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Abstract We introduce a general integer programming formulation for a class of com-
binatorial optimization games, which include many interesting problems on graphs. The
formulation immediately allows us to improve the algorithmic result for finding imputations
in the core (an important solution concept in cooperative game theory) of the network flow
game on unit networks. An important result is a general theorem that the core for this class
of games is nonempty if and only if a related linear program has an infeger optimal solution.
We study the properties for this mathematical condition to hold for several problems on
graphs, and apply them to resolve algorithmic and complexity issues for their cores: decide
whether the core is empty; if the core is empty, find an imputation in the core; given an
imputation x, test whether z is in the core. »



1 Introduction

In the theory of cooperative games, a coopera-
tive game is given by a pair (N,v) of a set N of
players and a characteristic function v : 2V — R,
(R. is the set of nonnegative reals). The value
v(S) for a subset (i.e., a coalition) S € N means
the profit which can be obtained by cooperation of
players in S. It is a natural question to ask how to
distribute the entire profit v(N) to each player in
some fair way, taking into account the other game
values v(S), S C N. A vector z : N — R, with
z(V) = v(V) is called an imputation, where z(S) for
§ € V represents Y, ¢ z(u). Among many meth-
ods proposed so far for finding a rational imputation
is core [6]. The core is defined to be the set of impu-
tations z such that z(S) > v(S) holdsfor all S C E.
The concept of core provides us a fundamental prin-
ciple for such imputation to be rational, as it says
that any subgroup of players would acquire at least
as much payment as they can collectively obtain as
a subgroup.

Recently, several authors have taken algorithmic
and complexity issues as the main focus in solutions
for game theory problems [1, 2, 5]. An interesting
problem discussed by Kalai and Zemel [3, 4] is a
network flow game. Consider a digraph D = (V, E)
with a source vertex s and a sink vertex t. They con-
sider a cooperative game associated with the max-
imum flow from s to t by identifying each arc as
a player, and defining the value v(S) of a subset
S C E to be the value of a maximum flow in the sub-
graph D[S] = (V, S). For a special case of the max-
imum flow game on unit networks, i.e., those with
capacity ones, Kalai and Zemel [4] showed a very
nice characterization theorem of the core, which is
based on a linear programming: An imputation is
in the core if and only if it is a convex combination
of the characteristic vectors of minimum s-¢ cuts.

It is not accidental that the above special case of
the maximum flow game always has a nonempty
core and allows polynomial time solution algo-
rithms. In Section 3, we introduce a general inte-
ger programming formulation of combinatorial op-
timization games, and show that the game has a
nonempty core if and only if the corresponding lin-
ear programming relaxation has an integer optimal
solution. In Section 3, with this general formula-
tion, we introduce several interesting examples. We
apply the theorem to discuss algorithmic and com-
putational issues from graph theory related to the
core of these games.

In Section 4, we discuss the relationship between
two games which are dual in the sense of the cor-
responding linear programming relaxations, and re-

late this duality with algorithmic design issues. In
Section 5, we consider the edge-connectivity game
on undirected graphs, which does not have the stan-
dard integer programming formulation of Section 2.
In Section 6, we conclude our paper with a summary
table of the results in this paper.

2 Packing and Covering Games
2.1 Definitions

Let A be an m x n {0,1}-matrix. Let 1; and
0y denote the column vectors with all ones and all
zeros, respectively, of dimension k. We may de-
note these vectors by 1 and 0 for simplicity. Let
M ={1,2,---,m} and N = {1,2,---,n} be the
corresponding index sets, and let ¢ denote the trans-
position. Consider the following linear program,

LP(c, A, max) : maxy'c
st. YA, y>0n,
and its dual,
DLP(c, A, max) : min 1%z
s.t. Az >¢, z2>0,,

where ¢ is an m-dimensional column vector € R™, y
is an m-dimensional column vector of variables and
z is an n-dimensional column vector of variables.

