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Abstract

It is known that the degree of sequential diagnosability for an n-dimensional grid with N vertices
is at least Q(N™/("t1)) and the degree of sequential diagnosability for an N-vertez hypercube
is at least Q(N loglog N/log N). This paper shows that the degree of sequential diagnosability
for an n-dimensional grid with N vertices is at most O(N"/("'H)) and the degree of sequential
dzagnosabzlzty for an N-vertex hypercube is at most O(N loglog N//Tog N).
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1 Introduction

The system: diagnosis has been extensively studied in
the literature in connection with fault-tolerant multi-
processor computer systems. An original graph-theo-
retical model for system diagnosis was introduced in a
classic paper by Preparata, Metze, and Chien [6]. In
‘this model, the testing assignment is represented by
a digraph (directed graph) associated with the inter-
connection graph of the system. The model assumes
that the processors can test each .other along available
communication links. A testing processor evaluates a
tested processor as fault-free or faulty. The evaluation
is reliable if and only if the testing processor is fault-
free. A syndrome is a collection of test results. The
model also assumes that the number of faulty proces-
sors is bounded.

Two strategles for the dlagnosw were introduced
and discussed in [6]. A system is said to be one-step
t-diagnosable if all faulty processors can be identified
uniquely from any syndrome provided that the num-
ber of faulty processors does not exceed ¢. A system
is said to be sequentially ¢-diagnosable if at least one
faulty processor can be identified from any syndrome
provided that the number of faulty processors does not
exceed t. The degree of one-step [sequential] diagnos-
ability of a system is the maximal ¢ such that the sys-
tem is one-step [sequentially] t-diagnosable. A charac-
terization of one-step t-diagnosable systems by Hakimi
and Amin [2] implies that the degree of one-step diag-

- nosability of any system is bounded by the minimum
degree of a vertex in its interconnection graph. On the
other hand, it is known that the degree of sequential
diagnosability of a system is significantly larger. ‘In
particular, Khanna and Fuchs proved that the degree
of sequential diagnosability of any system with N ver-

tices is at least (/N) [5]. Unfortunately, computing -

the degree of sequential diagnosability of a system is
co-NP hard as proved by Raghavan and Tripathi [7].

The grid and hypercube are popular interconnec--

tion graphs for multiprocessor computer systems. The
sequential diagnosis for hypercubes was first consid-
ered by Kavianpour and Kim [3]. They proved that
the degree of sequential diagnosability for an N-vertex
hypercube is at least Q(v/NTogN) [3]. Khanna and
Fuchs also showed the same lower bound by giving a
linear time algorithm for sequential diagnosis for hy-
percubes [4]. Furthermore, they showed that the de-
gree of sequentlal diagnosability for an N-vertex hy-
percube is at least Q(N loglog N/log N) [5]. In the
same paper [5], they proved that the degree of sequen-
tial diagnosability for an n-dimensional grid with N
vertices is at least Q(N™/(n+1),

The purpose of the paper is to give a tight upper
bound on the degree of sequential diagnosability for
grids and a nearly tight upper bound on the degree of
sequential diagnosability for hypercubes. More pre-

cisely, we prove that the degree of sequential diag-
nosability for an n-dimensional grid with N vertices
is at most O(N™/("+1)) and the degree of sequential
diagnosability for an .N-vertex hypercube is at most
O(N loglog N/+/Tog N). These are the first nontrivial
upper bounds for the degree of sequential diagnosabil-
ity of systems, to the best-of our knowledge.

2 Sequential Diagnosis
The interconnection network of a multiprocessor com-

puter system is modeled by a graph, called an inter-
connection graph, with the processors represented by

_ the vertices of the graph and the communication links

by the edges. The testing assignment in the system is
modeled by a digraph, called a testing digraph, with
the processors represented by the vertices of the di-
graph and the tests by the arcs (directed edges). If
(z,y) is an arc of the testing digraph then the proces-
sor z tests processor y. A test is performed along an
edge of the interconnection graph.

We denote the vertex set and edge set of a graph G
by V(G) and E(G), respectively. We also denote the
vertex set and arc set of a digraph D by V(D) and
A(D), respectively. The associated digraph D(G) of a
graph G is the digraph obtained when each edge e of
G is replaced by two oppositely oriented arcs with the
same ends as e.

