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Abstract Given an undirected multigraph G = (V, E) and requirement functions {ry(z,y) €
Z*|z,y € V} and {re(z,y) € ZT|z,y € V} (where Z* is the set of nonnegative integers), the
edge and vertex-connectivities augmentation problem asks to augment G by adding the smallest
number of new edges to G so that for every =,y € V, the edge-connectivity and vertex-connectivity
between r and y are at least r1(z,y) and 7.(z,y), respectively in the resulting graph G’. In this
paper, we show that if 7.(z,y) = 2 holds for every z,y € V, then the problem can be solved in

polynomial time.
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1 Introduction

Let G = (V, E) stand for an undirected multigraph
with a set V of vertices and a set E of edges, where an
edge with end vertices u and v is denoted by (u,v).
A singleton set {z} may be simply denoted by z.
For two disjoint subsets X, ¥ C V, we denote by
Eg(X,Y) the set of edges, one of whose end ver-
tices is in X and the other is in Y, and by ¢g(X,Y)
the number of edges in Eg(X,Y). In particular,
Eg(u,v) implies the set of edges with end vertices
u and v, and cg(u,v) = |[Eg(u,v)]. We denote
n=|V|, e=|E|. Forasubset V'CVinG, G-V’
denotes the subgraph induced by V — V'. A cut is
defined as a subset X of V with @ # X # V, and the
size of cut X is denoted by cg(X,V —X), which may
also be written as cg(X). A cut with the minimum
number is called a (global) minimum cut, and its size,
denoted by A(G), is called the edge-connectivity of G.
The local edge-connectivity Ag(z,y) for two vertices
z,y € V is defined to be the minimum size of a cut in
G that separates z and y, or equivalently the maxi-
mum number of edge-disjoint path between z and y
[4]. For a subset X of V, {v e V- X | (u,v) € E
for some 4 € X} is called a neighbor set of X, de-
noted by I'g(X). Let p(G) denote the number of
components in G. A separator is defined as a cut
S of V such that p(G — S) > p(G) holds and no
S’ C S has this property (not necessarily p(G) = 1).
If G # K, then a separator with the minimum size is
called a (global) minimum separator, and and its size,
denoted by «(G), is called the vertex-connectivity of
G. If G = K,, define K(G) = n — 1. The local
vertex-connectivity kg (z, y) for two vertices z,y € V
is defined to be the number of vertex-disjoint paths
between = and y in G. For a separator S, there is
a component X of G such that S C X, and we say
that the components in X —~ S are the S-components.
Let

B(G) =max{p(G — S)|S is a minimum separator}.

A cut T CV is called tight if G[T] induces a con-
nected graph and I'¢(T) is a minimum separator in
G and no 7" C T has this property.

In this paper, for a given function a : (‘2') -
R* (resp., b : (‘2/) — R7Y), we call G a-edge-
connected (resp., b-vertez-connected) if Ag(z,y) >
a(z,y) (resp., Ke(z,y) > b(z,y)) holds for every
z,y € V, if there is no confusion.

Given a multigraph G = (V,E) and a require-
ment function 7y : (5) — Zt (Z*: the set of
nonnegative integers), (resp., a requirement function
re(z,y) (g) — Z7), the edge-connectivity augmen-
tation problem, (resp., the vertez-connectivity aug-
mentation problem) asks to augment G by adding
the smallest number of new edges so that the result-
ing graph G’ becomes 7,-edge-connected (resp., Tk~

vertex-connected). When the requirement function
) (resp., r,) satisfies ry(z,y) = k € Z* for each
z,y €V (resp., ro(z,y) =1 € Z+ for each z,y € V),
this problem is called the global edge-connectivity
problem (resp., the global vertex-connectivity prob-
lem).

