7 I Y X A 58-6
(1997. 9. 19

MHAERBEBICHT S A XY BB X 5 FEEHE

Yy b&dr - NLY— hERE ED
ZEERTERFERERTEH

ABL T, ARTEIN-ZEEBOEFG21T)RRV VIT) XL %R
KT B, TWIT) AAREMELBEIFED 2 2ORFPOBEENS, WERB LY
BAINEzZ NI 212, WABETREIMEO /D07 — 7 BE2 BN T 5, BiF
BTREEDH -/ ADZZITNY, HEEBOH N EEHT 5, FiILBEOFERM
IEBOKE KOBEERTH D, ﬁﬂMGﬁmu\EEG&otlﬁwﬁwﬁ%ﬁ
ﬁvééo

Event-driven evaluation of combinatorial logic circuits

Valery Viatkin, Koji Nakano, Tatsuya Hayashi

Dept.of Electrical and Computer Engineering -
Nagoya Institute of Technology
Showa-ku, Nagoya 466,Japan
{valery,nakano,hayashi}@elcom.nitech.ac. jp
tel. /fax.:+81-52-735-5450

This paper presents an efficient algorithm for re-computation of a Boolean func-
tion represented as an acyclic and non-reduced logic circuit. The algorithm consists
of pre-computation and re-computation parts. For a given logic circuit and initial
inputs, the pre-computation constructs data structure for the re-compuation. The
re-computation accepts a list of triggered inputs and updates the result of the logic
circut. Computing time of the pre-computation is linear to the size of the circuit
and of the re-computation is linear to the number of triggered inputs.

1 Introduction

Speed of logic computations is important for many
real-time computer applications. Especially it is true
for logic control systems where responce charateris-
tic is critical. Distributed nature of many controlled
objects urges to redirect attention to event-oriented
computations since explicit data aquisition and up-
date of all output variables sometimes takes in such
systems unacceptable time proportional to the total
number of inputs at best.

Principle of event-driven computation, studied in
[7], [11] offers a selective approach improving responce
on account of starting computations without delay,
choice only the functions actually required to be up-
dated, and use of more efficient recomputation of each
function comparing to the case when it is computed
completely.

State of a real-time system is completely defined
by current value X of input vector X € {0,1}".
Event o is simultaneous triggering of subset X;,j € X
that changes value of X to X?. The event can be ex-

plicitly defined by list & =< ji, j2, ..., jx > of indices

of triggered.inputs. It is also assumed that ¥ << N.
The task of event-driven recomputation of a Boolean
function F : X — {0, 1} asks to find its value F(X°)
given F(X), event and some intermediate data pre-
computed in advance.

Efficiency of the recomputation as well as of the
full computation, is strongly dependent on the presen-
tation of formula. Many models of logic computation
are based on use of graph presentations. Most popu-
lar are binary decision diagrams (BDD) [2], ordinary
traverse of which provides the result in time linear
to the number of inputs N. BDD traverse checks
a corresponding variable at every node and choses
one of two alternative directions to continue. Event-
driven computation of correspondigly modified BDDs
proposed in [9, 10] recomputes a function in a time
range O(k) — O(klogN) depending on the memory
and amount of required precomputations. However,
application of the BDDs is of limited practical use for
their exponential size.

The need of more efficient data structure made
us to study conventional logic circuits in their most
trivial case of fan—in = 2, fan—out = 1. The prin-
ciple of event-driven traverse of the circuits is closer
to the method of clause counter map, introduced by
Welch in {7] and evolved then in [8]. Contribution of
the present work is in finding of the solution for the
general case i.e. at assumption that there is an ar-
bitrary number of a variable entries into the formula
and (k > 1). :

Let the function F be given initially as an expres-
sion in basis {and, or, nand, nor}. Even though
every variable in general can be of an arbitrary num-
ber of entries into the formula, in practical cases as-
sumption about linear number of each variable entries
seems to be quite reasonable. Thus total number of
affected entries k. in case of an event of order k¥ would
be of k. = O(k) order.

Event-driven computation finds difference of a
Boolean function instead of recomputing its value.
The difference of a Boolean value v taken in dis-
crete time is denoted as dv(t) = v(t) ® v(t — 1)
and true iff the value changes. Correspondingly for
function F(X) at event o difference is 0F(X) =
F(X)® F(X?) and F(X?) = F(X) ® 0F(X). To
study transitional behaviour of Boolean functions (i.e.

their dependence on triggering of a certain éroup of
input variables) Boolean derivative W&%—m
11 L IR 7Y

of order k was introduced ([5], [6]). It has been proven
that at event o = {ji, j2, . . . , jk} difference is equal to

the derivative of order k: 4F(X) = m,—%—;_—j.
7119 5g5--, 0T 5
Using this result the following simple properties of ba-
sic logic operations were derived in [8]. Let y(X) =
fi(X)opf2(X), where op € {and, nand, or, nor

Proposition 1.1 For op € {and, nand}: -};11- = fo,
while for op € {or,nor}: 32,”!- =73

Proposition 1.2 For all operations

op € {and, nand, or, nor}: 18—1,?%72—) =(f = fa)-

These properties enable us to substitute Boolean
calculations for operations with differences in order to
derive difference of the function by event propagation
through a formula from variable entries to the result
of the whole function. When the function is presented
as a kind of a binary tree computation looks like back
traverse of the tree from leaves to the root controlled
by rules 1.1,1.2.

