and to (IP)) while y is kept feasible to (D). Lastly, the nodes in F' are examined one
by one, in the reverse order of their inclusion to F, and whenever any of them is found to be extraneous
it is thrown out of F. :

The analysis of the performance ratio of this algorithm can be reduced to the following combinatorial
arguments. ’



Initialize F = §,8' = V,y =0,{ = 0.

While F is not a solution of ND(7) do
l—1+1.
Increase yg until for some u € §’ the dual constraint corresponding to u becomes tight.
Let u; «— u.

i Add u; into F and remove u from S’.

For j =1 downto 1 do

- ifF—{u;}isa solutlon of ND(n) in G then remove u; from F.

Output F.

Figure 1: Primal-Dual Approximation Algorithm for ND(r)

Theorem 3 Let 7 be a matroidal property derived from M = (E(G),rg). Then the performance ratio
of the primal-dual algorithm is bounded by

> ré(5(u)

u€eF
“am )

where max is taken over any minimal solution F of ND(rw) in any G = (V, E).

max{

4 Uniformly Sparse Graph Properties

It was shown in [9] that when 7 is derived either from Py or P; (ie., the VC or FVS property) (an
essentially same algorithm as) the primal-dual algorithm delivers a solution with approximation ratio of
2. We add here one more to this list:

Theorem 4 When m is derived from P; the primal~dudl algorithm for ND(w) has performance ratio of
2.

The case of P, = P;; will be subsumed by the general result given below.

We now turn our attention to a “relaxation” of the matroidal families of graphs, dropping the con-
nectivity requirement on graphs in the families. Recall the countably many matroidal families P,
(s >0,—2s+1 <t <1) of graphs from Proposition 1. Fix s to 1, let ¢ be any integer > —2s +1 = —1,
and consider the sets of graphs, that are no longer necessary to be connected, using the same set of the
definitions for P, ; i.e., Py is the set of all graphs G s.t.

(i) V(@) +t=I|E(G)|, and

(i) G is minimal with respect to property (i); i.e., no graph isomorphic to a proper subgraph of G satisfies
property (i).

Let Qy def Py j+1,k > —2. It is useful to observe here what graph properties are actually derived from
Qr’s. A graph G = (V, E) satisfies such a property iff for every F C E, |F|— |V[F]| < k, and thus we
may call such a property uniformly k—-sparse. :

Proposxtnon 5 Qk deﬁnes the set of circuits of a matroid on any (edge set of) graph for all k.
We should alsolnote:
Proposition 6 Q. consists of an infinite number of distinct graphs for all k > —1.

The next is a key lemma of the present paper:



Lemma 7 Let m be a property derived from Qi = (E(G),rg). Suppose X is any minimal solution of
ND(r) in any G. Then, '
Y ré(6(w) <2-r§(E).

uEX

Proof. See Appendix. O

Finally, observe that given G = (V, E) we can compute efficiently the rank r(F) of any F C E (and thus
r4(§(u)) for each u € V) under Q,(G) (for instance, using the formula (1)). Therefore, our primal-dual
algorithm runs in polynomial time for every Q. Now from Lemma 7 and Theorem 3 it easily follows
that

Corollary 8 When 7 is such a property that is derived from Qi for any fived k the primal-dual algorithm
computes a solution of ND(r) in polynomial time; its performance ratio is bounded above by 2.

And hence, there exist at least countable many nontrivial hereditary properties with an infinite number
of minimal forbidden graphs, for which the node-deletion problems are efficiently approximable to within
a factor of 2.

Appendix

Definitions. Let C be a connected component. Define the surplus sp of C by sp(C) = |E(C)| — [V(C)|
and the bounded surplus $p of C by $p(C) = min{k, sp(C)}. Let C*(F) (C~(F)) denote the set of
components, induced by an edge set F, with a positive bounded surplus (with a negative bounded
surplus, respectively). When E’ is an edge subset of E define sp(E’) to be the surplus of the graph
induced by E'.

Notice that C~(F') consists of all the acyclic components, each with a (bounded) surplus of —1, induced
by F. Also notice that for any component C and for any E' C E(C), sp(E’') < sp(C). The rank function
of the matroid Q«(G) defined on G = (V, E) can be given by

r(F) = [V[F]| + min{k, Y $p(C)}—I[C™(F)| 1)
CECH(F)

forany F C E.

Proof of Lemma 7. Assume throughout that k > 0 (the case of £ < —1 is no harder). Consider first
the edge set E[V — X|, which must be an independent set of Qx(G), since X is a solution of ND(r).
Using (1) we have

|E[V — X]| = r(E]V — X]) = |V — X| - (# of acyclic components in G[V — X]) +{ (2)
for some 0 < ! < k. We shall use the following auxiliary lemma in proving Lemma 7.