We denote the corresponding integer program-
ming version of LP(c, A,max) by ILP(c, A,max).
Since A is a {0,1}-matrix, the integrality con-

_straints are equivalent to require y to have
{0,1} values.

We define the _packing game
Game(c, A, max) as follows, where S =N — S:

1. The player set is N.

2. For each subset § C N, v(S) is defined as
the value of the following integer program:
ILP(c, Ay, s, max):

maxy'c ]
st yAms <1y, ¥A,3<0 g,
ve{0,1}7,

where A7 s is the submatrix of A with row set T
and column set S, and v(0) is defined to be 0.

We then introduce a cov-
ering game Game(c, A, min) for the minimization
problem in the similar manner:

1. The player set is M.



2. For each subset T C M, v(T) is defined as
the value of the following integer program:
ILP(d, Ap n,min):

mindtz

s.t. Ar NT > 1|T|, z € {0,1}",
where v(0) is defined to be 0.

Since the value of the game is defined by a solu-
tion to the minimization problem, this is in fact a
problem of sharing the cost of the game. Thus, we
would revise the definition of core. An imputation
w: M — Ry is in the core if w(T") < v(T) holds for
allT C M.

From definition, both packing game and covering
game are monotone, i.e., v(S’) < v(S) holds for any
subsets S’ C S of N (or M).

In this paper, we shall introduce a number of
optimization games on graphs, which are formu-
lated as the above maximization and/or minimiza-
tion games, and study the following properties and
questions concerning their cores.

1. Nonemptyness: Is the core of the game always
nonempty?

2. Convez characterization: Can any imputation
in the core be represented as a convex combi-
nation of some well-defined dual objects (such
as minimum s-¢ cuts)?

3. Testing nonemptiness: Can it be tested in
polynomial time whether a given instance of
the game has nonempty core?

4. Checking membership: Can it be checked in
polynomial time whether a given imputation
belongs to the core?

5. Finding a core member: Is it possible to find
an imputation in the core in polynomial time?

As our discussion will focus on games on graphs,
the polynomiality is determined in terms of the in-
put size of the graph (even though the sizes of the
constraint matrices A in the above formulations are
sometimes exponential in |V| and |E}).

2.2 Main theorems

Before presenting our main theorem regarding
when the core is nonempty, we simplify the con-
ditions for being in the core.

Lemma 1 For Game(c, A,max), define S; = {j €
N | Aijj =1} fori € M. Then v(S;) > c; holds for
allie M.

Proof: By definition, v(S;) is the optimal value to
the following integer program: ILP(c, Ap,s;, max):

maxy'c
s.t. ’ytAM,s‘ < lf&l’ ytAM:S-' < Oi—lsil’
y € {0,1}™.

Set y; :=1, and y; ;=0 for k € {1,2,...,m} — {i}.
This vector y is an integer feasible solution with
objective value c;. O

Lemma 2 A vector z : N — Ry is in the core of
Game(c, A, max) if and only if

1. z(N) = v(N) (i.e., z is an imputation),

2. 2(8i) > ¢; for alli € M, where S; ={j € N |
A;; =1} (e, z 1s feasible to DLP(c, A, max)
of LP(c, A, max).

Proof: The necessity follows from Lemma 1. To
prove its sufficiency, we show that z(S) > v(S)
holds for all S C N. Consider an optimal solution
y* to the integer program: ILP(c, Ay,s, max):

maxy‘c
s.t. Y Aus < 1f5|: ytAM,E < 0:»~I5|’
y € {Oa 1}m7

which yields v(S) Let I = {i € M | y} = 1}; Le,
v(S) =3 ;¢ ¢i- From (y")tAM‘g < O::—|s|v it holds
S; C § for all i € I. Furthermore (y*)'Apys =
Yierdis < 1f5| implies that all S;, 1 € I, are
disjoint. Therefore, z(S) > Y,c; 2(S:). On the
other hand, v(S) = Y ;e ¢ < 3,7 2(S:) by the
assumption 2 on z. Hence v(S) < z(5). o

Lemma 2 leads to the following theorem:

Theorem 1 The core for Game(c, A, max) is
nonempty if and only if LP(c, A,max) has an in-
teger optimal solution. In such case, a vector z :
N — Ry is in the core if and only if it is an opti-
mal solution to DLP(c, A, max).

