7 N I U X L 58T
(1997. 9. 19

FEESE B2 BB R BE 7L T XA L 2D

B PR L AFITVESYY
LZERTHRAPEAEHTER F— IV FFIoF rRENBREN

s BEICE YV ENEPHELEOSOREPY¥E:L 5, PREINLHpHROEL LR
el &, pREBATHAILE). s MWEDHGHHFEL, POROLORR LY pidqill
Vo EEATHEL RS PHEAONALEEIL, PORTOEEAEROIMETH S, &
BT, BESMEPBRELERTVIV XL ERRTNL) XL ERT BRT VT
A LA ORHEEEILO(n) ThH D, BFIT VT XA, Common-CRCW—PRAM‘C‘O(loglogn)
BM, - 70ty ¥ ThY, EREW-PRAM T O(logn) BM, oo 70ty ¥ ThHa,
_ht‘aa)'r)v:f'JfAlitt!l B RETH 5o it, :&&ﬁ.ﬁﬂ%@n& v RRIT, BHERE
7, EfgME L Lot a5 ERT. :

- Optimal Parallel Algorithms for Finding Proximate Points,
with Applications

Tatsuya Hayashi and Koji Nakano Stephan Olariu
Department of Electrical and Computer Engineering Department of Computer Science
Nagoya Institute of Technology Old Dominion University
Showa-ku, Nagoya 466, Japan Norfolk, VA 23529, USA

Consider a set P of points in the plane sorted by z-coordinate. A point p in P is said to be
a prozimate point if there exists a point g on the z-axis such that p is the closest point to ¢
over all points in P. The prozimate points problem is to determine all proximate points in
P. We propose optimal sequential and parallel algorithms for the proximate points problem.
Our sequentxal algorithm runs in O(n) time. Our parallel algorithms run in O(loglogn) time
using 1tz Common-CRCW processors, and in O(logn) time using 2~ EREW processors.
We show ‘that both parallel algorithms are work-time optimal; the ER%JW algorithm is also
time-optimal. As it turns out, the proximate points problem finds interesting and highly
nontrivial applications to pattern analysis, digital geometry, and image processing.



1 Introduction

Let P be a set of points in the plane sorted by
z-coordinate. A point p in P is termed a prozi-
mate point if there exists a point q on the z-axis
such that p is the closest point to g over all the
points in P. The prozimate points problem is to
determine all proximate points in P. We propose
optimal sequential and parallel algorithms for the
proximate points problem. The sequential algo-
rithm runs in O(n) time, being therefore optimal.
The parallel algorithms run in O(loglogn) time
using Wlos_n Common-CRCW processors and in
O(logn) time using 1—-— EREW processors. Both
these algorithms are Work-time optimal; in fact,
the EREW algorithm turns out to also be time-
optimal. The proximate points problem has inter-
esting and quite unexpected applications to prob-
lems in pattern recognition, digital geometry, shape
analysis, compression, decomposition, and image
reconstruction. We now summarize the main appli-
cations of our algorithm for the proximate points
problem.

¢ A very simple algorithm for the convex hull of
a set of n planar points sorted by z-coordinate
running in O(logn) time using Togn EREW

processors and in O(log log n) time using r—&-;
Common-CRCW processors. Qur algontﬁm

has the same performance as those of [1, 3, 2],
being much simpler and more intuitive.

¢ Algorithms for the Voronoi map, the distance
map, the maximal empty figure and the largest
empty figure of a binary image of size n x n.
The Voronoi map assigns each pixel the posi-
tion of the nearest black pixel. The distance
map assigns each pixel the distance to the
nearest black pixel. An empty circle of the
image is a circle filled with white pixels. The
mazimal empty circle is an empty circle in-
cluded in no other circle. The largest empty
circle is an empty circle with the largest ra-
dius.