Watanabe and Nakamura [17] first proved that
the global edge-connectivity augmentation problem
can be solved in polynomial time for any given inte-
ger k. Their algorithm increases edge-connectivity
one by one, each time augmenting edges on the
basis of structural information of the current G.
Currently, O(e + k*nlogn) time algorithm due to
Gabow [6] and O(n®) time randomized algorithm
due to Benczir [1], whose deterministic running time
is O(n*), are the fastest among the existing algo-
rithms. Different from the approach by Watanabe
and Nakamura, Cai and Sun [2] first pointed out that
the augmentation problem for a given k can be di-
rectly solved by applying the Lovdsz edge-splitting
theorem. Based on this, Frank [5] gave an O(n®)
time augmentation algorithm. Afterwards, Gabow
[7] and Nagamochi and Ibaraki [15] improved it to
O(mn?log(n?/m)) and O(n?(m + nlogn)), respec-
tively. Recently, Nagamochi and Ibaraki [16] gave an
O(n(m + nlogn)logn) time algorithm. For a gen-
eral ry, Frank [5) showed that the edge-connectivity
augmentation problem can be solved in polynomial
time by using Mader’s edge-splitting theorem, and
the time complexity is improved by Gabow [7] to
O(n*mlog (n?/m)).

As to the vertex-connectivity augmentation prob-
lem, the problem of adding the minimum number
of new edges to make a k-vertex-connected graph
(k + 1)-vertex-connected has been studied by sev-
era] researchers. It is easy to see that M(G) =
max{8(G)—1, [t(G)/2]} plays an lower bound on the
optimal value to this problem, where t(G) denotes
the maximum number of pairwise disjoint tight sets
in G. Eswaran and Tarjan [3] proved that the vertex-
connectjvity augmentation problem can be solved by
adding M(G) edges to G for k = 1, Watanabe and
Nakamura stated the same result for k = 2 [18].
However, M(G) may be smaller than the optimal
value for £k > 3. Recently Jorddn presented an
O(n®)-time approximation algorithm for this prob-
lem {12, 13]. The difference between the number of
new edges added by his algorithm and the optimal
value is at most (k — 2)/2.

It is known that if requirement function 7, satisfies
Te(x,y) = k, 2,y € V for some k € {2, 3, 4}, then
the global vertex-connectivity augmentation prob-
lem can be solved in polynomial time due to [3, 10],
[18, 8], [11], where an input graph G may not be
k-vertex-connected. However, whether there is an
polynomial time algorithm for the global vertex-
connectivity augmentation problem for an arbitrary
k is an open question.

In this paper, we consider the problem of augment-



ing the edge-connectivity and the vertex-connectivity
of a given graph G simultaneously by adding the
smallest number of new edges. For a given func-
tion a : (¥) — R* (resp., b : (¥) = R*), we say
that G is (a,b)-connected if G is a-edge-connected
and b-vertex-connected.

Given a multigraph G = (V,E), a requirement
function 7): (‘2/) — Z7*, a requirement function 7,:

(V) = Z*, the edge and vertez-connectivities aug-
mentation problem, denoted by EVAP(r,,7,), asks
to augment G by adding the smallest number of
new edges to G so that the resulting graph G’ be-
comes (ry,T.)-connected. Without loss of general-
ity, ra(z,y) > rc(z,y) is assumed for every z,y € V.
Clearly, EVAP(ry, r,) contains the edge-connectivity
augmentation problem and the vertex-connectivity
augmentation problem as its special cases.

When the requirement function 7, satisfies
r<(z,y) = £ € Z* for each z,y € V, this problem
is denoted by EVAP(r,, £), if no confusion arises. In
this paper, we show that the problem EVAP(ry,2)
can be solved in polynomial time for any requirement
function r,.

In Section 2, we introduce preliminaries and a
" lower bound on the number of edges that are neces-
sary to make a given graph G (r,r,)-connected. In
Section 3, we describe an outline of an algorithm for
making a given graph G (7, 2)-connected by adding
a new edge set whose size is equal to the lower bound.
In Section 4 — 7, we prove the correctness of each step
in our algorithm.

2 Preliminaries

2.1 Definitions

For a multigraph G = (V,E), its vertex set V
and edge set E may be denoted by V[G] and E|[G],
respectively. For a subset V' C V (resp., E' C E) in
G, G{V'] (resp., G[E']) denotes the subgraph induced
by V' (resp., E'). For V' C V (resp., E' C E) in G,
we denote G[V — V'] (resp., G|E — E']) simply by
G — V' (resp., G — E'). For an edge set F with
FNE =0, wedenote G=(V,EUF) by G+ F. A
partition X;,---, X, of vertex set V means a family
of nonempty disjoint subsets of V whose union is V,
and a subpartition of V means a partition of a subset
of V.