Proof: Let z N — R, be a vector in
the core. In Lemma 2, the first condition
states that z(N) is equal to the optimal value
of ILP(c,A,max). The second condition of
Lemma 2 states that z is a feasible solution to
DLP(c, A,max), the dual of LP(c, A, max). Now if
the two conditions of Lemma 2 holds, then z(N) =
v(N) < opt(ILP(c, A, max)) < opt(LP(c, A, max))
< opt(DLP(c,A,max)) (by the duality theory
of linear programming) < z(N), and we have



opt(ILP(c, A,max)) = opt(LP(c, A, max)), where
opt(P) denotes the optimum value of problem P.

On the other hand if opt(ILP(c, A,max)) =
opt(LP(c, A,max)), then let z : N — R, be an
optimal solution of DLP(c, A,max). Then z(N) =
opt(DLP(c, A,max)) = opt(LP(c,A,max)) =
opt(ILP(c, A,max)) = v(N) implies 2(N) = v(N)
(i.e., condition 1 of Lemma 2). The condition 2 also
holds since z is feasible to DLP(c, A, max). Then,
z is in the core by Lemma 2.

The second statement follows from the above ar-
gument. a

Similarly, we have the following lemma and the-
orem for the minimization game.

Lemma 3 A vector w: M — Ry is in the core of
Game(d, A, min) if and only if

1. w(M) =v(M) (i.e., w is an imputation),

2. w(T;) < dj forallj € N, where T; = {i €
M | Ay = 1} (ie., z is feasible to the dual
DLP(d, A, min) of LP(d, A, min)). a

Theorem 2 The core for Game(d, A,min) is
nonempty if and only if LP(d, A,min) has an in-
teger optimal solution. In such case, a vector w :
M — Ry isin the core if and only if it is an optimal
solution to DLP(d, A, min). |

3 A Selection of Examples

There are many interesting optimization games
on graphs, which can be formulated as packing and
covering games in Section 2. Kalai surveys many
games of this kind [2], including the maximum flow
game. We will focus on the following games.

1. Maximum flow game in unit networks, s-t edge
connectivity game in undirected graphs, s-t
vertex connectivity game in undirected graphs,
and maximum matching game in bipartite
graphs.

2. Maximum r-arborescence game.

3. Maximum matching game and minimum ver-
tex cover game.

4. Maximum independent set game and mini-
mum edge cover game.

5. Minimum coloring game.

3.1 The Network Flow Game and Its
Variants

Let us consider the maximum flow game in a unit
directed network D = (V,E) with source s € V
and sink t € V, which is also denoted simply by
D = (V,E,s,t).

Lemma 4 Given a digraph D = (V, E, s,t), the s-t
arc-connectivity of D (i.e., the value of a mazimum
flow) is equal to the size of a minimum s-t cut in
D. [m]

Now let us define the s-t arc-connectivity on a
digraph D = (V,E,s,t). In this game, each player
controls an arc, and the value v(S) of a subset
S C E is defined to be the maximum flow (=the
size of the maximum number of arc-disjoint paths)
from s to t on the subnetwork D[S] = (V, S). This
game (E,v) can be represented by a packing game
Game(c, A, max) of Section 2. Let P be the set
of paths from source s to sink t (called s-t paths,
for short) in G, and A = Ap g be the path-arc in-
cidence matrix, where A;; = 1 if and only if the
arc j is in the s-t path i. Then (E,v) is given by
Game(1p|, A, max).