o A work optimal algorithm for the Euclidean
distance map of a binary image of size nx

n running in O(loglogn) time using lo_g1t>g_n

Common-CRCW processors or in O(log n) time

using l—_ EREW processors. We also show
that the distance map of various metrics, in-
cluding the well-known L metric (k > 1),
can be computed in the same manner. Fu-
jiwara et al. [5] presented a work-optimal
algorithm running in O(logn) time and us-
ing 1'61:7 EREW processors and in O(lo—:’ﬁ,%)

time using "—'l%gl—:ﬁ-'l Common-CRCW pro-
cessors. As we see it, our algorithm has three
major advantages over Fujiwara’s algorithm.
First, the performance of our algorithm for
the CRCW is superior; second, our algorithm
applies to a large array of distance metrics; fi-
nally, our algorithm is much simpler and more
intuitive.

o An algorithm for the maximal empty circle
and for the largest empty circle of an n x n
binary image running in O(logn) time using
1% EREW procasors and in Ofloglogn)

time using I"T_ Common-CRCW proces-
sors. This a.lgonthm is applicable to various
other figures including circles, squares, dia-
monds, n-gons.

Due to page limitations, the applications to pattern
analysis and image processing will be discussed in
the journal version of this work.

2 The proximate points prob-
lem: a first look

For a point p in the plane we write p = (z(p), y(p))
in the obvious way. We let d(p,q) denote the Eu-
clidean distance between the points p and gq.

Throughout this section we consider a set P =
{P1,P2;- - ,Pn} of n points above the z-axis sorted
by increasing z-coordinate. Let I;, (1 < 1 < n),
be the locus of all the points ¢’ on the r-axis for
which d(¢',p;) < d(¢,p;), Le., ¢ € I; if and only
if p; is the closest point to ¢’ over all points in
P. Elementary geometry confirms that every set
I; is an interval. Accordingly, Iy, I5,..., I, are the
prozimate intervals of P. Notice that some of these
intervals may be empty. In case the interval I; is
non-empty, we say that p; is a prozimate point of
P. A point g on the z-axis is the boundary between
pi and p; if d(pi,q) = d(pj, q). Figure 1 illustrates
an example of proximate intervals and the Voronoi
diagram of P. Clearly, the Voronoi diagram par-
titions the x-axis into proximate intervals. In Fig-
ure 1, p1,p2,P4,P8, and p; are proximate points;
the others are not. Observe that the leftmost and
rightmost points of P are always proximate points.

For three points p;, pj, pr with z(p:) < z(p;) <
z(pi), we say that p; is dominated by p; and p;. if p;
is not a proximate point of {p;,pj,px}. Note that
one processor can determine in O(1) time whether
p; is dominated by p; and px. A point p; of Pis a
proximate point if and only if no pair of points in
P dominates p;.



v
2
v

1 I L L

Figure 2: Addition of p to P = {p;,p2,p3,Pa}

Let P be as above and let p be a point to the
right of P. We wish to compute the proximate in-
tervals of PU{p}. Assume, wlog, that all points in
P are proximate points, and let I, I, ..., I, be the
proximate intervals of P. Further, let I, I3,...,I},, I}
be the proximate intervals of P U {p} and refer to
Figure 2. There exists a unique point p;, called the
contact point between P and p, such that

1. for every j, (1 < j <), p; is not dominated
by p;j-1 and p. Moreover, I} = I; and p; is a
proximate point of P U {p};

2. p; is not dominated by p;_; and p, and the
boundary between p; and p is in I;; the left
part of I;, separated by the boundary, is I.
The right part of the z-axis is I;

3. for every j, (i < j < n), p; is dominated by
pj-1 and p. Moreover, I is empty and p; is
not a proximate point of P U {p}.