Let D be a testing digraph of a system. A syn-
drome for D is a mapping o : A(D) — {0,1} defined
as follows:

o{z,p) = 0 if z tests y with outcome pass
4 1 if  tests y with outcome fail,

where we denote o((z,y)) simply by o(z,y). A set
F C V(D) is said to be a consistent fault set for a
syndrome o if neither i) nor ii) below holds:

i) o(z,y) =0 wherez€ V(D) F andy€F,
ii) ¢(z,y)=1 where z,y € V(D) F.

For any syndrome o for D and positive integer ¢, define

F(o,t) = {F|F CV(D)is a consistent fault set

for o and |F| < t}.

A syndrome o is said to be in a t-fault situation if
F(o,t) # 0. D is said to be sequentially t-diagnosable
if ({F|F € F(o,t)} # 0 for any syndrome ¢ for D in
a t-fault situation. The degree of sequential diagnos-
ability for D, denoted by 6(D), is the largest integer ¢
for which D is sequentially ¢-diagnosable.

The degree of sequential diagnosability for various
systems are consxdered‘/_i . In particular, it is shown
in [5] that §(D) N) if D is the associated di-
graph of an N-vertex graph and §(D) = Q(v/N) if D



is the associated digraph of an N-vertex graph with
bounded vertex-degree.
An n-dimensional m-sided grid G,(m) is a graph

with N = m" vertices defined as follows:
. V(gﬂ(m)) = {0’11"'am_1}nv
E(gn(m)) = {((z;,---,zn), (yl:':yn))l(aJ)

(lz5 = 9j1 = 1], (¥ # 5)[z: = wl}-

An n-dimensional m-sided torus 7, (m) is a graph with
N = m" vertices defined as follows:

V(Tﬂ(m)) = {0:1)"'7m_ l}n:
E(T;-.(m)) = {((xlr"'!zﬂ)!(yh"'lyn))l
(3llz; - yjl=1orm-1],

(Vi # )zi = wil}.
An n-dimensional cube H,, is a graph with N = 27
vertices defined as follows:
V(Ha) {0,1}",
E(Hn) {(=, W)=,y € V(Hn), dr(=,9) = 1},

where dg (2, y) denotes the Hamming distance between
« and y. The following lower bounds can be found in
the literature.

Theorem I [5] §(D(Gn(m))) =

(Nn/(n+1)).'
Corollary II [5] §(D(T,(m))) = @ (N™/(+1),
. _ ey NloglogN
Theorem III [5] §(D(H,)) = Q(————----——log 0 ).

The purpose of this paper is to show the following
upper bounds.

Theorem 1 §(D(T,(m))) = O (N"/(n+1)),

Nloglog N

Theorem 2 §(D(H,)) = O(——=— Jloa ¥

power of 2.

Yifnisa

The following corollary is a direct consequence of
Corollary II and Theorem 1.

Corollary 3 §(D(Zn(m))) =© (Nn/(n+1))_

We also have the following corollary from Theorem
I and Theorem 1.

Corollary 4 §(D(Gn(m))) =0 (Nn/(n-{-l)).
Theorems 1'and 2 are proved in Sections 3 and 4,

respectively.

3 Proof of Theorem 1

We prove the theorem by showing that there exist
an integer t = O(N™/("*+1)) and a syndrome oy for
D(7n(m)) such that (M{F|F € F(og,t) # 0} = 0.

3.1 Partition of V(D(T.(m)))

Let W be an integer such that ¥|m, and p = m/¥.
For each t € {0,--+, ¥ — 1}, define P(t) and Q(%) as

follows:
P@E) = {zlz € V(D(Tu(m))),(Vi)[|z:/p) = t:
and 1< z; mod p<p-2]},
QM) = {=zlz € V(D(Tn(m))), (Vi)[lz:/p) = t:]

and (37)[z; mod p =0 or p— 1]},

where we denote the ith component of a vector v by
v,-. It is easy to see that (P((O,-n,O)),--',P((‘I’ -

S ¥=-1)),(Q((0,--+,0)), -+, Q¥ ~1,- -, ¥~1))’
Ls a partxtxon of V(D(T, (m))) Let P = Ut P(t) and

Q=U: Q)

3.2 Syndrome and Fault Sets
The syndrome oy for D(7,(m)) is defined as follows:

o i 1. =,y € P(t) for some t, or
ou(z,y) = ‘ 2.2,y € Q(¢) for some ¢,
1

otherwise.
We define W™ fault sets as follows:
F)=P#)u(Q-Q@#)(te{0,--, ¥ - 1}").
We prove Theorem 1 by showing the following claims.

