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We study the motion of a rod (line segment) in the plane in the presence of polygonal
obstacles, under an optimality criterion based on minimizing the orbit length of a fixed but
arbitrary point (called the focus) on the rod. In this paper, we present a local characterization
of a dy —optimal motion of a rod that minimizes the orbit length of a reference point, allowing
arbitrary kinds of motions including rotation and translation.

1 Introduction

Although the feasibility of motion planning is very well studied, little is known about optimal
motion planning except for the case where the robot body is a disc. In this paper we address the
problem of characterizing and computing optimal motions for a rod (a directed line segment)
in the plane. Of course, a rod is the next simplest planar body to study.

A non-trivial issue arising in the study of “optimal” motion of a rod is the choice of a
reasonable yet tractable motion of optimality. One choice is that of maximizing the clearance
(i.e., distance to the nearest obstacle). Here, an efficient algorithm based a generalization of
the Voronoi diagram is known [9, 10]. Another interesting approach is to minimize the area
swept by the motion of the rod. This problem attracted some interest in the past under the
name “Kakeya’s problem” (see [1]), but this turns out not to be a good idea (for example, one
can sweep an arbitrarily small area while rotating a rod by 180°).

Turning to notions of optimality based on some distance or length concept, we may describe
such optimal motions as “shortest”. If X is any fixed point on the rod, the curve traced by X
in any continuous motion p of the rod is called the orbit of X in p. One natural choice here is
to minimize the average lengths of the orbits of the two endpoints of the rod. In the absence
of obstacles, this has been called Ulam’s problem [11]. Again it has an interesting history (see
[3] and the references therein). The recent paper of Icking et al. [3] revisits this problem,
introducing a simple tool based on Cauchy’s surface area formula. They call the metric in
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Figure 1: (a) Original position of AB. (b) Position at placement Z = (o, yo, )

Ulam’s problem the dj-metric. There is a natural generalization to d,, for any n > 3 or n = 0o
(corresponding to minimizing the average orbit lengths of n evenly distributed points on the
rod).

As Icking et al. note, the “dy-distance”, based on minimizing the orbit length of the mid-
point of the rod, is not a metric (rotation about the mid-point produces distinct rod placements
with dy-distance zero). It is nevertheless a rather natural measure of distance, capturing the
idea of “charging” for translation but not for rotation about the mid-point. More importantly,
it permits us to study optimal motions in the presence of obstacles, which previously we have
not been able to do, even for d; optimal motions. (Notice that d;-optimal motions, unlike the
dj-optimal motions, are trivial in the absence of obstacles.) In this paper, we generalize this
“dy-distance” to refer to the family of distance functions based on minimizing the orbit length
of a fixed but arbitrary point F (the “focus™) in the relative interior of the rod.

Other than (3], there are few previous papers on d,-optimal motions. Papadimitriou and
Silverberg [5] studied d;-optimal motions with the focus F at one endpoint of the rod. However,
they severely restricted the motions so that F' travels only in straight lines between obstacle
vertices. Their results were improved by Sharir [8]. O’Rourke [4] studied d-optimal motions
restricted to either pure translations or rotations by +90°.

In contrast to these last cited papers, we are interested in unrestricted motions of the rod,
except of course when the rod collides with obstacles. Motion planning problems come in two
variations depending on whether the two endpoints of the rod are distinguished (in which case
the rod is said to be directed) or not (in which case the rod is said to be undirected). Clearly,
motion planning problem for undirected rods can be reduced to two instances of the motion
planning problem for directed rods. (The converse relationship is not known.) Unless otherwise
stated we assume that rods are directed.

In ths paper we give a local characterization of d;-optimal motion. We use the language
of “constraints” to classify optimal submotions. There are considerable geometric details here.
This local characterization theorem leads to the NP-hardness result of this optimization prob-
lem, which will be given in another SIGAL meeting.

1.1 Notation and basic definitions

This section is mainly for establishing our terminology. Most of this is in the literature.

All points are in the Euclidean plane. If P,Q,R are points, then PQ denotes the line
through P and @, and [P, Q)] denotes the closed line segment between P and @, and |PQ) is
the length of the segment. The ray from P through @ is denoted PQ. The angle as one sweeps
counter-clockwise from QP to QR is denoted L(P,Q,R). Thus L(P,Q,R) = -/(R,Q,P).