We say that a cut X separates two disjoint subsets
Yand Y of VIfY C Xand Y C V- X (or
YCV —-Xand Y’ C X) hold. In particular, a cut
X separates z and yif r € X and y € V — X (or
z€V—-Xandy € X)hold. A cut X crosses another
cut YV if none of subsets X NY, X -Y,Y — X and
V —(XUY) is empty. We say that a separator S C V
separates two disjoint subsets Y and Y’/ of V — S if
no two vertices £ € Y and y € Y’ are connected in
G —S. In particular, a separator S separates vertices

z and y in V — S if z and y are contained in different
components of G — S.

2.2 Edge-Splitting

In this section, we introduce an operation of trans-
forming a graph, called edge-splitting, which is help-
ful to solve the edge-connectivity augmentation prob-
lem.

Given a multigraph G = (V, E), a designated ver-
tex s € V, vertices u,v € I'g(s) and a nonnega-
tive integer § < min{cg(s,u),ce(s,v)}, we construct
graph G’ = (V, E’) from G by deleting § edges from
Eg(s,u) and Eg(s,v), respectively, and adding new
6 edges to Eg(u,v):
cor(s,u) :=cg(s,u) — §,
cer(3,v) := cg(s,v) — 4,
cer (u,v) := cg(u,v) + 6,
ce'(Z,y) := cg(z,y) for all other pairs z,y € V.
We say that G’ is obtained from G by splitting 6 pair
of edges (s,u) and (s,v) (or by splitting (s, u) and
(s,v) by size §), and denote the resulting graph G
by G/(u,v;6). Clearly, for any cut X, if cut X sep-
arates s and {u, v}, then cg/(y,v;6)(X) = ca(X) - 26
holds, and otherwise then cg/(u,.:6)(X) = ca(X).
A sequence of splittings is complete if the resulting
graph G’ does not have any neighbor of s.

The following theorem holds is proven by Mader
[14].

Theorem 2.1 [14] Let G = (V,E) be a multigraph
with a designated vertez s € V with cg(s) # 1,3
and Ag(z,y) 2> 2 for each pair z,y € V. Then for
each edge (s,u) € E there is an edge (s,v) € E such
that Ag/(u,vi1)(Z,¥) = Ae(z,y) holds for every pair
z,y €V —s. a

This says that if ¢g(s) is even, there always exists
a complete splitting at s such that the resulting
graph G' satisfies Ag'—s(z,y) = Ag(z,y) for each
pairz,y eV —s.

2.3 Lower Bound

In this section, we consider the EVAP(r,,r,), and
give a lower bound on the number of edges that is
necessary to make a graph G (7,7, )-connected. For
a vertex set X C V, define

TA(X) = ma‘x{r}\(u:v) lue X,veV _X}’
re(X) = max{r.(u,v) |u € X,v € V = X —T'g(X),
V-X-Te(X)#0}.
To make a graph G r)-edge-connected, it is neces-
sary to add ;
(1) at least 73 (X) — cg(X) edges between X and
V - X for each cut X.
Also, to make a graph G r.-vertex-connected, it is
necessary to add
(2) at least 7. (X)—|I'¢(X)| edges between X and
V — X —T¢(X) for each tight set X, or



(3) at least p(G — S) — 1 edges to connect
components of G — S for a separator S.

(See Section 1 for definitions of I'g(X) and p(G-S).)

Based on the observations (1) and (2), we need to
add [a(G)/2] new edges to make G (rx,r«)-edge-
connected, where

a(G) = max E("'A(Xi) - ca(X3))

i=1

q
+ ) (re(Xi) - |rG(Xi)|)}
i=p+1

among all subpartitions {Xi,---,X;} of V with V —
X;-Te(X:)#0, i =p+1,---,q. From (3), to make
G r-vertex-connected, at least 8(G) — 1 new edges
are necessarily added to G. Then we easily have the
next lemma.

Lemma 2.1 (The Lower Bound) To make a
given graph G (r,7«)-connected, ot least

7(G) = max{[«(G)/21,8(G) - 1}

new edges must be added. a

3 The EVAP(r),2)

In this paper, we show that the EVAP(r,,2) can
be solved in polynomial time.