Claim 1 For anyt € {0,---,¥ — 1}*, F(t) is a con-
ststent fault set for oy.

¥ -1 F(t)=
Claim 3 Foranyt € {0,---,% —1}",
IF(t)| = 0 (N"/("*’”) .

Claim 2 nte{O,--~,

3.3 Proof of Claim 1

We will prove the claim by showing that neither i) nor
ii) below holds for any ¢ € {0, .- -, ¥~ 1}*:

i) og(®,y) = 0 where z € V(D(T,(m))) — F(¢)
and y € F(¢),
if) - og(=,y) = 1 where z,y € V(D(Tn(m))) — F(£).

Let F(t) be a fault set. Let @ € V(D(T,(m))) - F(t)
and (z,y) € A(D(T(m))).
Case 1 = € P(t') for some ¢’ # t : The vertices
adjacent to x are contained in P(#') U Q(¢').
Case 1.1y € F(t) : y € Q(¥) and so og(z,y) =
1. ‘ .
Case 1.2 y € V(D(Tn(m)))—F(t) : y € P(¥') and
so og(z,y) =0.
- Case 2 z € Q(t) : The vertices adjacent to = are
contained in P(t) U Q.
Case 2.1y € F(f): y ¢ Q(t) and so og(=z,y) = 1,
Case 2.2 y € V(D(Tn(m)))— F(t) : y € Q(t) and
so og(x,y) = 0.
Thus, neither i) nor ii) holds for any arc (z,y).



3.4 Proof of Claim 2

The claim follows from the fact that Q(t) N F(¢) =
for any ¢ and P(¢) N F(#') = @ for any distinct ¢ and
t.

3.5 Proof of Claim 3

PO < Izl € V(DT (m), (F)lei/p] =t}
m n
O
Q] = H=le € V(D(T(m),
(39)[z: mod p=0or p— 1]}
n ¥-1
< 3 Y (ale = ol +
i=1 j=0
Hales = G+ 1o - 13
= 2n¥m" L.
Thus, )
IF(&) = [PU(Q-Q@)I<IPH)UQ]

(%)n + 2n¥m™-t,

If we choose ¥ = (m/n)1/("*+1) we have

IF@t) < m" (%)“/("H) +2n (%)1/(,"“) mn-1

= o(n/en).

4 Proof of Theorem 2

We prove the theorem by showing that if n is a power
of 2 then there exist a syndrome ¢ for D(H,) and an
integer t such that:

t = O(N loglog N/+/log N), and

(FIF € F(og,t) # 0} =0.

4.1 Partition of V(D(H,))

Let .k be a non-negative integer. - bin(k, m) is the m-
bit. binary representation of k, and bin(k,m, 1) is the
ith least significant bit of bin(k,m)(0 < k < 2™ —
1,1.< i < m). i 2 = bin(k,m) then we denote k =
dec(z). Let ¥ be an integer such that 1 < ¥ < n,
and @ = 2¥+!. A sequence of n w’s is denoted by w”
(w € {0,1}). The concatination of binary strings «
and y is denoted by @ - y. For an integer a such that
1 <a < ¥+1, r(a) is a binary string of length »
defined as follows:
r(a) { @2y i
S ifa=¥4+1.

We consider r(a) as a vertex of D(H,) in a natural
way. Define pa(x) and g¢.() as follows:

0 if0<dy(z,r(a))<n/2-2
pa(2)=< 1 ifn/2+2<dg(=,r(a))<n
-1 ifn/2-1<dp(z,7(a)) <n/2+1,
0 if0<dy(e,r(a)) <nf2-1
fn/2+1<dy(z,r(a)) <n
-1 if dg(z,r(a)) = n/2.

It should be noted that if pa(z) € {0,1} then go(z) =
Pa(x) by definition.