Next, suppose that P is partitioned into subsets

Pr = {p1,p2,...,0n} and Pp = {Pnt1, P42, -, P20}

We are interested in updating the proximate in-
tervals in the process or merging P; and Pg. Let
ILiI,...,I, and In4q,lp42,..., ]2, be the proxi-
mate intervals of P, and Pg, respectively. We as-
sume, wlog, that all these proximate intervals are
nonempty. Let I{,I3,..., I}, be the proximate in-
tervals of P = P;UPp, and refer to Figure 3. There

exist unigue proximate points p; € Pr and p; € Pg,
called the contact points between Py, and Pg, such
that

1. for every k, (1 < k < i), pi is not dominated

by pk-1 and p;. Moreover, I}, = I} and py is
a proximate point of P;

2. pi is not dominated by p;—; and p;, and the

boundary between p; and p; is in I;. The left.
part of I; separated by the boundary is I};

3. for every k, (i < k < n), pr is dominated

by pr—1 and p;. Moreover, the interval I, is
empty and py is not a proximate point of P;

4. for every k, (n < k £ j), px is dominated

by p; and pi4;. Moreover, the interval I, is
empty and p; is not a proximate point of P;

5. p; is not dominated by p; and pj41, and the

boundary between p; and p; is in I;. The
right part of I; separated by the boundary is
I
J!

6. forevery k, (j < k < 2n), p; is not dominated

by p; and pg41. Moreover, I}, = I} and p; is
a proximate point of P.

Next, using the two observations above, we pro-

pose a simple O(n)-time sequential algorithm for



Pro

P |p2
ole
L n

Figure 3: Illustrating the merging of two sets of prozimate intervals.

finding the proximate points of aset P = {p1,p2, ..
with z(p1) < z(p2) < -++ < z(pn). The algorithm
uses a stack that, when the algorithm terminates,
contains all the proximate points in P.

Algorithm Sequential-Proximate-Points;
1fori:=1tondo .
2 while the stack has'two or more points do
begin
p':= the top of the stack;
p'':= the next to the top of the stack;
if p’ is dominated by p” and p; then
pop p' from the stack
else exit while loop
end;
10  push p;
11 end;

WO~ U W

An easy inductive argument shows that at the end
of the ¢-th iteration of the for loop, the stack con-
tains all proximate points in {p;,ps,...,pi}. Once
a point is removed from the stack it will never be
considered again. Thus, we have

Lemma 2.1 The task of finding the prozimate points

of a set of n paoints sorted by z-coordinate can be
performed in O(n) sequential time.

3 Parallel algorithms for the
proximate points problem

Consider aset P = {p1,pz,...,Pn} of points sorted
by z-coordinate. For every point p; we use three
indices c;, I;, and r; of p defined as:

1. ¢ =max{j|j <iand
pj is an proximate point };

2. l; =max{j | j < c; and
pj is an proximate point };

.,p,.} 3. ri=

min{j | j > ¢; and
pj is an proximate point }.

Note that l; < ¢; € ¢ < r; holds and there is no
proximate point p; such that I; < j < ¢; or ¢; <
j<rilfci=ithenp;isa proximate point, as
shown in Figure 4.

Next, we are mterwted in finding the contact
point between the set P and a point p to the right
of P. We assume that for every i, (1 < i < n), the
indices c;, l;, and r; are given and that m, (m < n),
processors are available.

Algorithm Find-Contact-Point

Step 1 Extract a sample S(P) of size m consisting of
the points PeysPeg 41 Pegpyrr-s in P. For ev-
ery k, (k > 0), check whether the point Peyp 4 is
dominated by pr, 24 and p, and whether Prugy
is dominated by pc,‘_,_,_+l and p. If pe, 5 ,, is "not
dominated but p, P is dominated, then Peyn iy
is the desired contact point.

Step 2 Find k such that the point p,, 24 is not dom-
inated by Peyny and p, and Pc(n+1)n-+: is dom-
inated by Pliagy o and p.

Step 3 Execute recursively this algorithm for the set
of points P' = {p,,,_%“, Prypyi+l Prig it
-+ Pl 41yn 41} to find the contact point.