In some cases, there may be dummy players in
the game in the sense that those players j always get
2(j) = 0 in an imputation z : N — R,. To make
Game(1)p, A, max) more general for the purpose of
utilizing it in discussing the s-t vertex-connectivity
game and some other games later, we introduce a
set B C E of dummy players. A set E of arcs (for
dummy players) is called validif F = E —E contains
at least one minimum s-t cut C C E of D.

Theorem 3 For a digraph D = (V,E,s,t) and a
set E of dummy players, the nontrivial st arc con-
nectivity game has nonempty core if and only if E
is valid. a

Theorem 4 Let z : E — Ri be an imputation
of the nontrivial s-t arc-connectivity game on a di-
graph D = (V, E, s,t) with a valid set E of dummy
players. Then z is in the core with respect to E (i.e.,
z(e) =0, e € E) if and only if it is a convez com-
bination of the characteristic vectors for minimum
s-t cuts C contained in F = E — E. a

Corollary 1 For a valid set E of dummy players,
testing nonemptiness, checking membership and
finding a core member of the s-t arc-connectivity
game, can all be answered in polynomial time. O

We emphasize at this point that the results in
Theorems 3 and 4 can be extended to other opti-
mization games on graphs, which can be reducible



to the maximum flow game in a directed network.
Those problems include:

P1 s-t edge-connectivity game in an undirected
graph G = (V,E, s,t), where players are on
edges and v(S), S C FE is defined to be the
size of maximum flow from s to ¢ in the in-

duced network G[S],

P2 s-t vertex-connectivity game in a digraph D =
(V,E,s,t) (resp. undirected graph G =
(V,E, s,t)), where players are on vertices ex-
cept s and ¢, and v(S), S C V — {s,t} is de-
fined to be the maximum number of arc (resp.,
edge) disjoint paths from s to ¢ in the induced
digraph DIS] (resp., graph G[S]),

P3 maximum matching game with edge players on
a bipartite graph G = (V4, V4, E), where v(S),
S C E is defined to be the size of maximum
matching in the induced graph G[S].

Using standard reduction techniques for network
flow problems and with aid of dummy players, we
can show the followings.

Corollary 2 For a game in the above PI (resp.,
P2 and P3), the core is always nonempty, and if
the game is not trivial, the core is a conver combi-
nation of a set of characteristic vectors of minimum
s-t cuts (resp., minimum s-t vertez-cuts for P2 and
minimum vertez-covers for P3). Furthermore, test-
ing nonemptiness, checking membership and finding
a core member of all these games, can be answered
in polynomial time. a

3.2 The Arborescence Game

The maximum r-arborescence game and mini-
mum r-cut game is played on a digraph D = (V, E)
with a root r € V. For each subset S C E of arcs
(i.e., players), the game value v(S) is defined to be
the size of the maximum number of d arc-disjoint
r-arborescences on the subgraph G[S] = (V,S§).
This game can be formulated as a packing game
Game(1)3), A, max) by matrix A such that the rows
correspond to all r-arborescences and the columns
correspond to all arcs; 4;; = 1 if and only if arc j
is in the i-th r-arborescence.

A set E of arcs (for dummy players) is called
valid if F = E — E contains at least one minimum
r-cut C C E of D. Analogously with Theorems 3
and 4, we have the following results.

Theorem 5 For a digraph D = (V,E) with root
7 €V and a set B of dumimy players, the mazimum
r-arborescence game with v(E) > 0 has nonempty
core if and only ifE‘ is valid. m}

Theorem 6 Let z : E — Ry be an imputation
of the mazimum r- arborescence game on a digraph
D = (V,E) with root r € V and a valid set E of
dummy players and let v(E) > 0. Then z is in the
core with respect to E (i.e., z(e) = 0, e € E) if
and only if it-is a convex combination of the char-
acteristic vectors for minimum r-cuts C contained

inF=FE-E. n)

Corollary 3 For a set E of dummy players, testing
nonemptiness, checking membership and finding a
core member of the mazimum r-arborescence game,
can all be answered in polynomial time. O