For an integer b such that 0 < b < ® — 1, define
subsets P(b), Q(b), and R(b) of V(D(M.,)) as follows:

P(b) = {=|(Va)lpa(z) €{0,1}],
dec(pg+1(z) - pi(z)) = b},

Q) = {=|(3a)pw(2) = —1],(Ya)lga(=) € {0,1}],
dec(gu+1(2) -~ - q1(z)) = b},

R(b) = {z|(3a)lga(2) = —1], (=) = b},

where T'(z) is the decimal representation of the most
significant ¥ + 1 bits of 2. Define P = |, P(b) Q=
Ub Q(b), and R =, R(3).

- (P(0)3 ' ,P(@— 1)’Q(0)) -~-,Q(¢—
R(® — 1)) is a partition of V(D(H,)).

We will prove the lemma by showing the

Lemmal Il =
1), R(0),---,

Proof :
following:

i) for any distinct blocks U and U’ of II,
unt’' =0
i) PUQUR = V(D(Hn)).

Proof of i) : First of all, observe that PN Q = QN
R=RNP = 0 by definition. We will show that
P(b) N P(b') = 0 for any distinct b and ¥’ (0 < 5,4 <
®—1). Assume contrary that P(b)NP(b') # & for some
distinct b and b’. There exists a such that bin(b, ¥ +
1,a) # bin(b’, ¥ +1,a). Suppose without loss of gener-
ality that bin{b, ¥ +1,a) = 0 and bin(}’, ¥ +1,a) = 1.
Let 2 € P(b) N P(b’) Since # €. P(b), we have
pa() = 0 and dy(z,7(a)) < n/2— 2. However, since
x € P(¥), we also have p,(z) = 1 and dg(z,r(a)) >
n/2 + 2, a contradiction. Thus, P(3) N P(¥') = @ for
any distinct b and . Similarly, it can be shown that
Q(B) N Q(b’) =0 for any distinct b and ¥’ It is easy to
see that R(b) N R(b") = B for any distinct b and ¥'.

Proof of ii) : Suppose ® € V(D(H,)). For any a
such that 1 < a < ¥+1, we have 0 < dy (2, r(a)) < n.
If dg(x,7(a)) = n/2 for some a then gz(x) = —1, and
so & € R(b) for b with T(x) = b. If dy(x,7(a)) # n/2
for any a and dg(=z,7(a’)) =n/221 for some a’ then
ga(x) € {0,1} and par(z) = ~1, and'so = € Q(b)
for b with dec(gg41(2) - - -q1(2)) = b. I dy(z,7(a)) ¢
{n/2,n/241} for any a then p,(x) € {0,1}, andsoz €
P(b) for b with dec(py41(z) - pi(2)) = b. Thus, we
conclude that if z € V(D(Hy)) then x € P.U QUR
and we have V(D(H,)) =PUQ UR. 1




4.2 Syndrome and Fault Sets
The syndiom‘e og for D(H,) is defined as follows:

oa(z,y)=
1. ®,y € P(b) for some b,
0 if { 2.z€Q(b) and y € R(b) for some b, or
3.2 € R(b) and y € Q(b) for some b,
1  otherwise.
We define @ fault sets as follows:

F(b) = P())U(Q—Q(b))U(R—-R(})0<b< &—1).

We prove Theorem 2 by showing the followiﬁg claims.

Claim 4 For any b(0 < b < ® — 1), F(b) 15 a consis-
tent fault set for os.

N Fo)=

0<b<E-1

Claim 5

Nloglog N

Jlog N Yforany b (0<b<

Claim 6 |F(b)| = 0(—=2=—=—
-1).

4.3 Proof of Claim 4

Before proving the claim, we need a couple of lemmas.

Lemma 2 For any adjacent vertices x,y € V(D(Hn)),
1l ifreQtheny g Q.
2 ifreR theny ¢ R.

Proof : We will show 1. Assume contrary that
@,y € Q. Then, there exist ¢ and a’ such that p,(z) #
-1,qs(2) = —1,pa(y) # —1, and go'(y) = —1. We
also have that dg (2, r(a)) = n/2+1 and dy(y, 7(d')) =
n/2x1. Since dg (r(a), r(¥+1)), dg (r(¥+1),7(a’)) =
'n/2 or 0, we conclude that dg (z, r(a))+du(r(a), »(¥+
1)) +du(r(¥ +1),7(a')) + du(r(a’), y) is even. How-
ever, since # and y are adjacent, dg(=,y) = 1, which
is.odd, a contradiction.