In what follows, we assume 7)(z,y) > rc(,9) =
2 for each z,y € V. Now &(G) in Section 2.3 is
rewritten by

P q '
{max{Z(TA(Xi)—CG(Xi)HZ (2~|FG(Xi)|)} v
i=1 i=p+1
where the maximization is taken over all subparti-
tions {X1,+++,X,} of V such that V- X;-T¢(X;) #
Pfori=p+1,---,q.
In this paper, we show the following main theorem.

Theorem 3.1 Given an undirected multigraph G =
(V,E) and o requirement function {r\(z,y) € Z*|
z,y € V}, G can be made (r, 2)-connected by adding
(@) new edges. u]

We will prove this theorem by presenting a polyno-
mial time algorithm for making G (r»,2)-connected
by adding v(G) new edges.

A vertex v is called a cut vertez in G if {v} is
a minimum separator in G. An edge e = (u,u’)
is called admissible (with respect to v) if there is a
cut vertex v such that v # wu,u' and p(G — v) =
P((G — €) — v). For a subset F of edges in a graph
G, we say that two edge e; and ey are switched in
F if we delete e; = (u1,w:) and ez = (23, w2) from
F, and add edges (u1,uz) and (w;,ws) to F. Our
algorithm for solving the EVAP(r), 2) consists of the
following four major steps.

I) Vertex-augmenting: Augment G = (V, E) by
adding a new vertex s and new edges between
s and V so that the resulting graph G; = (V U
{s}, EUF}) satisfies the requirements for the -
edge-connectivity and the 2-vertex-connectivity
(more precisely, cg, (X) > ra(X) holds for each
P # X CcV,and |[Tg, (X Us)| > 2 holds for
each @ # X Cc V with V - X —Tg,(X) # 0)
and F; = Eg,(s) is minimal subject to these
conditions.

Lemma 3.1 |F| = a(G) holds. O

II) Edge-splitting: Find a complete edge-
splitting at s in G, which preserves the r)-edge-
connectivity (after adding one edge (s, v) for an
arbitrarily chosen non cut vertex v of G if ¢g, (s)
is odd). Let G = (V, E U F3) denote the graph
obtained by such a complete edge-splitting, ig-
noring the isolated vertex s. Mader’s theorem
guarantees the next.

Lemma 3.2 G is 7\ -edge-connected. 0

If G, is 2-vertex-connected, then we are done
(since |F| = [a(G)/2] implies that Gy is opti-
mally augmented). Otherwise, go to IIL

III) Edge-switching: Now G5 has a cut vertex.

Lemma 3.3 If G2 has an admissible edge e; €
Fy, then there is another edge ey € Fy such
that switching e, and e; decreases the number of
tight sets by at least one while preserving the Ty -
edge-connectivity and the current local 2-vertez-
connectivity. a

By Lemma 3.3, we can switch some edges in F;
so that the resulting graph G3 = (V, EUF3) has
no admissible edge in F3 (hence G3 has at most
one cut vertex, as shown later).

If G5 has no cut vertex, then we are done (since
|Fa| = [a(G)/2] implies that G is optimally
augmented). Otherwise, go to IV.

IV) Edge-augmenting: Now G3 has one cut ver-
tex v.

gemma 3.4 p(G3 —~v) = p(G—v)—[a(G)/2].

Note that 3(G) > p(G — v). Then add another
B(G) — 1 — [a(G)/2] new edges to G3 so that
the resulting graph G4 = (V,E U F3 U Fy) be-
comes 2-vertex-connected. Finally, we are done
(since |F3| + |Fy| = B(G) — 1 implies that G3 is
optimally augmented).

In the following four sections, we prove that the
correctness for each major step in this algorithm.



4 Correctness of Step 1

In this section, we show the correctness of Step I. °
Step I can be carried out as follows:

I) Vertex-augmenting:

1. Add a sufficiently large number of edges be-
tween a new vertex s and V to G so that the
resulting graph G’ = (V U {s}, E U F') satisfies

CG'(X) ETA(X) (4 1)
foreach 0 £ X CV, :
ITer(X Us)| >2foreach @ # X (4.2)
CVwithV—-X-Tg(X)#0. .
(This can be done by adding max{ri(z,¥) |
z,y € V} edges between s and each vertex
veV) .