Since the set P’ contains at most l(x41)a+1 —
rez+1+1 £ Z—1 points, the depth of the recursion
is O(;oﬂgr—"‘l-). Thus, we have

Lemma 3.1 The task of finding the contact point
between a set P of n points in the plane sorted by
z-coordinate and a point p to the right of P can be
performed in 0(11-3-85%) time using m CREW pro-
cessors,

Next, consider two sets P, = {p1,pa,..
and Pp = {pn+lspﬂ+2’ Ve

«sPn}
,P2r} of points in the



non-proximate points O (]

proximate points @
P

Pei Pr;

Figure 4: Illustrating l;, c;, and r; for p;

plane such that z(p1) < z(pz) < +++ < z(pzn).
Assume that for every i the indices ¢;, I; and r;
are given and that m processors are available. The
following algorithm finds the contact points of P,
and Pg.

Algorithm Find-Contact-Points-Between-Sets
Step 1 Extract /m sample S(Pr) = {p.;, pc’ﬂ-“’

Peg_g_41r -+ } from Pr. Using the algorithm
:j'm
Find-Contact-Point and /m of the processors

available, determine for each sample point p., Y

the corresponding contact point g, - in Pg.
m

Step 2 For each k, (0 < k < /m — 1), check whether
the point pc, g_,, is dominated by pi, - and

qe, P and whether the point p,, - is dom-
m m

inated by pc,_%“ and qch#“. If p.;,,j!_”__H is

not dominated, yet pr, Pt is, output pc, e

and q,,‘ﬂ_+1 as the desired contact points.

Step 3 Find k such that the point p,, 1 is not
dominated by pc,.#“ and qc,‘#“, yet
pc(,‘+1)++1 is dominated by pl(.“)#“ and
2ot 1) o 41

Step 4 Execute recursively this algorithm for P; =
{p"p,#.n_ y Pry %+1+1,Pr~#+1+2, veny
p‘(h+1)jl-+1} and Pgr to find the contact points.

By Lemma 3.1, Step 1 can be takes 0(11-3:%)
time on the CREW model. Steps 2 and 3 rum,
clearly, in O(1) time. Since Pj contains at most
= — 1 points, the depth of recursion is 0(1%"5%).
Thus, we have

Lemma 3.2 The task of finding the contact points
between the sets Pr, = {p),p2,...,Pn} and Pg =
{Pn+1:Pn+2s---sP2n} of points in the plane such
that z(p1) < z(pz) < +*+ < z(p2n) can be performed
in O(,‘T"g;—ﬂ—) time using m CREW processors.

‘We now show how to compute the proximate
points of a set P of n points in the plane sorted by

z-coordinate in O(loglogn) time on the Common-
CRCW. Assume that n processors are available.
The idea is simple: first, we determine for every 4,
the indices c;, l;, and r;. Next, we retain the points
pi for which ¢; = 1.

Algorithm Find-Proximate-Points

Step 1 Partition the set P into n'/® subsets Py, Py,.. .,
P,1/s_, such that for every k, (0 < k < nt/?-1),
Pi = {Pna/3 115 Phnafogas - rp(k+1)u7/3}' For ev-
ery point p; in P, (0 <k < n!/* 1), determine
the indices c;, ;, and r; local to P.

Step 2 Compute the contact points of each pair of sets
Piand P;, (0 < i < j < a'/® —1), using n'/* of
the processors available. Let ¢;,; € P; denote the
contact point between P; and P;.

Step 3 For every P, find the rightmost contact point
Prc; among all the points ¢; ; with j < i and find
the leftmost contact point pj.; over all points g; ;
with § > 4. Clearly, z(prc;) = max{z(gi )} | j <
i} and z(prc,) = min{z(g,;) | j > i}-

Step 4 For each set P;, the proximate points lying be-
tween rc; and l¢; (inclusive) are proximate points
of P. Update each ci,l;, and r;.