2 Event logic circuits

Logic circuits built of gates {and, or, nand, nor} is
most easily constructed binary tree presentation of a -
Boolean formula. Every operation in the formula cor-
responds to the node in the circuit and every variable
to a leaf. In order to represent circuit in homoge-
neous basis of gates it can be equaly presented by a
circuit of the same topology in basis {or, nor} apply-
ing De Morgan laws to {and, nand } gates. More-
over, assuming that all gates have no more than one
incoming edge, it can be presented as or-gates cir-
cuit with edges marked with negation attribute. And
since rules 1.1,1.2 prove that negation doesn’t affect
dependence of operation difference on differences of
operands, the attributes can be omitted to produce
event logic circuit (or ELC for short) which is used
further as a basic data structure for difference recom-
putation purposes.

Example 1 Consider Boolean function: f =
(Taza)zsVa 124V V(22 V 1421’7('$—2V x5V 21). Com-
position of equivalent event logic circuit is presented
in figure 1.

Thus, we define logic circuit (LC) in the following
way. It 1s a binary tree C' = (V,1,r, v, ¥), with V
standing for the base set of nodes, also denoted as
V = V(C), v € V - root. Children of node v are
I{v), r(v) and the parent is p(v). Subcircuit rooted in
w is termed [w]. Set V divides onto two subsets: set
V7, of terminal nodes or leaves and set Vg of functional
nodes or gates: V =Vg UV, Vgn VL = 0. Assume
that all gates of the circuit are or - gates and the
circuit is non-reduced i.e. every nodes except terminal
ones have no more than one parent (i.e. fan-in=1).
In this case attribute of inversion can be moved from
edges to the nodes: neg : V — {0, 1} though it will be
shown as a dot on the incoming edge. Each terminal
node is associated with a logic variable by mapping
% : Vi, = X. Circuit [v] defines a Boolean function
recursively as F, = Fy,)orFy(y)) @ neg(v) if v is a
functional node, or as F, = ¢{(v) @ neg(v), if it is a
terminal node. Value of the function F,, stored as a
functional marking of node: v.F, helps to complete
full circuit evaluation in as many as OqVD steps.

As in any tree, in an LC exists a single path [w, vﬂ
from node w to the root. Length of the path is terme

® &
"" ® @

Figure 1: Construction of event logic circuit from OR-NOT circuit

as rank(w); maxyev(rank(w)) termed as a rank of
an LC. The relation of vicimity 5 : V\vg — V\ng
uniquely maps the sibling node for every node except
the root in the following way: n(v) = r(p(v) if v =
1(p(v)), or np(v) = l(p(v%) if v = r(p(v)). Difference
d(v) of node v is difference of the Boolean function
F, determined by LC [v].

The event-driven recomputation problem of a
Boolean formula can be formulated in terms of ELCs
as follows. Given a non-reduced ELC with functional
marking in every node corresponding to the state X
and a query, defined as a subset of terminal nodes
where functional marking is changed value at state
X7, the problem asks to update the functional mark-
ing in the root of the LC. The set V7 is called as
a set of event nodes. We assume that its size k, is
linearly dependent on the the event dimension, i.e.:
O(k,) = O(k). For a sub-circuit [v] set of its event
nodes is termed as V([v])9. Term class of sub-LCs
such that |V([©1)7]| = i as E'. Solution of this prob-
lem is done in the following steps: first we consider
single-event case ' and two-event case E2. The lat-
ter is used as a basic means to solve the general case
E>? by cancelling it to several E? sub-circuits.

Assume that before the re-computation begins
only event nodes have differences equal to 1. Con-
ditions of propositions 1.1,1.2 can be formulated in
terms of logic circuits as follows. Predicate mean-
ing that change of function in node v is not blocked
by the value of functional marking in its child w €
{1(12,1‘('0)} (Prop. 1.1) is: a(v,w) = (Fy = 0) .
Predicate determining whether functional markings
in both successors of the node are equal (Prop. 1.2)
is termed ¢(v) = (Fi) = Fy(v))-

3 Properties of event logic circuits
3.1 General properties of event nodes

The facts stated in this chapter provide a basement
for the generic algorithm of reductions in LCAs set
that eventually leads to the finding of difference of
the function.