Lemma 9 Assume (2). If X is a minimal solution of ND(w) then

[EX,V-X]| > (k-1+1)|X|+ Z (# of acyclic components, in G[V — X|, adjacent tou)  (3)
ueX

Proof. For every acyclic component T' in G[V — X] adjacent to u € X, pick one edge e connecting v and
T, and color e red so that u and its adjacent acyclic components form a single tree via these red edges.

Let D C E be any circuit of Qx(G) induced by u and V — X. We shall examine how many edges
necessarily exist in E[{u},V — X] besides those colored red. Since D is a circuit it belongs to Qx, and by
the definition of Q) we know sp(D) = k + 1. Also recall that E[V — X] is an independent set of Q«(G),
which implies that every subgraph of G[V — X] has surplus of at most [. Addition of u and all the red
edges to such a subgraph results in no increase in its surplus. Further addition of any single edge of no
color between u and V — X can increase its surplus by at most one. Therefore, D must contain at least
k+1—1 edges from E{{u}, V — X] other than those red edges, and this means the existence of that many
edges in E[{u},V — X]. Thus,

|E[{u},V — X]| > k — 1+ 1 + (# of acyclic components, in G[V — X], adjacent to u)



for each u in X. Summing up over all the nodes in X, we obtain (3). a

Suppose G contains an acyclic component 7. Then since X contains no node of T, due to its
minimality, we can restrict ourselves w.l.o.g. to G without 7. So assume that G contains no acyclic
component. Now suppose 7(E) < |V|+ k. Then E must be independent in Qx(G) and G satisfies n. But
then a solution X minimal in G must be empty and the inequality in question trivially holds.

So assume that r(E) = |V| + k, and using (2) we can write

rY(E) = |E|-r(E)

|E[X]| +|E[X,V - X]| - (r(E) — |E[V - X]))

|E[X]} + |E[X,V — X]|

—(IX1 + k — I + (# of acyclic components in G[V — X])) (4)

il

Consider first the case when X consists of a singleton and let X = {u}. In this case E[X] = 0 and
6(u) = E[X,V — X]. Hence, using the general formula for dual rank,

7(8(u)) (IE| = r(E)) - (IE[V - X]| - r(E[V - X]))
= (B -(VI+k)—-(EV - X]|
—(JV — X| — (# of acyclic components in G[V — X]) +1))

= |E[X,V — X]| - |X| - (k—1) — (# of acyclic components in G[V — X])

I

Applying (3) with | X| =1 we get

2rd(B) - ) r(6(u))

ueX

> |E[X,V — X]| — 2(]X| + k — I + (# of acyclic components)) + | X| + (k — 1)
+(# of acyclic components)

= [E[X,V' = X}}| -1~ (k—1)— (# of acyclic components)

> 0

Next assume that {X| > 2. Call such a component in G[V — X] that is adjacent to a single node in X
as a leaf component. Recall that the dual rank of any E’ C E under a matroid M can be equivalently
defined as

r4(E") = max{|E' — B| : B is a base of M}

Take any node u of X. To estimate the value of r¢(§(u)) we observe how many edges incident to u must
belong to a base of Qx(G). Let I,J C E be mutually disjoint sets s.t. [ is an independent set and
sp(J) < 0. And then, 7 U J in general is an independent set of Qx(G). This observation allows us to
argue that, for every acyclic leaf component T which is adjacent only to u, any base B of Q;(G) must
use all the edges in T and (at least) one edge connecting u and T". Besides them B must use at least one
more edge from §(u). To see why notice first that if no other edges of 6(u) belong to B the component
of B containing u is a tree at best. As observed above, however, it is always possible to extend this
component by one more edge incident to it if it ezists. So it remains to see that at least one more edge is
incident to u, and this is easy to do for, otherwise, u belongs to an acyclic component of G, which we've
excluded at the beginning of the current analysis. Therefore, we can write

r4(6(w)) < |6(u)| — ((# of acyclic leaf components adjacent to v) + 1)
and hence,

Z rd(6(u)) < 2|E[X]| + |B[X,V — X]| — |X| — (# of acyclic leaf components) (5)
ueX

Notice that, since there is no isolated acyclic component in G, we can reduce (3) to

|E[X,V - X]| > (k-—1+1)|X]|+ 2(# of acyclic non-leaf components)
+(# of acyclic leaf components) (6)



Combining (4), (5) and (6),

2r%(B) = D r(6(w))
ueX

> |E[X,V - X} = 2(|X| + k — I + (# of acyclic components in G[V — X]))
+|X | + (# of acyclic leaf components in G[V — X})
IE[X,V - X]| - (IX|+2(k - 1))
—(2(# of acyclic non—leaf components) + (# of acyclic leaf components))
(k- D(X] - 2)
0

Il
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