2. Discard new edges, one by one, as long as (4.1)
and (4.2) remain valid. Denote the resulting
graph by G; = (VU {s}, EU F) (ie.,, F1 =
Eg,(s,V)). Note that if G is not connected,
then kg, (z,y) > 2 may not hold for some
z,y € V, since a subset X C V which induces
a component G[X] of G satisfies I'g,(X) = @
or {s} (and hence kg, (z,y) <1 for r € X and
y € V — X). Clearly, the above 1. and 2. can
be performed in polynomial time. We claim the
next.

Lemma 3.1 |Fi| = a(G) holds.

The Proof of Lemma 3.1: Now Ag,(z,y) 2
2 holds for every z,y € V from the assumption
Tk(zy y) 2 'r,c(:c,y).

First, we show |Fi| > oa(G). Let F* =
{X3,---, X3, X1, , X7} be a subpartition of V
with V. — X —Tg,(X}) #@fori=p+1,---,q

P

S (ra(X7) - ea(X1)) +

i=1

that attains a(G) =

q
3 @-Te(X)D). I |Fi| < a(G) holds, then
i=p+1
there must be at least one cut X} € F* that vio-
lates (4.1) or (4.2), contradicting construction of Gi.

Now we prove the converse, |Fi| < a(G) by show-
ing several claims.

A cut X C V is called criticalin G, if s € Tg, (X)
holds and the removal of any edge e € Eg,(s,X)
violates (4.1) or (4.2). Clearly, a subset X C V with
s € T'g,(X) is critical if and only if X satisfies at
least one of the following conditions:

(1) e, (X) =ra(X).

(2) CGl(B,X) = lalrcx(X) - $| =1, and
V-X-Tg(X)#0.

() T (X) = {s}, Ta,(s) N X]| = 2,
and there is a vertex v € I'g, (s) N X with
cg,(s,v) = 1.

We will prove that G; has a set of critical cuts
Xi,---, X such that

X:inX; =0, for1<i<j<gq,

Te,(s) C X1 U---UX,, (4.3)

which proves |Fi| < a(G). We call a critical cut X
v-minimal if v € ', (s) N X and there is no critical
cut X’ with {v} € X' C X. A subset X is called
critical of type (1) (resp., (2), (3)) if it satisfies (1)
(resp., (2), (3))-

First, we introduce some properties of critical cuts.

Claim 4.1 Any critical cut X of type (3) is also
critical of type (1). ]

From this claim, we can regard critical cuts of type
(3) as those of type (1). The next property is known
in [5].

Claim 4.2 Let X and Y be critical cuts of type (1)
in G1. Then at least one of the following statements
holds.

(i) Both XNY and X UY are critical.

(i) Both X —Y andY —X are critical, and ¢, (XN
Y,(Vu{s}) - (XuY))=0. a

An analogous property holds for critical cuts of
type (2).

Claim 4.3 Let X and Y be critical cuts of type (2).
If Y is v-minimal for some v € V — X, then they do
not cross each other. a

Claim 4.4 Let X be a critical cut of type (1), and
Y be a critical cut of type (2) such that I'g,(s) N
(Y -X)#80. If X and Y cross each other then
cg, (X NY,s) =0 holds and cut Y — X is critical of
type (1). ]

Now we are ready to prove that G; has a set of
critical cuts X1, --, X, that satisfy (4.3). Let N; C
T, (s) be the set of neighbors u of s such that there
is a critical cut X of type (1) with u € X. Let us
choose a critical cut X, of type (1) with © € X, for
each u € Ny sothat 3-ye(x, juen,} |X| is minimized.
Denote such a set {X, | v € N1} by 7. For N; =
T, (8) — N1, we choose a u-minimal critical cut X,
for each u € Ny, and let F, = {X, | u € N2}. Then
we claim the next.

Claim 4.5 F = F, U F; consists of disjoint critical
cuts whose union contains [g, (s).

Proof. Let F; ={X1, -, X,} and F; = {X;41,
-+ X,} with each # # X; C V. Clearly, I'g,(s) C
Ux, ex Xi holds from construction of F.

We show that X; and X, ; are pairwise disjoint for
each X;, X; € F,. Assume that F; contains X; and
X; which are not pairwise disjoint. Note that X; C
X; does not hold from construction of ;. If X; and



X cross each other, then Claim 4.2 implies that at
least one of the following statements holds:

(i) Both X;N X; and X; U X; are critical.