Term two nodes vy, v2 € V as independent v; ~ vy
if (vy ¢ [v2])&(v2 € [v1]). Thus all nodes in V, are
mutually independent, and any set of event nodes, as
far as it is subset of V7, also holds this property. For a
pair of independent nodes a ~ b, there exist at least
one node ¢, such that @ € [¢] and b € [¢]. Such
a node with highest rank is called lowest common
ancestor (LCA) of the two nodes. That of a group W
of more than two mutually independent nodes can be
defined as a node £L(W) such that [L(W)] consists
of all nodes of W, whereas none of [1(L(W))] or
[r(L(W))] does.

From now on assume the set of event nodes N, =
V7 is sorted in ascending order. Relation of strict
order can be defined on the set of independent nodes
as follows:

Definition 1 a < b < a € [1(L(qa,b))] and b €
[1(L(a,?))1(Fig-2,a) a

Subcircuit rooted in £(N,) is a minimal one de-
pendent on all the changed variables. The following
theorem provides LCA’s major place in the event-
oriented algorithm of difference computation.

Theorem 3.1 Difference of a LC equals to difference
of L(N,).

The theorem implies a way of a difference compu-
tation - first to find LCA of set N, and difference in
it given the set of event nodes and marking of ELC.
To do that we use the following properties of LCA for
series of 2-3 event nodes.

Lemma 3.2 (b€[a])&(ce[b]) = (c€[a]).
Lemma 3.3 a<b<c=>[L(a,b)] C[L(a,c)].

Proof:Suppose that the opposite is true, i.e.: Ja <
b<c=> iﬁ(a,lg] D [L(a,c)]. It means that
¢ € [L(a,b)]. Since ¢ > & = Id = L(b,¢) :
c € [r(d)], and as & > a = b € [r(L(a,b)})]
(Fig.2,b). Set of [L(a, b)] nodes consists of £(a, b) U
V[l}ﬁ(a,b TUV[X(L(a,b)]. By the definition, (c €
[r(L(a,b)))&(c & [Y(L(a,b)]), so it can be con-
cluded that L{a,c) = L(a,b), since [1(L(a,b)] does
not contain ¢, [r(£(a,b)] does not contain a, but
L(a, b) contains both a and ¢. That does not agree
with the assumption made. |

Lemma 34 Va < b < ¢c €V = [L(a,d)] C
[L(b,c)1VIL(bc)]C[L(a,b)].

Proof:Statement of the previous lemma is equivalent
to: Va <b<ceV = [Lab)] = [L(a,e)]V

[£(a,6)] C[L(a,c)].
If [L(a,b)] = LC(a,c)] then lﬁ(b,c}] C
(L(a,0))] =

%(g’b]’c Pe(C fS"’) o br L(a b
e A& DTl 3] e st [)
El(ﬁ(a,c)], ‘since otherwise it wo true that

[L{a,b)] C [r(L(a,c)) &(c € [x(L(a,c))]), and
consequently [1(L(a,c oes not contain any of
a,b, ¢, implying that L(a, c) is not an LCA for a,c.
Secondly ¢ € [r(L(a,c))], and therefore L(a,c) =
L(b,c),1e. [L(bc)] C[L(a,b)] n

O ridat) Webe

W<4(a,b)) ¢

b)

L(a,b)

v=d(a,0,.0,)

Figure 2: Properties of LCA

Lemma 3.5 For an arbitrary triple of independent
nodes a < b < c it is valid that: Vd € [b] (a < d < ¢).

Proof:Prove a < d. Since (d € [ngco(b €
r(L(a,b))) = d € r(£L(a,d)). It is obvious that
L(a,b) = L(a,d), implying a < d. Similarly can be
proved d< ¢ u

The set of event N, nodes can be regarded as an
ordered set of independent nodes. Thus evaluation of
difference can be reduced to evaluation of difference
of this set, which, in turn, to the case of E? circuits by
structurizing the set of pairwise LCAs of event nodes.

Theorem 3.6 In an arbitrary ordered set of inde-
pendent nodes A = a; < ap < ... < a there ezist a
unique pair a;,ai41 € A : L(ai,ai41) = L(A).
Proof:1) Existence: Since [L{A)] = {%A)} U
V[r(L(A))]U V[lgL(A))] and L(A) # a;(Vi < k
(i.e. otherwise set of nodes would not be independent
then A € V[r(L(A))]UV[I(L(A))]. By the defini-
tionof LCAJi: 1< i< k:{a1,...,a} € [LL(A))]
and {aj41,...,a} € [r(£(A))](Fig. 2,c). Thus
(ai, a.-+J is the pair sought for. Really, £(a;, aj41) =
L(A) since a; ¢ [r(ﬁéA) Toaivr € [HL(ANT,
whereas both a;,ai4+1 € C(A).

