7o Ty X L 5T-T
(1997. 5. 16)

TERARIC 511 5 EARAIBEMAREE ORI
B EfT no FHEX

HEBRE KER THEMER
T 46401 ZHETHT THR ARE

{fmiso, yasushi, hirata}@nuee.nagoya-u.ac.jp

VLSI®7) ¥ b EESMARRRET IC BT, EEARRIESIRE % BRI BT & SRR I T C
THIBENDH 5. BRRERARD S FEMEMA DL Bt OMEE % Bl 7T B AR EE &
V. RAERTFEOAPEETLRBETMIIONT, “BEHES ST L 7
U—-8BHT 77 2REL, ThOrHAVTHROBRVERGTEERINTE 32
LRRL. RWATIE, BREFTVENIRL, ERRMRELER (EJ2—1) 28
FETA2HAEMYIRS.

Efficient Routability Checking
for Planar Global Wires

Naoyuki ISO, Yasushi KAWAGUCHI* and Tomio HIRATA

Faculty of Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi, Japan, 464-01

{fmiso, yasushi, hirata}@nuee.nagoya-u.ac.jp

In VLSI and printed wiring board design, routing process usually consists of two
stages: the global routing and the detailed routing. The routability checking is to
decide whether the global wires can be transformed into the detailed ones or not. .

In this paper, we propose two graphs, the capacity checking graph and the initial
flow graph, for the efficient routability checking.

«JE, Bh@EskaH

I. INTRODUCTION

In VLSI and printed wiring board design, most
of existing routers use a maze algorithm or a line
search algorithm for finding a path in the routing
area for each wire. Both algorithms find paths one
by one. A major difficulty of such routing algo-
rithms is that already routed wires are treated as
fixed obstacles, so that routing for the next wire
may be blocked by them. To overcome this dif-
ficulty, the global routing process has been pro-
posed. Dai et al.[2] proposed a method for decid-
ing whether every global wire can be transformed
into a detailed wire or not. If the transfomation is
possible, we can start the detailed routing process.
Otherwise, we modify some global wires and check
the routability again. Therefore, a fast routability
checking is important.

In the case of planar layouts, we can check the
routability of wires by comparing capacity with
flow for every cut. Cut is a line segment con-
necting between two visible vertices in the routing
area. Capacity of a cut is the maximum num-
ber of wires which can cross the cut. Flow of
a cut is the number of wires passing across the
cut. Cole and Siegel[l] showed that if the fow
do not exceed the capacity for every cut then ev-
ery global wire can be transformed into a detailed
one. They presented a checking algorithm which
runs in O(nlogn) time, where n is the number of
obstacles(terminals and modules) in the routing
area. Their algorithm is too complicated and its
implementation seems to be difficult. Leiserson
and Maley[4] presented a simpler algorithm and
it runs in O(n?logn) time.

In this paper, we propose the capacity check-
ing graph(CCG) for an efficient routability check-
ing. Using the CCG, we can test the routabilitiy
in O(nlogn) time on the average. Furthermore
we propose the initial flow graph(IFG) for finding
flows which are necessary for the use of the CCG.

Theremainder of this paper is organized as fol-
lows. In Section II, we define our routing model.
In Section III, we define the capacity checking
graph for the routing model and present an al-

O

o O

(a) Global wires (b) Detailed wires

Fig. 1. Routing model with rectangular modules.

gorithm for constructing it. We define the initial
flow graph in section IV. In Section V, we describe
the routing scheme using the CCG and IFG. Some
concluding remarks are given in Section VI.