3.3 Matching and Vertex Cover

Given a graph G = (V, E), we define the maxi-
mum matching game by a game such that the play-
ers are on vertices and the game value v(S) for
a subset § C V is the maximum matching size
in the subgraph G[S] induced by S. Similarly,
the minimum vertex cover game is defined by a
game such that players are on edges and v(S) for
S C E is the minimum vertex cover size in the
subgraph G[S] = (V,S). These games are formu-
lated by packing game Game(l,g|, A, max) and cov-
ering game Game(l}y|, A, min), respectively, where
the constraint matrix A is the edge-vertex incidence
matrix of G in which A;; =1 if and only if edge ¢
and vertex j are incident.

3.3.1 Matching

By Lemma 2, an imputation z is in the core of the
matching game if and only if z(u) + 2(u'} > 1 holds
for all edges (u,u') € E. Based on this observation,
we can easily find two classes of graphs for which
the cores are always nonempty. The first class of
graphs for which the size of a minimum vertex cover
is the same as the size of a maximum matching, and
the class of graphs with perfect matching. However,
the next theorem says that these are essentially all
graphs which have nonempty cores for the maxi-
mum matching game.

Theorem 7 An undirected graph G = (V,E) has
a nonempty core for the mazimum matching game
if and only if there exists a subset Vi C V such that

1. the subgraph G = G[V}] induced by Vi has a
minimum vertex cover W with the same size
as its mazimum matching,

2. the subgraph Gy = G[V = V] induced by V-v;
has a perfect matching,



3. all the remaining edges (u,u’) € E between G,
and Gy satisfy u € W for the vertex cover W
i 1. a

Corollary 4 For the core of the mazimum match-
ing game, testing nonemptiness, checking member-
ship and finding a core member, can be done in poly-
nomial time. ]

3.3.2 Vertex Cover

We characterize the class of graphs that have a
nonempty core of the minimum vertex cover game.

Theorem 8 The core for the minimum vertex
cover game on graph G = (V, E) is nonempty if and
only if the size of a mazimum matching is equal to
the size of a minimum vertex cover. o

Based on this, we have the following results.

Theorem 9 For the core of the minimum vertex
cover game, testing nonemptiness, checking mem-
bership and finding a core member, can be done in
polynomial time. 0

Theorem 10 Assume that the minimum verter
cover game on an undirected graph G = (V, E)
(E # 0) has nonempty core. Then an imputation is
in the core if and only if it is a conver combination
of the characteristic vectors of mazimum matchings
mG. m]

3.4 Edge Cover and Independent Set

For an undirected graph G = (V,FE), we can
define a mutually dual pair of the minimum edge
cover game and the independent set game by
Game(lig), A', min) and Game(l)y|, A’, max), re-
spectively, where the constraint matrix A’ is the
vertex-edge incidence matrix of G (i.e., the trans-
position of the matrix A used for the pair of the
maximum matching game and the minimum vertex
cover game). Thus, for the minimum edge cover
game, the players are on vertices, and the game
value v(S) for § C V is the minimum number of
edges that cover all vertices in S, i.e.,

min{|F|| FNE(u) #0, Vue S},

where E(u) denotes the set of edges in E which are
incident to u. Note that v(S) is not necessarily the
size of 2 minimum edge cover in the subgraph G[S]
induced by vertex set S.

Similarly, the players for the maximum indepen-
dent set game are on edges and the game value v'(T)

for T C E is the size of a maximum independent set
in the subgraph G[V(T)] induced by V(T), where
V(T) is defined by

V(T) = {i € V| iis adjacent only to edges in T'}.

(Note that v'(T) is not the size of a maximum in-
dependent set in the subgraph G[T7.)

3.4.1 Edge Cover

We first observe that the minimum edge cover game
is equivalent to the maximum matching game in the
following sense.