We can show 2 by a similar argument. |

Lemma 3 Forany b(0 < b < ®—1),
1. The vertices adjacent to ¢ € P(b) are contained
in P(b) UQ(d).
2. The vertices adjacent to © € Q(b) are contained
in P(b)UR.
3. The vertices atijacent to # € R(b) are contained
in Q.

Proof : We will show 1. Let = € P(b) and y bea
vertex adjacent to . Then |dy (y, r(a))~dg(x, 7(a))]
= 1for any a. If ps(z) = 0 then 0 < dy(=z,r(a)) <
n/2 — 2. Thus we have 0 < dy(y,r(a)) < n/2 -1,

and so gq4(y) = If pa(x) = 1 then n/2 +2 <
dg(x,7(a)) < n. Thus we have n/2+1 < dg(y, r(a)) <
n, and 80 g,(y) = 1. Thus we conclude that g,(y) =
pa(x) for any a and so dec(qu+1(y) - q1(w)) = b. If
there exists a’ such that dg(y,r(a’)) = n/2+ 1 then
Y € Q(b). Otherwise, p.(y) = ¢.(y) for any a, and so
y € P(b).

2 and 3 follow from I and Lemma 2. 1

We will prove Claim 4 by showing that neither i)
nor ii) below holds for any :

i) oe(=,y) =0 where = € V(D(H,)) — F(b) and
yEF(),
i) os(x,y) =1 where z,y € V(D(H,)) — F(b).

Let F(b) be a fault set. Let & € V(D(H,,)) — F(b) and
(2,9) € A(D(H,)).

Case 1 z € P(V') for some b’ # b : From Lemma
3, the vertices adjacent to = are contained in P(d") U
Q).

Case 1.1y € F(b) : y € Q(V) and so cs(z,y) =
L

Case 1.2 y € V(D(Ha)) -
so og(z,y) = 0.

Case 2 z € Q(b) : From Lemma 3, the vertices
adjacent to  are contained in P(b) UR. .

Case 2.1y € F(b): y € R(b) and so 0g(z,y) = 1,

Case 2.2 y € V(D(H,)) — F(b) : y € R(b) and so
O'Q(SB,y) =0.

Case 3 x € R(b) : From Lemma 3, the vertices
adjacent to = are contained in Q.

Case 3.1y € F(b): y ¢ Q(b) and so sa(z,y) = 1,

Case 3. 2 y € V(D(H,)) ~ F(b) : y € Q(b) and so
o8(2,y) =

Thus, nexther i) nor ii) holds for any arc (z,y).

F(b) : y € P(t) and

4.4 Proof of Claim 5

The claim follows from the fact that Q(b) N F(b) =
R(b)NF(b) = 0 for any b and P(b)N F(b’) = 0 for any
distinct b and &'.

4.5 Proof of Claim 6

We will prove the claim by a series of lemmas.
n
Lemma 4 |Q]| < 2(‘Il+1)( n/2-1 >
Proof :
12l

|z |(3a)dn(e,7(a)) = n/2: 1]}
< Hel(Ea)dn(e,r(a)) = n/2— 1}

+{z|(3a)[du(=,r(a) = n/2 + 1]}
¥4l

< Y (H=ldn(s, v(i)) = n/2~1}|

i=1



+{=ldu(=,7(i)) =n/2+1}])
¥+1
22 ( n/2—1 )

2(\Ir+1)( n/;ﬂl).

]

1]

1
Lemma 5 |R| < (¥ +1) ( .n1;2 )
;IA’roof:
R = H{=|(30)[dr(z,7(a)) =n/2]}|
T+t
< 3 Haldu(=,r(@) = n/2}|
i=1 .
"o
= % (me)
= (\1:+1)( n’/‘2 )
’ i
Lemma 6 For any band ¥ (0 < b,V < @& - 1)
1P(B)| = |P®)].
Proof : For any integers -k and a (0 < k < 2¥ —

1,1 € a < ¥), let ex(k,a) denote the integer such
that bin(ex(k,a),¥) and bin(k, ¥) differ just in the
ath least significant bit. It should be noted that b =

ex(ex(b a),a).

We prove the lemma by showing the following.