2) Uniqueness: i'-n the ordered sequence A = a; <
az < ... < ay the pair (a;, aiy1) 1 L(ai, Gi41) = L(A)
is unique, as far as any other pair a;j,a;41at j < ¢
belongs to [1{L(A))], and therefore { L(aj, aj41)] C
[£(A)] =

Let My = {L(a;, ai41)li < k—1,0; € A} be the
set of LCAs for pairs of nodes with consequent in-
dices. This set contains k—1 elements and, according
to the latter theorem, includes £L(A).

Node v is called reacheable by a simple path from
node w:w — v, if we My, veMyUA, Jw,v]:
Vs €]w, v[=> s ¢ M,, i.e simple path does not include
any nodes of M4 except first and last ones.

Minimal double-event ELC is an ELC, root of
which is an LCA of its two event nodes. Let ME2
be designation of the class of such circuits. The fol-
lowing property of ME? circuits is valid:
Proposition 3.7 In the minimal double-event LC
Lf with event nodes a,b the root is reacheable from

th a and b by simple paths: ¢ — a,c — b.

The following theorem proves that in the set M4
for every node v there are exactly two nodes, from
which it is reacheable by a simple path.

Theorem 3.8 In an arbitrary ordered set of inde-
pendent event nodes A =a; <@y <...<ag, (k> 1)
it is valid that Ym € Ma(Fmy,ms € My U A :
(m1 = m)&(mg — m)).

3.2 ME? circuits
Since ME? circuit is explicitly defined by a pair of
two event nodes, denote it as a triple (v, €1, €3), where

v = L(ey, €2). The following property of ME? directly
follows from the definition of LCA.

Lemma 3.9 [w] € ME?> = [lw)] € E' and
[r(w)] €E.

Consider an [E! sub-circuit with event node v. Ac-
cording to the proposition 1.1, difference of its par-
ent is equal to 1 only if a(p(v),n(v)) = 1. The
same is valid for the parent of p(v) and so on up
to the root. Let ancestors of v form the list a; =
p(v),82 = p(al) = P(p(U)), -+ 1 08rank(v) = Vo. Node
a; at i < rank(v) and 8(a;) = 1,8(a;41) = 0 or just
9(a;) =1 at i = rank(w) is termed as D(v) - maximal
dependent ancestor (MDA for short) of node v. Note
that all nodes of the path v,ay,az, ... ,D(v) have the
same MDA.

Add the following descriptors to each node of
ELC: v.mda stores MDA, v.a; = a(,l(v)), v.0r =
a(v,r(v)) and v.c = £(v). Precomputation of MDA
in all nodes of ELC can be done in O(|V[) = O(N)
time.

For C = {v,wy,ws) € ME? the following oppor-
tunities exist:

1. MDA of the both nodes include children of the
root L{wy, wz);

2. MDA of either w; or wy includes a child of
L(wy, wa);

3. MDA of none nodes includes £(wy, ws).

ALGORITHM 1

function TRIG(w, w:, wz:node):

/1w = L{w,ws)

begin

case
R(wy, l(w)) and R(ws, r{w): return(w.e);
R(wy, l{w) and not R(ws,r(w): return(w.ar);
not R(w,l(w) and R(wz,r(w): return(w.a);
else return(0)

end;end.

Boolean;

To express relation between MDA and LCAs de-
note predicate ®(w,v) = [D(w)] 2 [v]. Then, if
R(wy, v) then 8(}(v)) = 1,1f mgwm v) then d(r(v)) =
1. Soin case 51) proposition 1.2 works, giving 0(v
v.€, in case (2) proposition 1.1 gives d(v) = v.oy or

Figure 3: Signal diagram of event o = (1, 5)

8(v) = v.a, and in case (3) 8(v) = 0, since (d(1(v)) =
0) and (8(r(v)) = 0). Thereby we’ve proven corec-
thness of algorithm TRIG(w, wi, wz:node), where
w ‘.:l: L(wy, ws), computing difference for two given
nodes.

3.3 Signal diagrams

Using the mapping ”reachability by a simple path”
m:MaUA — M, 1t is possible to construct a binary
tree with nodes from the set M4 UA C V and edges
corresponding to the mapping = - nodes that belong
to 7~ !(v) become children of node v in the tree. The

total number of nodes'is My} = 2k -1 = Oé'k)' :

The tree is refered to as a signal diagram (SD)
(9Ma, A,) at fixed ELC and given event o.