Lemma 5 For an undirected graph G = (V,E),
which has no isolated vertez, let v and T be the game
values of the minimum edge cover game and the
mazimum matching game on G, respectively. Then

v(S) +9(S) = |S| holds for all SC V. u]

Theorem 11 Let G = (V, E) an undirected graph
with no isolated vertez. Then w : V — R, is in the
core of the minimum edge cover game on G if and
only if W = 1jy| — w is in the core of the mazimum
matching game on G. (]

This  theorem and Theorem 7 claim that the
graphs with nonempty cores for the minimum edge
cover game is exactly same as those for the maxi-
mum matching game.

3.4.2 Independent Set

We first prove that the counterpart of Theorem 8 is
also true for the maximum independent set game.

Theorem 12 Let G = (V,E) be an undirected
graph with no isolated vertez. Then the core for
the mazimum independent set game on graph G is

nonempty if and only if the size of a mazimum in-

dependent set is equal to the size of a minimum edge
cover in G. a

Theorem 13 For the core of the mazimum inde-
pendent set game, testing nonemptiness, checking
membership and finding a core member, can be done
in polynomial time. o

Theorem 14 Given an undirected graph G =
(V,E) with V # 0 but no isolated vertez, an im-
putation is in the core of the marimum independent
set game if and only if it is a conver combination of
the characteristic vectors of minimum edge covers.

a



One may define the maximum clique problem in
an undirected graph G = (V, E) as the maximum
independent set problem on its complement graph
G = (V,E). Obviously, such clique game is given
by a packing game Game(lI-E-l,A”, max) which has
players on the edges in G, where A” is the vertex-
edge incidence matrix A" of the complement graph
G. Therefore, all the results in this subsection can
be generalized to the maximum clique problem.

3.5 Chromatic Number

Let x(G') denote the chromatic number of an
undirected graph G’ (i.e., the minimum number of
maximal independent set which together covers all
vertices of G’). For the minimum coloring game on
a graph G = (V, E), we define the game value v(S5),
S C V as x(G[S]), i-e., the size of a minimum col-
oring of the subgraph G[S] induced from G by S.
This game can be represented by a covering game
G’ame(lm, A, min), the rows of the matrix A corre-
spond to the vertices in a graph G, and the columns
correspond to maximal independent sets, where 7
denotes the set of all maximal independent sets in
G.

By Lemma 3, a vector w : V — R, is in the core
of the minimum coloring game if and only if w(V) =
x(G) and w(S) < 1 for any independent set S C V.
Let w(G) denote the size of a maximum clique in G,
which satisfies w(G) < x(G), as widely known in the
coloring problem. We can easily observe that the
characteristic vector I of a maximum clique C C V
is a core of the coloring game if w(G) = x(G) holds.
Therefore the minimum coloring game on such a
graph has nonempty core. However, the converse
is not true. That is, there is a graph G = (V| E)
such that w(G) < x(G) but the core of the coloring
game is nonempty. For example, for a graph G with
w(@) < x(G@) and a(G)x(G) = |V|, the imputation
z defined by z(u) := x(G)/|V| for all v € V is
in the core, where a(G) is the stable number of
G. Therefore, in general, the coloring game has
no .convex characterization by a set of maximum
cliques. Also, from such a graph G, construct the
graph G' = G + K,(g) by adding complete graph
K, (c) via a single common vertex. Then G’ satisfies
w(@") = x(@), but has nonempty core. That is,
in general, the coincidence of the optimum values
of ILP(1m,, A, max) and IPL(1,, A, min) does not
imply the convex characterization of the core of a
Game(l,,, A, min).

We define for each edge e = (4,j) € FE its char-
acteristic vector I, : V — {0,1} by I.(k) := 1 if
k € {i,5} and 0 otherwise.

Theorem 15 If a graph G = (V,E) is bipartite
and E # 0, an imputation w : V — R, is in
the core of the minimum coloring game if and only
if it is a convez combination of the characteristic
vectors of edges in E; ie, w = Y cpAcLe, with
Yoecgre =1and X, >0 for alle € E. This can be
tested in polynomial time. O

For general graphs, expectably, the problem is
NP-complete.