(i) Both X; — X; and X; — X; are critical, and
e, (XNY, (VU {s}) - (XOY)) =0,

If the statement (i) holds, then F| = (F, — X; —
X;) U {X; U X;} would satisfy N; C F| and
ny_-; |X| < X xer, 1X|, contradicting the mini-
mality of 37y r |X|. If the statement (ii) holds,
then .7:{ = (}-1 -X; - XJ) U {X, - Xj,XJ' - X.}
satisfies ZXEF{ |X| < X xer |X| and Ny C F (by
e, (X NY,(VU{s}) — (X UY)) = 0). This again
contradicts the minimality of 3° x5 |X|- Therefore
Xi and X are pairwise disjoint for each X;, X; € F;.

Claim 4.3 implies that X; and X, are pairwise
disjoint for each X;,X; € 7.

Finally, we show that X; and X; are pairwise dis-
joint for each X; € 7, and X, € F,. Note that
Tg,(s) N (X; — X;) # 0 holds from definition of
N;. Then X; C X; does not hold. Also note that
X; C X; does not hold, otherwise I'g, (s) N X; # @
and T'g, (s) N (X; — Xi) # 0 imply cg, (X;,s) >
G, (X:,8) + 1 > 2, contradicting that X; is of
type (2). Assume that X; and X; cross each other.
Now T'g,(s) N (X; — X;) # @ holds. Therefore
Claim 4.4 implies that cg, (s, X; N X;) = 0 holds and
X;—X; is a critical cut of type (1). This implies that
any vertex in X; cannot belong to N,, contradicting
XJ' € F. a

Clearly F is a subpartition of V by Claim 4.5.
Since I'g, (s) € X3 U---U X, with X; € F holds, it
holds » .

IFif =3 (ra(X:) = ea(X:) + 3 (2 - [Ta(X3)),
i=1 i=p+1

for .7:1 = {Xl) . ',Xp} and .7'-2 = {Xp+1, e ',Xq}.

From definition of a(G), we have |Fi| < a(G). O

5 Correctness of Step II

Let Gy = (V U{s}, EU F}) be the graph obtained
from a given graph G by Step I. In the Step II, a
graph G is constructed from G, as follows.

II) Edge-splitting: If cg,(s) is odd, then we
add one edge (s,v) for an arbitrarily chosen
‘vertex v € V which is not a cut vertex in
G. Find a complete edge-splitting at s in G,
which preserves condition (4.1) (i.e., the 7y-
edge-connectivity). By Mader’s theorem, there
always exists such a complete edge-splitting at
8, and it can be computed in polynomial time.
Let G2 = (V, EUF;) denote the graph obtained
by such a complete edge-splitting, ignoring the
isolated vertex s. Therefore, the next is imme-
diate from Mader’s theorem.

Lemma 3.2 G, satisfies (4.1) (i.e., Gy is 7-
edge-connected). 0

However, at this point G; may have a cut
vertex, even though G; satisfies (4.2). If G»
is 2-vertex-connected, then we are done (since
|F2| = [a(G)/2] implies that G is optimally
augmented and v(G) = |F3|). Otherwise, we go
to Step III.

Theorem 2.1 implies that if cg,(s) is even, then
G, = (VU {s}, EU F}) has a complete splitting at s
which preserves the r)-edge-connectivity, where the
2-vertex-connectivity may be violated.

In Step II, if g, (3) is odd, then we add one edge
(s,v) to G; for an arbitrarily chosen vertex v € V
which is not a cut vertex of G. Such choice of w will

- be useful for the correctness of Step IV in Section 7.

6 Correctness of Step III

Let G; = (V,E U F,) be the graph obtained in
Step II. Now G» has a cut vertex and Gz is 2-edge-
connected. Moreover, since (4.2) holds in Gy, G
satisfies

G2[X U {v}] contains at least one
edge in F; for any cut vertex v in (6.1)
G2 and its v-component X. :

Before describing Step III, more precisely, we
will give a proof for the next lemma. We restate
Lemma 3.3 in a more precise form:

Lemma 3.3 Assume that G, has an admissible edge
e; € F, with respect to a cut vertex v of G,. Let
X be a v-component with e; ¢ E[G;[X U {v}]], and
ez be chosen arbitrarily from F, N E[G,[X U {v}]).
Then switching e; and e, decreases the number of
tight sets at least by one while preserving the r,-
edge-connectivity. Moreover, the resulting graph
G5 by switching e; and e, still satisfies (6.1), and
kg, (z,y) 2 2 holds for any vertices z and y with
kG, (11 y) Z 2. o

Based on this lemma, Step III repeats switching
two edges in F; until the resulting graph has no ad-
missible edge in F.