According to theorem 3.1 difference in the root
of signal diagram is equal to difference of the initial
ELC, so that interpretation of SD to find difference is
a way to find result of the function. Since size of SD
is of O(k) order rough estimation of the complexity
of the interpretation also appears to be of O(k) order,
that is quite attractive.

For example, outline signal diagram for event o =
(1, 5) in ELC considered above. There 3 event nodes
in the ELC and resulting SD is shown in figure 3.
If the difference had been found in O(3) worktime, it
would be quite different from time of the total formula
computation proportional to the size of whole ELC
that is 23 nodes.

The algorithm described further finds the differ-
ence in the root of SD given the set of event nodes
in O(k) time. It builds and processes signal diagram
corresponding to the event.

4 Bottom-up interpretation of event
logic circuits

4.1 Removal of pairs of minimal LCA

Therefore, the sought algorithm has the following ob-
Jectives: given a set of event nodes where differences
are equal to 1, it to find difference in the root. Ba-
sic step of the algorithm lies in finding of currently
minimal pair and removal it from N,. Let on this
step current signal diagram be S = (Mn_,Ng, 7).
There is at least one node in My, such that bot
its children belong to N,. Term the subset of all
such nodes as min(My,). Let v € min(Mn,) v =
L{wy, ws); wy, w2 € N,. Since [v] € ME? difference
in it can be found directly applying TRIG.

If the difference is 1 that means v can be consid-
ered as an event node instead of w,, ws which to be
excluded from N,. This procedure is called further as
reduction and lies in cancelling of C to C' = C\ [v]
and signal diagram S to §' = {Mu, \v, No\wy, wq U
v, 7). Thus the total number of nodes in the SD
decreases. Otherwise, if the difference in v is 0,

then the whole subtree rooted in v and containing
event nodes w;, ws as well can be excluded out of
consideration since events in w;, w; do not propa-
gate upper than v. In this case C' = C — [v],
S = {(Mn.\v,No\wi,ws, 7) and number of nodes
in the SD also decreases. Since SD shrinks at every
reduction, applying the above step until it consists
only of the root we eventually derive difference of the
function. The following criteria provides a way to find
a pair with mininal LCA in MMy, in order to expose
it to the reduction.

Theorem 4.1 (Criteria of minimality) 1. At
J = 1(£(a;, aj+1) € min(Mn,) &
[L(ay,a2)1 C [L(ez,a3)] (leftmost mini-
mum);

2. V1 < j < k—2(L(aj,aj41) € min(Mn,)) &
L(aj-1,a;)) [L(aj,a541)] c
[£(aj41,a542)] (intermediate minimum);

3. At j = k- 1(L(aj,8;41) € min(Mn,)) &
[£(aj, aj41)] C [L{a;-1,a;5)] (rightmost min-
imum);

Proof: The case (2) will be considered, as it
is the most complex. Necessity (L(aj,aj41) €
min(My,)) = [L(aj-1,0;)1 D [L(aj,a541)] C
[£(aj+1,8;+3)]) follows from the fact that by lemma
3.4 there ‘exist generally only two cases: either
[ﬁ(aj"haj)] c I'ﬁ(dj,ajq.l)] 01: rﬁ(“w—y“a)] -
[L(a;,a;41)]. But the first case is impossible since
L(aj, aj41) is minimal, therefore, by the definition, it
doesn’t include any element of M, . Applying simil-
lar reasoning to the pair L(aj,a;j41), £{@j41, @j42)
we conclude that [L(aj-1,85)] D [£L(aj,8j41)] C
fC(,f‘j+1,aj+2)]~
o

prove sufficiency [L(aj-1,85)1 D [L(aj,8j31)] C
[L(aj41,0542)] = (L(aj,8541) € min(Mn,)))
assume that [L(aj-1,6;)] D [L(aj,a541)] C
[L(aj41,a542)] is true, but there exist (ap,ap41) :
[L{ap,ap+1)] C [£L(aj,a;41)]. For instance con-
sider the case p > j. As far as [L(8j,a541)] C
[L(aj+1,a542)], then ajp0 & [L(aj,a;41)]. I
[L{ap, ap+1)] C [L(aj,aj41)] then by lemma 3.3
(aps8p41 < 8j32) > j<p<p+1<j+2=p=
Jj + 2. But this is impossible since [£(aj,a;41)] C
[L(aj41,8542)] u

Reduction of a single pair doesn’t disrupt non-

reduced nature of ELC. Similarly, set N, remains to
be a set of independent nodes like N,. The algo-
rithm of reduction relies on the number of properties
inherited to pairs of nodes satisfying to the criteria
of minimality. Some of them are formulated in the
following lemma:

Lemma 4.2 If v = L(aj,a;541) @ [L(aj-1,a5)] D
[v]C[L(aj+1,542) | then:

1. Either [L(aj-1,a;)] C [L{aj41,0a542)] or
[£(aj-1,85) 1D [L(aj41,9542) |;

2. Both L(aj41,v) = L(aj-1,a;) and L(v,a;42) =
L(aj41,8542);

3. (v~ aj1), (v~ aj42) and (aj_1 <v < 8j42);

P CON LY W
D

Figure 4: Rules of the removal

4- £(a;j-1,a542) =
max(L(a;j-1,8;), £(aj+1, 542));

Proof:

1. Since both the subtrees
[L(aj-1,85)], [£(a;41,a;42)] have common
subtree [L(a;,a;41)], one of them must con-
tain the other.