Claim 7 |P(b)| = |P(ez(d,a))| for any b and a (0 <
b<®-11<a<¥+1).

Proof of Claim 7 : .Before proving the claim,
we need some prehrmnanes For any =z, let &, =
(Tnj2¥x(ui+1)—1 " Tn/2¥xu) be an n/2‘l'-b1t substring
of ®. For any distinct a and a'(1 < a,a' < ¥) and
w,w’ € {0,1}, let

Wawarw'(®) = Z{@H(d;)lbin(u,\ll,a) = w ana
bin(u, ¥,d’) = v'}, ‘
Wau(2) = S {wn(=y)bin(y, ¥,0) = w}

1]

Wawa’l(w) + Wawa’o(z)y
where wgr (e, ) denotes the Hamming weight of z,,. For
any ¢ and a (1 <a < W), let

ea(T) = Tex(2%-1,a) - Tex(2%-2,a) "' Tex(0,a):

1t should be noted that e, is a one-to-one mapping and
that W, (eq(2)) = Wao(z) and Wao(ea(2)) = War(z)
foranya (1<a<W¥).

Claim 8 For anya end u 1 < ¢ £ ¥, 0 < u <
2% 1), r(a), = 1"/2" if and only if bin(u,¥,a) =0

Proof of Claim 8: By the definition of r(a), it is
easy to see that if bin{u, ¥, a) = 1 then r(a), = oz
and if bin(u, ¥,a) = 0 then r(a), = 1"/7".

Claim 9 For any « and a(1 <a < ¥4 1),

1. if1 <a < ¥ thendy(e, r(a)) Wai(z)+(n/2—
Wao(=))-

2. ifa = ¥ +1 then dy(z,7(a)) = War(z) +
Waro(=) for any a'(1 < o' < ).

Proof of Claim 9 : (Proof of 1) Suppose 1 <
a < ¥. By the definition of W, (¢) and Claim 8, we
have

du(=,7(a))
Y {da(@,m(a)a)bin(u, ¥,0) = 1)
+ 3" {du(®u, 7(a)u)lbin(u, ¥, a) = 0}
3 {dn(@y,07/*")|bin(u, ¥,0) = 1}
'+ 3" {da (@, 177" |bin(u, ¥, a) = 0}
3 {wr(za)lbin(u, ¥,a) = 1}
+(n/2 = 3 {w(zy)bin(u, ¥,a) = 0})
Wai(z) + (n/2 — Wao(2))-

(Proof of 2) If a = ¥ + 1 then r(a) = 0” by definition
and so dg(z,r(a)) = wg(z) = W,:l(z)+ Waro(z) for
any a’(1<a' < ¥).

Claim 10 For any distinct a and a"(l <agV¥,1<
o <¥+1),

1. dg(ea(),7(a)) = n.~ dg(=,7(a)).
2. du(ea(z),7(d") = du(z,7(a")).

Proof of Claim 10 : (Proof of 1) Since Wa1(eq())
= Wao(z) and Wyp(ea(z)) = Wai(x) as mentioned
earlier, we have from Claim 9 that

dy(ea(x),7(a))
= Wai(ea(®)) + (n/2 — Wao(ea(2)))
= Wao(@) + (n/2 - War(2))
= n—{Wal(z)+ (n/2 - Wao(2))}
= n-dg(z,r(a)).

(Proof of 2) If 1 < a’ < ¥ then we have from Claim
9 that

dg(eq(z),r(a’))
= Wan(ea(2)) + (n/2 = Waro(ea(=)))



(Waria1(ea(®)) + Warrao(ea(®)))

+{n/2 = (Waroa1(€a()) + Waroao(ea(=)))}
(Wa’lau (:B) + Waria1 (z))

+{n/2 - (Wa'OaD(m) + Wa’Oal(z))}
Wars(@) + (1/2 = Waro(2))

du(z,r(a")).

If ¢’ = ¥ + 1 then we have from Claim 9 that

du(ea(z), 7(¥ + 1)) Wai(ea(®)) + Wao(ea(=))
Wao(z) + War(z)
dag (=, (¥ +1)).

This completes the proof of Claim 10

1
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Now we are ready to prove Claim 7. We distinguish
two cases.
-Case 1 1< a< ¥: We first show the following.

Claim 11 Foranybanda(0<b<®-1,1<a<¥),
z € P(b) = eq(w) € P(ex(b, a)).