A (directed) rod is denoted AB and in figures, we direct the line segment from its B-end to
its A-end. (Mnemonically, A indicates the arrow head, and B the base of the rod.) We assume
a fixed point F’ called the focus in the relative interior of the rod (see Fig. 1).




We are given a closed planar set @ C R? in which the rod is free to move. Its complement
R? - is called the obstacle set. The boundary of the obstacle set is assumed polygonal and is
partitioned into a pairwise disjoint collection of (obstacle) features, where a feature is either an
isolated point called a corner or an open line segment called a wall. We assume non-degeneracy
conditions on these features as convenient.

We use the language of “placements” [12]: a placement is simply a pair Z = (p,8) € RZx §1
where p is a point in the plane and 6 an angle. For any Z, we also write Z = (p(Z),0(Z)).
Horizontal placements, those with § = 0, play a special role in our N P-hardness constructions
and have their own special notation: Hy, = (p,0). For any set § C R?, we write S[Z] C R? for
position of the set § after rotating the plane containing S about the origin by @, followed by
translating the plane by p, viewed on a fixed reference plane. Hence we call S§[Z] the position
of S in placement Z. In other words, [Z] defines an Euclidean transformation of the plane. In
particular, we have AB[Z] for the position of the rod in placement Z; A[Z] and B[Z] denote
the two endpoints of this position. We shall choose (the original position of) AB in such a
way that the focus F is at the origin; this means that the position F[Z] is precisely p(Z).

¥ 5,T € R? are two closed sets, dr(5,T) > 0 denotes the Hausdorff distance between S
and T. The clearance of a placement Z is just dg(AB[Z],R? ~ Q), and denoted h(Z) (so AB
and Q are left implicit). We make the set of placements into a metric space with metric d4p
where dap(Z,Z’) is defined to be dy(AB[Z],AB[Z']).

A placement Z is free if AB{Z] C £ (recall that Q is a closed set). Let F P denote the set of
free placements. Consider the continuous function  : [s,t] — F.P where [s,1] is a real interval,
Usually, s = 0, ¢ = 1 unless otherwise specified. For any point X € R?, let X, : [s,t] - R?
denote the function X,(z) = X[u(z)). We call X, the X-orbit of . In case X is the focus
of the rod, the X-orbit is called the trace of p. We call 4 a motion if both its A-orbit and
B-orbit are rectifiable (i.e., has a definite arc length). This implies the trace of p has a length,
which we call the dy-distance of p. A motion g is optimal (or, d;-optimal) if its d;-distance is
minimum among all rectifiable motions between 1(0) and p(1).

2 The Structure of Optimal Motions

2.1 Constraints

We begin with an illustration. Let W be a wall and Z a placement. If the B-end of the rod
lies on W (see Fig. 2(a)), we say that Z satisfies the constraint B@W. Similarly, if B (resp.
the interior of the segment BF, the focus F) intersects the corner C (see Fig. 2(b) and (c)),
we say that Z satisfies the constraint B@C (resp. BF@QC, F@C). For technical reasons, we
insist that when BQW (resp. B@C) AB[Z] is not perpendicular to W (resp. AB[Z] forms an
non-acute angle with both of the walls incident on C) at the same time. We denote the latter
constraint by B L W (resp. B L C), see Fig. 2(d) (resp. Fig. 2(e)). Exchanging the roles of
A and B, we also have the constraint “A@W?” etc..
More formally, constraints are synthetic categories (expressions) of the form

X@S§ (read “X at S”) or,
X L S (read “X is perpendicular at S”)

where X is either one of the points A, B or F, or one of the open segments AF or FB, and
S is either a wall or a corner. For any constraint £ and placement Z, the relation “Z satisfies
£ either holds or does not hold. We define this relation at the same time as classifying the
constraints.



(a) Baw (b) BF@F

{E)AaW and Bew (g)wall-wall-1 (h)wall-wall-2

(i)wall-corner-1 (j)wall-corner-2 (k)corner-corner-1 (1) corner-corner-2

Figure 2: Constraints.

A fundamental operation that we perform is to rotate a rod about its focus F. (It follows
from our characterization theorem that rotations centred at points other than F do not figure
in optimal motions, hence if we speak of a rotation it is understood that its centre is F.) A
left rotation tefers to a counter-clockwise rotation and a right rotation is a clockwise rotation.
If Z is a placement that satisfies an @-constraint, then note that the rod cannot rotate in one
of the two directions (this was the reason for excluding placements that satisfy L-constraints).
If Z cannot rotate left because it touches a feature S, we call § a left-stop of Z. Similarly for
right-stop.