2. As o] c [L(ej-1,8)] = aj-1 €
[1(£(aj-1,0))] and v € [r(L{aj-1,95))]
None of [1(£(aj~1, a5))], [r(L(aj-1, a;))] con-
tains both a@;.; and v, hence L(aj-1,v) =
L(aj-1,5)-

3. The fact v ~ a;-; and v ~ aj,o trivially
follows from that a;_; ¢ [L(aj,a;41)] and
aj4+2 € [L(aj,a541)] as [L(aj-1,85)] D v C
[L{aj4+1,a;42)] Let us prove that a,-..l <
v < aj43. In (2) it is proven that a;_; €
[(L(aj-1,:))] and v € [r(Claz-1,)],
therefore a;_1 < v. Similarly v < a;13.

4. Assume for deter-
minacy that [C(a,+1,a1+2)] C [L(aj-1,a5)]
Then aj_; € [L(aj-1,6;)]. Node aj2 €
[£(aj-1,a;)], but aj42 & [1(L(a;j-1,05))],
since otherwise it would be [L(a;,aj41)] C
[Llaj+1:0542)] C [UL(aj-1,05))] =
aj-1,85 € [1(L(aj-1,0;))] C [L(aj-y,a5)].
Therefore a;42 € [r(L(a;-1,a;))] that implies
L£(aj-1,a542) = L(aj-1,05) -

The reduction algorithm computes difference
(TRIG) in v = £(a, b) and if it is not zero, returns v
as a node which substitutes reduced a,b. Otherwise
it lc';eturns NIL, i.e. nothing substitutes two reduced
nodes.

ALGORITHM 2

function Reduce(a,b:
begin
v =L(a,b);
if TRIG(v,a,b)=1 then return(v)
else return(NIL);
end;

node) :node;

When aplied to pair aj,a;41 the algorithm de-
cides whether the pair to be deleted from N,
completely, or it to be substituted by its LCA.

If TRIG(L(a 1, LCA substi-
tutes aj, and aji1 to be deleted from N,. By
lemma 4.2(2,3), for node v it is true that: a;_; <
v < 42, le N, = N,\{aj,aj51} U v re
mains to be a set of mutua.lly m&:ependent nodes,
while the set My C My, since L(aj-1,v) =
E(a_, 1,0;) and L(v,8542) = C(a,+1,a,+2)(Figure
4,b). Otherwise, i.e. TRIG(L(aj,aj+1),85,a541) =
0, pair aj,a;41 to be deleted fg'om N, imt noth-
ing is added instead. New pair (a;-1, i42) emerges.
However it does not lead to increasing number of

DMy elements since(lemma 4.2(4)) L(aj-1,a542) =

max{£(aj-1,5),£(a541, aj42)).
4.2 Generic algorithm of difference
computation

Generic algorithm DownUp cuts leaves of the SD in
order to find difference of an ELC and consists of
two steps. At the first step N, is transformed to
the state, when it is ordered in descending order of
pairwise LCAs (i.e. [L{aj—1,a;)] D [L(as,ai4+1) 1),
reducing some nodes.

ALGORITHM 3

» @541}y a]’aJ'H)

procedure DownUp;
ST:atack;
a,b,v:inode;
with ST begin
//Part I - form the ordered stack
push(N,[1]1);
for i=2 to k do
if [u.top] is empty then push(N.[il);
else if [L([top], No{i])] D [£L([u.top], [top])]
then begin
repeat
pop(a);
pop(b);
v=Reduce(a,b);
if u# NIL then push(v);
until ([u.top] is empty) or
([£([top], No[d])] € [£([xs.op), [top])
push(N[i]);
end;
else push(N,[i));
//Part II - reduce from the ordered stack
while ([u.top] is not empty) do begin
pop(a);
pop(b);
v=Reduce(a,b);
if v 3# NIL then push(v);
end;
if [top] is empty then A =0 else A=1
end.