Let G3 = (V, E U F3) be the resulting graph ob-
tained by such a sequence of switching edges in F3,
where F3 means the final F;. By the following
Claim 6.3, G3 has at most one cut vertex.

If G3 has no cut vertex, then we are done (since
|F3| = [a(G)/2] implies that G5 is optimally aug-
mented). Otherwise, we go to Step IV.

Proof of Lemma 3.3: We prove Lemma 3.3 by
showing some claims.



Claim 6.1 Let v € V denote a cut verter in Gs.
Assume that a v-component T contains an admissible
edge e = (u,u’) with respect to v. Then Gq[T] —e
contains a path P between u and u'. m]

Claim 6.2 Any two cuts X and Y which are both
tight in Gy are pairwise disjoint. O

Claim 6.3 If G, has two cut wvertices vy and
vy, then there are a vy-component X; and a v,-
component Xa such that X;NXy = 0. Let edge e, be
arbitrarily chosen from F, N E[G5|X; U {v}]]. Then
€1 18 an admissible with respect to vs. a

Claim 6.4 Let e; = (uj,w;1) and ez = (ug,ws) be
the edges in the statement of Lemma 3.3. Then the
graph Gy = (V, EU FY) obtained by switching e; and
ez, where Fj = F U {(u1,us2), ("U)l,'ng)} {e1,€2},
satisfies followings:

(i) Agy(z,y) 2 7a(z,y) for every z,y € V.

(i) (G — v) < p(G2 — v).

(i3) kay(z,y) > 2 for every z,y € V with

kG, (z"y) > 2.

(The statements (4) and (iii) and Claim 6.2 imply
that switching e; and ey decreases the number of tight
sets in Gy by at least one.)

Proof. (i) We assume that there is a cut X such
that cg; (X) < ra(X)—1 holds. Note that ¢g,(X) <
¢, (X) holds if cut X does not separate {u;,us}
and {w;, w2} in Gb. Since cg,(X) > ri(X) origi-
nally holds, cut X separates {ui,u,} and {w;,w;}
and hence cg; (X) = cg,(X) — 2 holds. Since the
cut X crosses both v-components T and 1% in Ga,
either G3[X] or G2[V — X] consists of at least two
components. Without loss of generality, assume that
G[X] consists of at least two components. There
are vertices z* € X and y* € V — X such that
m(z",y") = ra(X) 2 cg (X) + 1. Without loss
of generality, assume ‘that z* € X N T;. Note that
g, (X NT,) 2 (X NTe) > 2and cg, (X NT}) >
(X NT) > ra(z*y*) > gy (X) + 1 hold. This
implies cq,(X) = ¢cg,(X NT1) + cg, (X NTp) >
(ce;(X)+1)+2, contradicting cg; (X) = cg, (X)—2.

(u) It is sufficient to show that G, [T1 T3] is con-
nected. Since the removal of the admissible edge
e, does not increase the number of v-components,
T; remains a v-component in G; — e;. If Ty re-
mains a v-component in Gz — ez, then G[T}] and
G[T3] are joined by the edges (ul,u2) and (wq,ws)
obtained by switching e; and e; in G4. If T, con-
sists of two components T and T3 in G — e, then
uz # v # wa holds and u, and w; are separated
by T7. Assume up € T} and w; € T} without loss
of generality. Now T} (resp., TZ) and T} are joined
by the edges (u1,u2) (resp., (w1, wz)). This implies
that G4[T; U T3] is a component since 7} remains
a v-component in G2 — e;. Therefore if v remains

a cut vertex in G5, then T3 U T, is a v-component
(otherwise, clearly, p(G; — v) =1).