If Z cannot rotate in either direction, we say that Z is constricted. Note that a necessary
but not sufficient condition for Z to be constricted is that Z satisfies two @-constraints. We call
Z semi-constricted in case it can rotate in one direction but it also satisfies two @-constraints.

2.2 Classification of Constraints

Each constraint is either simple or composite. Intuitively, simple constraints reduce one degree
of freedom while composite constraints reduce two degrees of freedom.

A. Simple Constraints

Al Slmple Wall Constraint
These have the form AQW or BG@W, where W is a wall (see Fig. 2(a))
We say “Z satisfies AQW? if either of the following condition holds:
(a) A[Z] is incident on W but AB[Z] is not perpendicular to W.
(b) A[Z] is incident on an endpoint of W and some portion of AB[Z] projects
perpendicularly onto W.
A.2 Simple Corner Constraint
These have the form AF@C or BFQC, where C is a corner (see Fig. 2(b)).
We say “Z satisfies AF@C” provided C is incident on the relative interior of AF[Z 1.

B. Composite Constraints




B.1 Pivot Constraint
These have the form F@QC where C is a corner. We say “Z satisfies FQC” provided
C coincides with F[Z]. We call such a Z pivotal (see Fig. 2(c)).
B.2 Composite Wall Constraint
These have the form A L W or B L W where W is a wall (see Fig. 2(d)).
We say “Z satisfies A L W” provided A[Z]touches W and is perpendicular to W.
We call such a Z reflecting at W. The reason for this unusual terminology will be
clear later — but essentially, a shortest motion can make a reflection at this point.
B.3 Composite Corner Constraint
These have the form A L C or B L C where C is a corner (see Fig. 2(e)).
We say “Z satisfies A L C™ provided C coincides with A[Z] and the two rays normal
to the walls incident on C defines a closed cone that contains AB[Z]. Again, we call
such a Z reflecting at C.

Constricting Pairs of Constraints
Wall-Wall cases '

¢ WW A placement Z that satisfies two constraints of the form
AQ@QW and BQ@W
is necessarily constricted. The wall W is both a left- and a right-stop. (see Fig. 2(f))

e W; Wy A placement Z that satisfies the constraints
A@Wl and B@Wz
may be constricted, depending in part on the angle formed by the two walls. If this angle
is acute then placements of the form illustrated in Fig. 2(h) are all constricting but those
illustrated in Fig. 2(g) are constricting for only a portion of the associated ellipse. On
the other hand, if the angle is obtuse, all placements of the form illustrated in Fig. 2(g)
are constricting, while those illustrated in Fig. 2(h) are constricting for only a portion of
the associated circle.

‘Wall-Corner Cases

o WFC A placement Z that satisfies the constraints
AQW and BFQC
(or with the roles of A, B interchanged) may be constricted (see Fig. 2(i)).

o WCF A placement Z that satisfies the constraints
AQ@W and AFQC
(or with the roles of A, B interchanged) may be constricted (see Fig. 2(j)).

Corner-Corner Cases

o C1FC3 A placement Z that satisfies the constraints
AF@C, and BFQC,
(or with the roles of A, B interchanged) is constricted iff C; and C; both lie on the same
side of the rod AB. Here C},C; are both not at F (see Fig. 2(k)).

¢ C1CaoF A placement Z that satisfies the constraints
AF@C] and AF@Cz
(or with the roles of A, B interchanged) is constricted iff C; and C; lie on the different
sides of the rod AB. Here Cy,C; are distinct and C; is not at F (see Fig. 2(1)).
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Figure 3: B-displaced features and reflecting motions

2.3 Special curves

Essential to our characterization is the observation that there are a finite number of “stopovers”
which the focus must pass through in optimal motions. As in the well-studied case of a point
robot, the identification of stopovers serves to reduce the search for optimal motions to finite
number of possibilities because we can decompose any optimal motion into a finite number N
of optimal submotions that connect pairs of stopovers. (N is no more than quadratic in the
number of stopovers.) In the case of a point robot, stopovers can be identified with corners of
obstacles. In our case of a (non-degenerate) rod, however, they include other curve segments
as well.