II. THE ROUTING MODEL

In this section, we describe our routing model.
A routing area consists of a rectangle on a sin-
gle layer and there is a rectlinear lattice on the
rectangle. In the routing area, there are termi-
nals, rectangular modules and wires. The wires
interconnect two terminals without crossing each
other and do not pass through the other terminals
and modules. A terminal connects to the only
one wire. Every terminal is placed at a lattice
point. An obstacle area is the interior of a mod-
ule. Outside of the routing area is also an obstacle
area. Lattice points on the boundary of obstacles
are called boundary points. We denote the set of
boundary points by V. V; is the set of terminals
in the routing area. Let Viip denote the union
of V, and V.. We denote by V,(C Vi) the set
of corner points of modules and they are called
module points. Let Vi,, denote the union of V;
and V,,. Let V,_,, be the set of boundary points
except the module points. In global routing, ev-
ery wire is represented by its topology. In detailed
routing, it is embedded on the lattice (See Figure
1). In the following, a “point” means a lattice
point. Let a, b be two points in the routing area.
When a line segment ab do not cross modules or

terminals, we say that a and b are visible each

other. We also say that the two points are visible
or the pair (a, b) is visible.

We define a cut as a line segment connecting
two visible points in V4. Let p = (zp,¥p),9 =
(24, 1¢) be two terminals of a cut pg. The capac-
ity cap(p, q) of the cut Pg is the maximum number
of wires which can pass across the cut pg, that is,
cap(p, 9) = max(|zp — T4}, |yp — yo|) — 1. Given the
global routing, we define the flow of cut 57, de-
noted by flow(p,q), as the number of the wires
The wire which

do not cross g topologically does not contribute

which pass across the cut pg.

to the flow. The wire running from p to ¢ con-
tributes —1 to the flow . We call the constraint
that cap(p,q) > flow(p,q) the capacity constraint
for cut 7g.

The following theorem was given by Cole and
Siegel[1].

Theorem 1 Given global routing, the global wires
can be transformed into detailed ones if and
only if the capacity constraint is satisfied for

every cut.

Let I} (I7) be the line passing through a point
a in the routing area with angle 45(—45)-degrees.
Let b be a point not on I} or I;. We denote by
rect(a, b) the rectangle formed by the four lines I},
I7,0F and 1.

Consider a point a=(z4,y,) and two lines IF 1.
We define an upper area of a as the intersection
of the upper areas of the two lines. In the same
manner, we define left, right and lower areas of
a. When we rotate the coordinate axes to (—45)-
degrees, the new coordinates of a is (uq,v,) =
(Bargle, 2o2de). For a=(pa,va) and b=(pp, vs), if
itq > py, we say that a is larger than b with respect
to the (—45)-degrees axis. Similary, if v, > vp, a is
larger than b with respect to the 45-degrees axis.

II1. THE CAPACITY CHECKING GRAPH

According to Theorem 1, the routability check-
ing can be done by testing the capacity constraint
for every cut. In practice, it is enough to check

some particular cuts. For instance, consider a tri-
angle abc which does not include a point in Vi3
in its interior or on the boundaries. Suppose that
the capacity for cut(a,b) is greater than the sum
of the capacities of cut(a, ¢} and (b, c). Then, even
if wires entering the triangle across (a,¢c) or (b,¢c)
leave it across (a, b), violation of the capacity con-
straint does not occur. That is, if the capacity
constraint for (a,c) and (b,c) are satisfied, then
the checking for (a,b) is redundant. In this sec-
tion, we define the capacity checking graph for
representing all the non redundant cuts.

A. Definition of the CCG

Let a be a terminal or a module point. A pro-
jection point of a is a boundary point which is
visible from a and is at the intersection of the
horizontal or vertical line passing through a and
the boundary of an obstacle. Let V, be the set
of projection points. A terminal has at most four
projection points, and a module point has at most
two projection points.

For a € Viyp and b € Vy_pp, tri(a,d) is de-
fined to be the triangle area surrounded by 45 and
(—45)-degrees lines passing through a and a line
which supports the boundary containing b. When
b is one of the four corner points of the routing
area, tri(a, b) is not unique. We can select any of
them.

We define a visibility graph G, = (Viys,Ey)
as follows. E, is the set of visible pairs of points in
Vits. According to Theorem 1, the global wires
can be transformed into detailed ones if and only
if the capacity constraint for every edge of G, is
satisfied .

The capacity checking graph G, = (V,,E,)
is a subgraph of G,, where V. is the union of
Vitm and V. E, is defined as follows. (i)For
ayb € Viym, if there is no point ¢(€ V4.,) visible
from @ or b in rect(a,b), then (a,b) € E,. (ii)For
a € Vi1 and b € V,,, if b is the projection point
of @ and there are no points c(€ Viir,) in tri(a, b),
then (a,b) € E.. (iii)For the remaining cases,
(a,b) is not included in E,.