Stack is used to store already processed ordered
part of My, . After all the array N, is processed, the

Figure 5: Reduction of stack

pairs to be exposed to the reduction procedure from
the top of stack until it becomes empty. At this,
pair on the top always complies with part (3) of the
criteria. Initially, first pair a;, a3 is placed into the
stack with two top elements accessible: ST{top) and
ST{u.top]. On the (i — 2)-th step of the computation
current candidate on addiding to the stack is a;. If
[L(ST[u.tep], STltop]) | D [L(STtop], &)], then a;
1s just added to the stack, otherwise as many nodes to
be reduced from the top of stack that the latter con-
dition becomes true. Clearly, reduced pairs satisfy to
either part(1) or (2?‘ of the criteria because they are
minimal in the stack and less than [£(ST[top], a;)].
If MDAs have been precomputed for every node, on-
line complexity of the algorithm could be estimated
by a number of reductions that is O(k,) = O(k). On-
line computation of k LCAs, according to (1], is com-
pleted in kO(1) = O(k) at O(N) preprocessing.

5 Root-to-bottom interpretation of
LCs

The algorithm of down-up interpretation proposed
above doesn’t require preliminary construction of a
signal diagram. Getting started from the set of in-
dependent event nodes and finding along the work
their LCAs, the algorithm at the same time builds
and traces the signal diagram. But computing time
of the algorithm 1s O(k) at any combination of input
variables and pre-computed values of v.F and v.mda
for each node (as it will be shown further).

The alternative approach of recursive up-down
traverse requires preliminary construction of the sig-
nal diagram using 2 additional pointers 1,4, r54 which
to be added to each node of the initial ELC. Then,
difference in the root is computed as a recursive func-
tion of differences in its successors in the SD, and so
on until the terminal nodes are reached, switch of
which is equal to 1. It seems that all nodes of the
SD to be passed if doing this way. However it is not
necessary.

Consider node v of ELC and its children
m(v) = {v.l,4,v.xr,4}. Denote predicate Ra(w,v) =
R(w, v) A 8(w . Clearly difference 1n A(v)
can be derived recursively in a way simillar to
Alg.3.2: 8(v) = (Ra(v.l,a,l(v)) A R (v.rsq,r(v)) A
v.e) V (Ra(vdig, 1(v)) A Ra(vr,a, v(0)) A vay) V
(Ra(v.leg, 1(v)) A ﬁ‘t,\gv.r,d,r(v)) Avay). As it is
clear from the formula, recursive computation of A
in v.144, v.7r,4 to be performed only if R(v.L4,v) =
1{%(v.r;4,v) = 1). So that recursion in some nodes
to be terminated and all the subtrees rooted in it to
be excluded out of the part of SD to be processed.

Given an SD, let count the mean number of SD
nodes to be passed. There two random factors that
cause utility of probabilistic estimations: values of

inputs and formula structure. Arbitrary choice of the
structure means that a gate with equal possibility can
be of and or or type. First, consider a ME? 1LC
rooted in v with event nodes w;,w;. Clearly that
probability of D(w;) D [v] is dependent on distance
between v and w;. (The same, of course, is valid for
wy t00).

Let)p(v),q(v) = 1 - p(v) be the probabilities of
that the input variable 9(v), associated with v, is
in condition 1 or 0 respectively in state X. Con-
sider path [w; = wo,uy,...,u;m = 1(v)]. In a ran-
dom E' LCA, which [1{»)] certainly is, probability
of that D(w;) = uiys can be recursively expressed
as Piy1 = (3p(n(w)) + 3(1 - p(n(w)))Ps = LB
Thus P; does not depend on probability distribution
of input variable values and is equal 2%,, if distance

between event node w; and root of ME? circuit i
m+ 1.

In a node v distances d; = h[)v,v.l,d]l, d,
|[v,2.x54])] are used to find probabilities of p
P(R(v.ly4,v) = 1) = g and p, = P(R(v.r,q,7)
1) = 3%-). Let e(v) be the mean value of the num-
ber of passed nodes in up-down trace of SD rooted in
v. The following theorem connects value of e(v) with
corresponding characteristics of succeeding subtrees.

Theorem 5.1 e(v) = 1+ pre(1{v)) + pre(r(v)).

The theorem is a key to find estimation of the .
average number of nodes to be passed in the top-down
recursive traverse at random input.

!

W

6 Application of preliminary
inter-event computations and
parallelization

Event-oriented nature of control systems enables to
use time intervals between events to carry out cer-
tain preliminary computations (pre-computations) in
order to accelerate response on coming event.

One of most important
parameters, pre-computation of which brings essen-
tial benefit, 1s MDA of a node. For all nodes of LC
it can be done in O(N) steps. Having known val-
ues of MDA, the predicate 2(w, v) can be computed
in constant time for an arbitrary pair of nodes (w,).
They also can be pre-computed for all the ancestors of
the node at use of additional memory of O(N log N)
size. Pre-computed values of markings: v.a,, vy,
v.£ reduce on-line computations in algorithm of node
processing to check of 2-5 binary variables, providing
total complexity of < 5s, where 3 is a number of steps
in the algorithm. Amount of pre-computations is pro-
portional to number of nodes in the LC i.e. is O(N).
Results illustrating influence of pre-computations on
efficiency of algorithms are presented in the table 5.