2 ,2/3

Clearly, Step 2 runs in O(:—:-gg—"m) = O(1) time.
Step 3 runs in O(1) time as well. The updat-
ing of the indices c;,l;, and r; in Step 4 can be
performed in O(1) time. We only discuss ¢;. In
each P;, the value of ¢;, (re; < j < lg;), is not
changed. For all the points p; with lc; < j, the
value of c; must be changed to lc;. For all points
pj with j < rc;, the value of c; is changed to
lei—y, if P;_; has an proximate point. However,
if P;_; does not contain a proximate points, we
have to find the nearest subset that does. For this,
first check whether each P; has a proximate point.
Next, we determine in O(1) time P such that k =
max{j |j < i and P;j contains a proximate point}.
Thus, Step 4 can be done in O(1) time. Note that
the depth of the recursion is O(loglog ). Thus, we
have

Lemma 3.3 An instance of size n of the prozi-
mate points problem can be solved in O{loglogn)
time using n Common-CRCW processors.



Next, we show that the number of processors Lemma 8.5 An instance of size n of the prowi-
can be reduced by a factor of loglogn without in-  mate points problem can be solved in O(logn) time
creasing the running time. The idea is as follows: using n EREW processors.

. e . . n
l}egl;;l by pal.r:tltlomnga::};e sfe t-P 1lntol Toglog ﬁsubsets Using, essentially, the same idea as for the CRCW-

Loy Prop e of size loglog n. Next, us-
ing algorithm Sequential-Proximate-Points find T RAM, we can reduce the number of processors by
the proximate points within each subset in O(loglogn)® factor of logn without increasing the computing

sequential time and, in the process, remove from P
all the points that are not proximate points, For
every i, (1 < i < E’;l—!;‘-), let {pi1,piz,...} be
proximate points in the set P;.

At this moment, run Find-Proximate-Point
onPLUPU..-U Pl?.-ﬁ;.—,.' Since n processors are
needed to update the indices c;, {;, and r; in O(1),
we will proceed slightly differently. The idea is the
following: while executing the algorithm, some of
the proximate points will cease to be proximate
points. To maintain this information efficiently, we
use ranges [Ly, R1], [Lg, Ra), - . -, [le'i‘.—n’er";rx]
such that for each P;, {pi 1.,pi,L,+1,...,Pi R} are
the current proximate points. While executing the
algorithm, P; may contain no proximate points. To
find the neighboring proximate points, we use the
pointersL’l,Lg,...,L’rm:T; and R}, R},...,R’_»
such that

o L) = max{j |j < ¢ and the set P;
contains proximate point,

® R} =min{j |j > i and the set P;
contains proximate point.

By using this strategy, we can find the contact
point between a point and P in O(}fgﬁ) time using
m processors as discussed in Lemma 3.1. Thus, the
contact points between two subsets can be found
in the same manner as in Lemma 3.2. Finally, the
task of updating L;, R;, L}, and R! in Step 4 can
be done in O(1) time by using ‘Tl”s_ processors.

oglogn
To sumimarize, we have the following result.

Theorem 3.4 An instance of size n of the proz-
imate points problem can be solved in O(loglogn)
time using EE{-’O—S-; Common-CRCW processors.

Finally, we show that Find-Proximate-Points

can be implemented efficiently on the EREW-PRAM.
For this recall that one step of an m-processor CRCW-

PRAM can be simulated by an m-processor EREW-
PRAM in O(logm) time [6]. Consequently, Steps
2, 3, and 4 can be performed in O(logn) time us-
ing n EREW processors, as the CRCW performs
these steps in O(1) time using n processors. Let
Terew(n) be the worst-case running time on the
EREW. Then, the recurrence describing the EREW

b33

time. Thus, we have

Theorem 3.8 An instance of size n of the prozi-
mate points problem can be solved in O(logn) time
using Io:_n EREW processors.

Further, it is not hard to see that Theorems 3.4
and 3.6 hold for the case of any L; metric with
k>1.

4 Lower Bounds

The main goal of this section is to show that the
running time of the Common CRCW algorithm for
the proximate points problem cannot be improved
while retaining work-optimality. This, in effect,
will prove that our Common-CRCW algorithm is
work-time optimal. We then show that our EREW
algorithm is time-optimal.