Fig. 2. A capacity checking graph.

Figure 2 illustrates an example of the CCG.

We have the following theorem.

Theorem 2 Given the global wires, if cap(a, b) >
flow(a,b) for every edge {a,b) of G, then
cap(p,q) > flow(p,q) for every edge (p,q)
of G,.

According to Theorem 2, if the capacity con-
straint for the edges of the CCG is tested, then we
can decide the routability of the wires.

B. Constructing the CCG

For the routing model which does not include
modules, it was shown that the CCG has can be
constructed in O(nlogn) time if n terminals are
placed randomly in the routing area[3]. In the rest
of this section, we present an efficient algorithm
for constructing the CCG for the model which in-
cludes modules.

The algorithm consists of three steps. (Step
1)We find V), that is, the set of projection points
of.the points in V. (Step 2) We find the edges
of the CCG each having both endpoints in Viqp,.
(Step 3)We find the edges of the CCG each having
-one endpoint in V4, and the other in V. Step
1 is done by the sweeping method and it takes
O(|Vitm]10g|Vism|) time. Next, we explain Step
2. Let a(€ Vi1m) be a point in the routing area.

Fig. 3. Reach(a)(dotted area) and Tree(a).

we draw a (—45)-degrees line (a scan line) passing
through a. Let a’, a” be the farthest points on
the line visible from a. We draw upper right(45-
degrees) half-lines in the upper area of the scan
line which start at every module point. We de-
note by reach(a) the area in the upper side of the
scan line where we can reach from a without cross-
ing a module boundary or a half-line starting at a
module point(See Figure 3).

Lemma 1 Let a,b be points in the routing area.
We assume that they are visible each other
and v, < v If (e,b) € E, then b is in
reach(a).

According to Lemma 1, it is enough for us
to search in reqch(a) for finding the edges of E,
which are incident to ¢ and exist in the upper or
right area of a. (We call these edges the upper
right edges of a.) We define a reach tree of a
and denote it‘by Tree(a). Its root is a and every
point(€ VH.,,.); in reach(a) is its vertex. A vertex
of the tree has at most two children. One child is
called an uppér child and the other a right child.
An upper child ar'ld its descendants exist in the
upper area of its parent. A right child and its de-
scendants exist in the right aréa of its parent(See
figure 3). Tree(a) is called the heap search tree
in Computational Geometry.

Lemma 2 Let uy, 7 be the upper and right child

of a, respectively. Let u;;; be a right child of
u; and 7,41 be an upper child of r;. For each
ri(u;), the edge connecting a with 7;(u;) is

included in G,. For other vertices p of Tree(a)

, (a,p) is not included in G..

According to Lemma 2, we can find the upper
right edges of a by searching in Tree(a). The
search time is bounded by the number of the edges
of the CCG.

The implementation for Step 2 uses the sweep
technique. We draw a (—45)-degrees sweep line in
the routing area and scan it from the upper right
corner to the lower left corner. The event points
are points of Vi ,,. When the sweep line stops
at the event point a, we construct Tree(a) based
on Tree’s which have already constructed. The
construction time is proportional to the number of
the upper right edges of @ in G.. Then we search
in Tree(a) and output the upper right edges of
a. If a is a module point, then we will update the
Tree’s. We omit the details.

The total running time for Step 2 is
O(|Vi4m|10g | Vigm|+|Ec]). And, it is easy to see
that Step 3 can be done in O(|E,|) time. There-
fore, we establish the next theorem.

Theorem 3 The capacity checking graph G, =
(Ve,Ec) can be constructed in O(nlogn +
|E.]) time, where n is the number of termi-
nals and modules. k

IV. THE INITIAL FLOW GRAPH

Lemma 3 Let Ouyvpvu3v4(v; € Vi) be a convex
rectangle which has no point(V;4}) in its in-
terior. Then, flow(vy,v3) + flow(vy,vy) =

maz(flow(vy,v)+ flow(vs, va), flow(va, vs)+

flow(vg,v1)).