Alg. 4.2 Alg. 4.2 with EDD traverse
. precomputations from [10]
On-line speed O(klog V) O(k) O(k)
Memory O(N) O(Nlog N) o(N2Y)
Pre-computations - O(N) O(N2™)

Figure 6: Comparison of EDD traverse and event computations in logic circuits

Parallelization also can be used to improve speed
as in off-line as well as in on-line computations. It
is possible to find all k¥ LCAs simultaneously, as well
as for every search use parallel algorithms from [1],
[3]. Besides, it is possible to process nodes of eac
layer min(Mx,), which are candidates to be reduced,
independently and, hence, simultaneously.

7 Conclusion

New approach to event-driven Boolean computations
has been proposed in the paper. It uses presenta-
tion of the computed formula as logic circuit that is
more compact than binary decision diagrams known
as those can be processed of most speed. It has been
proven that in event-driven computations proposed
data structure can be traversed as fast as the BDDs.
However, memory and that is most important recom-
putation demand of the circuits in order to provide
equally fast on-line responce is conciderably lower (re-
quired memory depends on number of input variables
linearly rather than exponentially as it is shown in ta-
ble in Fig.5).
Contribution of the paper is in the following:

¢ Problem of event-driven computation has been
solved for the general case of arbitrary number
of triggered inputs and arbitrary number of en-
tries of each input into the formula.

o It has been proven that algorithm of down -
up traverse of logic circuits provides on-line re-
sponce in the same order of time as the best
event-oriented algorithms using BDDs do at
much more expences of memory and precom-
putation.

o It has been shown that straighforward recursive
top-down interpretation of the logic circuits also
can be beneficial in a view of better probabilistic
estimations.

Both the down-up and top-down algorithms can
benefit on parallel computations, that opens the
way of effective application of parallel and dis-
tributed architectures in the logic control.

However, the developed algorithms inherit ma-
jor drawbacks of the event-driven computations, the
most serious of those is that they do not improve the
worst case since some precomputations are always re-
quired. Nevertheless they can be applied under as-
sumption about reasonable interval between subse-
quent events. As for the continuation of this work,
since the data structure that unify logic circuits and
decision diagrams has been proposed recently in [4],
we plan to generalize our approaches to event-driven
computation of the both into the homogeneous algo-
rithm.

References

[1] Sheiber B. and Vishkin U. On finding lowest
common ancestors: Simplification and paralleza-
tion. SIAM J.Comput., 17(6):1253-1262, 1988.

[2] C.Y.Lee. Representation of switching circuits by
binary-decision programs. * Bell. Syst. Tech. J,
6:985-999, 1959. ‘

[3] E.Schenk. Parallel dynamic lowest common an-
cestors. SWAT ’94. 4th Scandinavian Workshop
on Algorithm Theory. Proceedings, pages 302-13,
1994,

[4] Andersen H.R. and Hulgaard H. Boolean expres-
sion diagrams. In Proc. of LICS’97, 1997.

[5] Davio M., J.-P.Dechamps, and A.Thayse. Dis-
crete and Switching Functions. McGraw-Hill,
New. York, 1978.

[6] Akers S.B. On a theory of boolean functions.
SIAM Journal, 7(4):487-498, 1959.

[7) John T.Welch. The clause counter map:
An event chaining algorithm for online pro-
grammable logic. JEEE Trans. on Robotics and
Automation, 2, 1995.

[8] V.Viatkin, K.Nakano, and T.Hayashi. Evalua-
tion of logic expressions based on event-oriented
interpretation of marked functional diagrams. In
Proc. of 95th international conference of Society
for instrumentation and control engineering of
Japan, pages 1243-1248. SICE, 1996.

V.Viatkin, K.Nakano, and T.Hayashi. Logic
evaluations as processing of queries using binary
decision diagrams. IPSJ SIG Notes, 96-89:31-38,
1996.

[10] V.Viatkin, K.Nakano, and T.Hayashi. Opti-
mized processing of complex events in discrete
control systems using binary decision diagrams.
In Proc. of International workshop on algorithms
and architectures in real-time control, pages 445—
450. IFAC, 1997.

[11] V.Viatkin, N.Ishii, and T.Hayashi. Event ori-
ented evaluations of binary decision diagrams.
In Proc. of International workshop on discrete
event systems, pages 374-379, Edinburgh, 1996.
IEE. ‘

[9

—