Theorem 16 For the minimum coloring game, it
is NP-complete to decide whether the core is empty
or not. It is also NP-complete to decide whether a
given tmputation is in the core or not. m}

A graph G is called perfect if w(G[S]) = x(G[S])
forall SCV.

Theorem 17 Let G = (V,E) be a perfect graph.
Then the core of the minimum coloring game is al-
ways nonempty. Furthermore it can be tested in
polynomial time whether an imputation w is in the
core or not. [m]

Given a game (N,v) with v : 2Y - R, and a
subset S of players with @ # S C N, the game
(S,vs) with vs(S") = v(S’) for §' C S is called the
subgame of (N,v) induced by S. A game (N,v) is
called totally balanced if any subgame (S,vs), S C
N has nonempty cores [3].

Theorem 18 A graph G = (V, E) is perfect if and
only if the minimum coloring game on G is totally
balanced. a

4 Totally Balanced Games

In this section, we discuss the relationship of the
total balancedness between Game(l,,, A, max) and
Game(l,, A, min).

Theorem 19 If Game(1,,, A, max) is totally bal-
anced, then the core for Game(l,,A,min) is
nonempty. m]

A weaker condition such as a nonempty core
only for Game(lm,A,max) would not give the
same results. In addition, a stronger result that
Game(l,, A, min) is totally balanced would not
hold either. However, for the opposite direction, the
result is stronger as will be stated in Theorem 20.

Lemma 6 If Game(l,, A, min) is totally balanced,
then the core for Game(l,,, A, max) is non-empty.
m]



Lemma 6 provides an alternative proof of Theo-
rem 18.

The condition that Game(l, A, min) is totally
balanced cannot be relaxed to the nonemptiness of
the core of Game(1, A4, min). However, we can make
the conclusion stronger.

Theorem 20 If Game(l,, A, min) is totally bal-
anced, then Game(l,,, A,max) is also totally bal-
anced. m}

5 Edge-connectivity in Graphé

Here we consider the edge-connectivity game on
an undirected graph G = (V, E). In this game, play-
ers are on edges, and v(S) for § C E is defined by
A(G|[S]), where notation G[S] = (V, S) is used and
A(H) denotes the edge-connectivity of a graph H.
Unfortunately this game does not have the standard
formulation of Section 2. However, it is possible to
ask all questions discussed so far.

We first see that this game always has nonempty
core because the characteristic vector I¢ for a mini-
mum cut C C E in G is in the core; for each S C E,
z = I¢ satisfies 2(S) = [SNC| > v(S) (since SNC
is a cut in G[S]).

Although the edge-connectivity game is very sim-
ilar to the s-t edge connectivity game studied in
Section 4.1, the convex characterization of the core
does not hold in general.

Theorem 21 Let k denote the edge-connectivity of
an undirected graph G = (V, E). To test whether an
imputation z is in the core of the edge-connectivity
game can be done in polynomial time for k < 2, but
is co-NP-complete if k = 3. a

6 Conclusion

The computational issues in game theory have
received much. attention recently, and have been a
motivation of our investigation into the classes of
optimization games on graphs. We conclude the
paper by giving a table of the results considered for
the five properties/questions raised in Section 2.
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Table 1. Summary of the results for optimization games on graphs.

Core Convex Testing Checking if an © Finding an
Games nonemptiness characterization nonemptiness imputation imputation
of the core of the core is in the core - in the core
Max flow (G, D) yes yes — P P
s-t connectivity (G, D) yes yes — P P
r-arborescence (D) yes . yes — P P
Max matching (G) no . no P P P
Min vertex cover (G) no yes P P P
Min edge cover (G) no no P P P
Max indep. set (G) no yes P P - P
Max clique (G) no . yes P P P
Min coloring (G) no no - NPC NPC NPH
Edge-connectivity (G) yes no — NPC ° P

D: digraphs, G: undirected graphs, P: polynomial time, NPC: NP-complete, NPH: NP-hard, —: trivial