The proof of Lemma 3 depends on the topolo-
gies of the wires passing across the edges of the
convex rectangle and is omitted in this version.

According to Lemma 3, given the flows of four
edges and one diagonal edge of a convex rectangle,
we can compute the flow of the other diagonal

B flip B flip B
P D D
A A A
E E E
[o] o) C

@——® An adge for which its flow is known.

Fig. 4. Flippings. The first flip for JABDC gives
flow(A, D). The next flip for DADEC gives flow(A, E).

Fig. 5. The initial flow graph.

edge. We call this operation flipping. Figure 4
illustrates an example of the flippings.

The initial flow graph(IFG) is a subgraph G s =
(Ve,Ef) of the CCG. Ey is defined as follows. We
(i)For
a,b € Vi, if there is no visible point(€ Vi)

assume that v, < v, for points a and b.

from a or b in the intersection of the upper area
of a and the left area of b, or in the intersection
of the right area of @ and the lower area of b, then
(a,b) isin Ef. (ii)For a € Vyym and b € V,, if
b is a projected point of a, then (a,b) is included
in G I :

Figure 5 illustrates the IFG. Given a CCG, its
IFG Gy = (V, Ef) can be constructed in O(|E |)
time. It is easy to see that G is planar and the
number of the edges |Ey| is O(|V,{). If the flows
are given to all edges of Gy, then we can compute

the flows of all edges of G, using flippings. The
computation time is O(|E.|).

V. GLOBAL ROUTING

Figure 6 illustrates a flowchart of the global
routing process using the CCG and the IFG pro-
posed in this paper. It takes O(nlogn + |E|) to
construct the CCG and O(n) time to construct
the IFG, where n is the number of terminals and
modules. Then we do global routing and find the
flows for all edges of the IFG. Next, we find the
flows of the edges of the CCG and check the ca-
pacity constraints in O(JE.|) time. If the termi-
nals are placed randomly, then |E,| is expected to
be O(nlogn) and all operations above are done
in O(nlogn) time. If a wire is found to be not
routable, we modify some global wires and check
the capazcityiconstra.ints for the involved cuts.

In this routing process, the global routing needs
the flows for the edges of the IFG. We can trian-
gulate the routing area using the edges of the IFG.
Some existing global routing methods divide the
routing area into the Delaunay triangulation and
find the global wires. Repeating flippings to the
Delaunay trianglation, we can transform it to the
triangulation constructed from the IFG. Thus, we
find the flows for the edges of the IFG.

VI. CONCLUSION

We have proposed two graphs, the capacity
checking graph and the initial flow graph for effi-
cient routability checking.

The model in this paper assumes a one-layer
routing. In the case of the multilayer routing, the
planar global routing is done on each layer, af-
ter the assignment of the nets to layers. When
wires of other layers are to be connected, we use
through-holes which we can treat as terminals in

the routing area.

ACKNOWLEDGEMENTS

The authors wish to thank Makoto Ito of Chukyo
University and Xuehou Tan of Tokai University for

constructing CCG
constructing IFG
global routing

I calculating the flows |

| checking the capacity constraintsJ

routable? to the detalled routing

Yes

Fig. 6. Flowchart for the routing process.

their helpful comments.

REFERENCES

[1] R.Cole and A.Siegel : “River routing every which way,
but loose,” Proceeding of 25th annual Symposium on
Foundations of Computer Science, pp. 65-73, 1984.

[2] W.W.Dai, R.Kong and M.Sato : “Routability of a
rubber-band sketch,” 28th ACM/IEEE Design Au-
tomation Conference, pp. 4548, 1991,

{3

Y .Kawaguchi, N.Iso and T.Hirata : “Two graphs for
efficient routability checking,” The Trans. IEICE, Vol.
J79-11, to appear, in Japanese, 1996.

[4] C.E.Leiserson and F.M.Maley : “Algorithms for rout-
ing and testing routability of planar VLSI layouts,”
Proceeding of the 17th Annual ACM Symposium on
Theory of Computing, pp. 69-78, 1985.