The work-optimality of both algorithms is ob-
vious; every point must be accessed to solve the
proximate points problem, thus, Q(n) work is re-
quired of any algorithm solving the problem. Our
arguments rely, in part, on the following well known
result [6, 7].

Lemma 4.1 The task of finding the minimum (maz-
imum) of n real numbers requires Q(loglogn) time
on the CRCW provided that nlog®Y n processors
are available.

Obviously, even if all the input numbers are non-
negative, the task still requires Q(loglogn) time.
Further, we rely on the following classic result of
Cook et al. [4].

Lemma 4.2 The task of finding the minimum (maz-
imum) of n real numbers requires S(logn) time on
the CREW (therefore, also on the EREW) even if

infinitely many processors are available.

We shall reduce the task of finding the minimum
of a collection A of n non-negative a,,az,...,a, to
the proximate points problem. In other words, we
will show that the minimum finding problem can
be converted to the proximate points problem in
O(1) time. :

For this purpose, let a;,as,...,a, be an arbi-

time complexity becomes Tprgw (n) = Tg REw(n§)+ trary input to the minimum problem and refer to

O(logn), confirming that T'(n) € O(logn). Conse-
quently, we have:

Figure 5. We construct a set P = {py,ps,...,Pan}
of points in the plane by setting for every ¢, (1 <




~
.

I Lign

Figure 5: lllustrating the construction of P

i<n)pi = (i,Vai+4n? — %) and piyn = (5 +
n, v/a; + 4n% — (i + n)?). Notice that this construc-
tion guarantees that the points in P are sorted by
z-coordinate and that for every ¢, (1 < i < n),
the distance between the point p; and the origin
is exactly v/a; + 4n?. The set P that we just con-
structed has the following property.

Lemma 4.3 a; is the minimum of A if and only
if both points p; and pjin are prozimate points of
P.

Proof. Assume that a; is the minimum of A.
Consider the circle C of radius is y/a; -+ 4n? cen-
tered at the origin. Clearly, the points a; and aj4x
are on C, while all the other points are outside C.
Therefore, there exists a small real number ¢ > 0
such that a; is the closest points of (—¢,0) over all
points in P, and a;4, is the closest points of (¢, 0).
Thus, both p; and pj. are proximate points of P.
Further, the proximate intervals for p; and Pj+n
are adjacent. Thus, no point p; with k<i<k+n
can be a proximate point. [

Lemma 4.3 guarantees that we can determine
the minimum of A once the proximate points of
P are known. Now the conclusion follows immedi-
ately from Lemma 4.1. Thus, we have the following
important result.

Theorem 4.4 Any algorithm that solves an instance
of size n of the prozimate points problem on the
CRCW must take Q(loglogn) time provided that
o) processors are available.

Using exactly the same construction we obtain the
following lower bound for the CREW.

Theorem 4.5 Any algorithm that solves an instance
of size n of the prozimate points problem on the

CREW (also on the EREW) must take Q(logn)
time even if an infinite number of processors are
available.

Obviously, the EREW algorithm presented in
Section 3 solving the proximate points problem in
O(logn) time and optimal work runs, within the
same resource bounds, on the CREW-PRAM. By
Theorem 4.4 the corresponding CREW algorithm
is also time-optimal.

Further, in the case of the L; metric, for every i,
(1 i < n), the points p; = (i, ¥/a; + (2n)F — iF)
and p;yn = (i4n, {/a; + (2n)* — (i + n)F) allow us
to find the minimum of A. Thus, the above results
hold for the L; metric.

5 Application to the convex
hull problem

Let P = {p1,pa,...,Pn} be a planar set of n points
sorted by z-coordinate.We assume, with no loss of
generality that for every i, z(p:)? < y(p;). The
line segment p;p, partitions the convex hull of P
into the lower hull, lying below the segment, and
the upper hull, lying above it. In this section we
focus on the computation of the lower hull only,
the computation of the upper hull being similar.
Referring to Figure 6 let Q = {q1,92,..-,qn} be
the set of n points obtained from P by setting for

every i, ¢; = (z(pi), Vy(p:) — z(p; 52). The follow-

ing result captures the relationship between P and

Q.