When Z is constricted by a pair of constraints, it still has one degree of freedom to move
while maintaining these two constraints. The trace of the motion that results when Z exercises
this degree of freedom is a curve that has a very special nature. These curves constitute our
new stopovers:

Stopover Curves Defined by Composite Constraints.

1. Wall-Wall Cases (Fig. 2(f)) In the WW subcase, the trace is clearly a straight line
segment along W. In the W, W; subcases, the trace is part of an ellipse (Fig. 2(g)) or a
circle (Fig. 2(h)).

2. Wall-Corner Cases The trace is part of a conchoid. In the WFC subcase (Fig. 2(i)),
the trace is in the “lower portion” of the conchoid. In the WCF subcase (Fig. 2(j)), the
trace is part of the loop of a conchoid (see [7]).

3. Corner-Corner Cases (Fig. 2(k) and (1)) This trace is a clearly a straightline segment.

Mirrors. In addition to having more general stopover configurations, the optimal motion of
a rod between successive stopovers is more involved than in the case of a point robot. This
additional complexity arises from the need to include, in optimal motions, placements that
satisfy |-constraints.

The set of points that are at distance |AF| from a corner C forms a circular arc which we
call the A-displaced corner. Similarly the circular arc centered at C' at distance |FB| from C
is called the B-displaced corner. Again, the set of points that are at distance |[XF| (X = A, B)
from a wall W is a line segment called the X-displaced wall. (Fig. 3 illustrates B-displaced
walls and corners.) '

Because of the role played by X-displaced corners and walls (where X is either A or B) in
optimal motions, we refer to them as mirrors and we refer to placements satisfying 1 -constraints
as reflecting. If the mirror is a displaced corner, we call it a circular mirror; otherwise it is a




Figure 4: What is an d; —optimal motion from S to T'?

straight mirror coming from a displaced wall. The reason for this terminology will be clearer
in the next subsection.

Since stopover curves are associated with pairs of features, there are in total O(n?) stopover
curves and mirrors generated by a given obstacle set of complexity n.

An example of an optimal motion

In the following we give a nontrivial example of an optimal motion of a rod to convince the
readers of the difficulty of the problem. Situation we consider is simple enough but the optimal
motion is complicated enough.

Situation is as follows: Given a rod placement in an acute angle as shown in Fig. 4 we want
to move it to the target placement shown in the figure. For simplicity we assume that the focus
is fixed at the middle of the rod. An optimal motion in this case is as follows: First the rod
is translated until it hits the straight mirror for the lower wall. Then, reflecting at the mirror
according the Snell’s law, it is translated again along a tangent line from the reflecting point to
the ellipse defined by the two walls. Once it reaches the ellipse, sliding along the two walls (by
tracing the ellipse), it leaves the ellipse along another tangent line from the mirrored point of
the target point. After it reaches the straight mirror, it is again translated to the target point.

2.4 Local Characterization of Optimal Motion

Intuitively, the trace of an optimal motion must travel in a straight line unless it must bend
around a convex corner or it is constricted (in which case there is no choice but to trace the
conchoid or elliptic curves). But there is one other possibility, namely, the trace can reflect
off a displaced feature in accordance to Snell’s law. (Fig. 3 illustrates such reflecting motions
from position S to positions T; and T; respectively.) Our characterization result, whose proof
will appear in an expanded version of this paper, is that these possibilities are exhaustive.
The following theorem shows exactly what happens at a point that is not locally straight.

Theorem 1 Let y : [0,1] — FP be an optimal motion and 0 < ty < 1. If Fu is not locally
straight at to then one of the following three must hold:

(i) u(to) is pivotal at a corner C and Fp is locally “bending” around C.

(ii) u(to) is constricted and the trace Fy is locally tangent to the stopover curve at Fpu(to)-
(iii) For some t, € [0,1], Fu(t) = Fu(to) for allt between t1 and to, and p(t1) is reflecting at
some reflecting curve vy, and Fp is reflecting off v according to Snell’s law.

Using the above characterization, it is straightforward to prove the following:

Corollary 1 Any optimal motion u can be transformed into a motion ' such that Fu = Fy/'
and y' consists of a finite sequence of O(n*) submotions in which each submotion has one of



the following forms:

. pure rolation around a pivot

. pure translation along a straight line segment

. dragging an endpoint along a wall in a straight trace

. dragging the rod along a convez corner in a straight trace
. sliding along two walls in an elliptical trace

. sliding along a wall and a corner in a conchoidal trace.
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