(iii) Assume that there are vertices z,y € V
such that kg,(z,y) = 2 but kg, (z,y) = 1. Let
v' € V denote a cut vertex in G} that separates =
and y. Clearly, v' # v (because v = v’ would imply
Kg,(z,y) = 1). Let W, Wy,---, W, (g > 2) be the
v’-components of G5, where z € W and y € W.
Since a cut vertex v’ does not separate z and y in
Ga, e1 € Eg, (W1, W) or eg € Eg,(W;,W2) holds.
Also note that no edge other than e; and e; can-
not belong to Eg,(W;,W;). We can easily see that
G2[W1UW,U{v'}] contains u;,w;,us, and wy. Then
note that u;,w; € W; cannot hold for any ¢, with
1 <4< j <2 Otherwise (assume u;,w; € W)
without loss of generality) then e; € Eg, (Wi, Wa)
holds (assume u; € Wy and w, € W5 without loss of
generality). Now (w;,ws) € Eg, (W1, W;) holds and
G,[W1] and G4[W,] are both connected from deﬁm—
tion of W, a,nd W, contradicting that cut vertex v’
separates z and y in G5. Therefore, for each i = 1,2,
we have now e; = (u;, w;) € Eg, (W1, W) or u; =
orw; =v.

We first consider the case of e; € Eg, (W, Ws).
Then v' € Ty holds since G3[T}] — e; is connected
by Claim 6.1. Hence e; € Eg,(W;, W) holds since
v € Ty implies up # v’ # was. Let v ¢ W, and
uy, up € Wi without loss of generality. Now Lg (T3n
W,) N (T, — W;) = 0 holds since v is a cut vertex of
G’2 and v’ ¢ Tz hold. Note that EG; (Tg n Wz,v -
(T, nW,)) = {(w1,ws)} since T; is a v-component
of G; and u; € W holds. This implies I'g, (T2 N
W3) = {u2} holds and hence e; is a bridge of G5 from
Eg,(W1,W;) = {e1, e2}, which contradicts A\(G3) >
2.

We then consider the case of e; ¢ Eg, (W, Ws)
holds, ie., v/ =u; € T} or v/ = w; € T} holds. This
implies that e; € Eg,(W;,W;) holds and v' ¢ T5.
Therefore, this clearly leads to a contradiction, in a
similar way to above case of e; € Eg,(W,,W;). O

From above claim, Lemma 3.3 is proved. O

7 Correctness of Step IV

1. Let G5 be obtained from G, by Step III. Now
G3 has one cut vertex v

Lemma 3.4 p(Gs — v) = p(G —v) — [a(G)/2].
[m]
Now let Ty,---,T, be v-components. We can

make G3 2-vertex-connected by add one edge
between T; and T;; for each i = 1,---,q — 1.
That is, Adding p(G3—v)—1 edges to G3 makes
G5 2-vertex-connected. Note that p(Gs —v) =
(G —v) — [a(G)/2] holds from Lemma 3.4 and



B(G) > p(G—v) clearly holds. Therefore we can
add another 3(G) — 1 — [a(G)/2] new edges to
G3 so that the resulting graph G4 = (V,E U
F3 U Fy) becomes 2-vertex-connected. Finally,
we are done (since | F3|+|Fy| = B(G)—1 implies
that G4 is optimally augmented).

Before proving Lemma 3.4, we first introduce
properties of G3 in the following two claims.

Claim 7.1 Now G3 has no edge e = (v,v') € F3
incident to the cut vertez v. a]

Claim 7.2 p(G —v) = p(G3 —v) + |F3| holds. That
is, deleting any edge e € Fj increases the number of
v-components in Gs.

Proof. If p(G — v) < p(Gs — v) + |F3| holds, then
there is at least one edge e € Fy with p((Gs —e) —
v) = p(G3 — v). Then e is admissible with respect
to v since any edge in F3 is not incident to v from
Claim 7.1, contradicting construction of G3. ]

This claim implies that since G5 has no edge in F3
incident to the cut vertex v, a graph H = (W, F3)
is a forest, where a vertex set W of H is obtained
by removing the cut vertex v and contracting each
component of G — v to one vertex.

Now Claim 7.2 implies Lemma 3.4 since |F3| =
[a(G)/2] holds from construction, proving correct-
ness of Step IV. u]

Theorem 7.1 The EVAP(r\,2) can be solved in
polynomial time. o

Very recently, we proved that the EVAP(4,3) is
polynomially solvable. Unfortunately, the above
lower bound v(G) does not always attain the optimal
value to this problem. The result will be reported
somewhere else.
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