Lemma 5.1 For every j, (1 < j < n), the point
pj 8 an extreme point of the lower hull of P if and-
only if q; is a prozimate point of Q.

Proof. If j =1 or j = n, then p; is an extreme
point and so g; is a proximate point. Thus, the
lemma is correct for j = 1 and j = n. For a fixed
Jy2<j<n-—1,let i and k be arbitrary indices
such that 1 < i < j < k < n. Let b; and b be
the boundaries between ¢; and g; and between a;
and g, respectively. Notice that d(g;, ;) = d(g;, b:)
implies that (z(p;) — z(b;))? + y(p;) — =(p:)?
(z(pj) — 2(b:))* + y(p;) — z(pj)?. Thus, we have
2a(bi) = HEY=UEL Similarly, we have 2z(bx) =
I/%Zk)"l[(&') .

z{pr) —=(p;

Notice that the slopes of the segments pip;j and
pkp; equal 2z(b;) and 2z(b;), respectively. It fol-
lows that the point p; lies below the segment p;ps
if and only if g; is not dominated by ¢; and gx. In
other words, the point p; is an extreme point of the

lower hull if and only if g; is a proximate point of
P.QO



Figure 6: Illustrating the transformation of P into Q

Lemma 5.1 suggests the following algorithm for
determining the extreme points of the lower hull of

P = {P11p2a “ee ,Pn}'
Algorithm Find-Lower-Hull

Step 1 Compute the minimum Y = min{y(pi)—=z(p:) |
1<i<n}and construct theset Q = {a1,q,.
such that for every i, (1 <1< n),
y(pi) - z(pi)* =
Step 2 Determine the proximate points of Q. Having
done that, select p; as an extreme point in the
lower hull whenever g¢; is a proximate point.

Clearly, the minimum Y is used to avoid that the
argument of the square root be negative. The min-
imum finding can be done in O(logn) time using
T"" EREW processors and in O(loglogn) time us-
ing 0_13"’ CRCW processors [6]. Step 2 can be
completed by using the algorithms of Theorems 3.4
and 3.6. Thus, we have

Theorem 5.2 The task of determining the convez
hull of n points sorted by z-coordinate can be per-
formed in O(loglogn) ti.me using m’;‘,?;‘- C?mmon-
CRCW processors and in O(logn) time using 2o
EREW processors.

Acknowledgement

This work is supported in part by NSF grant CCR-
9522093, by ONR grant N00014-97-1-0526, and by
Grant-in-Aid for Encouragement of Young Scien-
tists (08780265) from Ministry of Education, Sci-
ence, Sports, and Culture of Japan

References

[1] O. Berkma.n, B. Schieber, and U. Vishkin. A
fast parallel algorithm for finding the convex
hull of a sorted point set. Int. J. Comput.
Geom. Appl., 6(2):231-241, June 1996.

[2] D. Z. Chen. Efficient geometric algorithms on
the EREW PRAM. IEEE Trans. Parallel Dis-
trib. Syst., 6(1):41-47, January 1995.

1q'l}

[3] W. Chen, K. Nakano, T. Masuzawa, and
N. Tokura. Optimal parallel algorithms for
computing convex hulls. IEICE Transactions,
J74-D-1(6):809-820, September 1992.

[4] S. A. Cook, C. Dwork, and R. Reischuk. Up-
per and lower time bounds for parallel random
access machines without simultaneous writes.
SIAM J. Comput., 15:87-97, 1986.

[5] A. Fujiwara, T. Masuzawa, and H. Fujiwara.
An optimal parallel algorithm for the Euclidean
distance maps. Information Processing Letters,
54:295-300, 1995.

[6] J. J4J4. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[7] L. G. Valiant. Parallelism in comparison prob-
lem. SIAM J. Comput., 4(3):348-355, 1975.

—56—.