Proof of Claim 11 : From Claim 10, if z € P(b)
then py(eqs(®)) € {n/2,n/2 £ 1} and so e,(x) € P.
We can also see from Claim 10 that if € P(b) then
Pa(ea(®)) # pa(z) and pa(es(®)) = par(2) for any
distinct a and @’ (1 <a < ¥,1 < a’ < ¥+ 1). Thus,

dec(pgi(es(e)) - m (_fg____("’)))
= dec(pw.H(z) <+ pa(®) -+ p1(=))
= ex(b,a),

where » is the compliment of v.. Thus, we conclude
that if £ € P(b) then eq(x) € P(ex(b,a)) for any b
and a(0 < b < ® - 1,1 < a < ¥). This completes the
proof of Claim 11.

Since e, is a one-to-one mapping and ex(ex(b, a), a)
= b as mentioned above, we have from Claim 11 that
|P(®)| = |P(ex(b,a))| for any b and a(0 < b < & —
1,1<a<¥).

Case 2 a = ¥V + 1 : We need more preliminaries.
Let £ : V(D(H,n)) — V(D(H,)) be a mapping such
that £ : 2 — eg 0 eg_1 0 -- -0 €1(Z), where o denotes
the composition of mappings. It should be noted that
£ is a one-to-one mapping.

Claim 12 For any a(l < a < ¥ + 1), dy(Z,7r(a)) =
n —dg(z,r(a)).

Proof of Claim 12 : Since Wou(Z) = n/2 —
Waw(z) for any a(l1 < a < ¥) and w € {0,1}, if
1 <a < V¥ then

du(&,7(a))

Wal(i) + (n/2 - WaO(i))

= (n/2 - Wa(=))

+{n/2 = (n/2 — Wao(=))}

n— {Wai(2) + (»/2 — Wao(=))}
= n-—du(z,r(a)).

]

If a = ¥+ 1 then 7(a) = 0° and dy(z,7(a)) =
wi(Z) = n — wy(x) = n — dy(z,r(a)).

Claim 13
£ da(E(E) (o) = du(e,r(e) for any o1 S 0 <

2. dg(E(z),7(¥ + 1)) = n — dg (=, 7(¥ +1)).

Proof of Claim 13 : (Proof of 1) From Claims 10
and 12,

du(E(2),(a))

du(ea(2),7(a)
= n-—dg(z,r(a))
= n-—(n-dg(x,r(a)))
= dy(=,7(a))..
(Proof of %) From Claims 10 and 12,
du(E(=z), (¥ + 1)) dy(z,7(¥ + 1))
) n—dg(z,7(¥ + 1)).

]

Now we are ready to prove Claim 7 for Case 2. We
first show the following.

Claim 14 For any b0 <5< @ -1),
x € P(b) = £(x) € P(ex(b, ¥ +1)).

Proof of Claim 14 : From Claim 13, if 2 €
P(b) then pa(E(x)) € {n/2,n/2 £ 1} and so &(x) €
P. It is also seen from Claim 13 that'if = ‘€ P(b)
then ps(€(x)) = pa(z) for any a(l < o’ < ¥) and
pe41(€(2)) # pe4a(=). Thus, o

dec(pe+1(€()) - *Pg(ﬁ‘w))) ‘

dec(p¢+1(m)Pw(5¢) e (z))
ex(b, ¥ +1).

Thus, we conclude that if z € P(b) then £(z) €
P(ex(b, ¥ + 1)) for any (0 < b < ® — 1). This com-
pletes the proof of Claim 14.

"Sinée £ is a one-to-one mapping and ex(ex(b, ¥ +
1), ¥+1) = b as mentioned above, we have from Claim
14 that |P(b)| = |P(ex(b, ¥ + 1))| for any 5(0 < b <
& —1). '

]

Lemma 7 |P(b)| < 2"/ for any (0 < b < & —1).

Proof : From lemma 6, we have
IP(®)| = [P|/®, ¢))
for any b(0 < b < ® — 1). We also have
[Pl < V(D(Hn))| = 27, (2)

from Lemma 1. From (1) and (2), we have the lemma.



i Nloglog N
L 8 |F(®)| = —_— .
emma 8 |[F(b)|=0 ( Joa )

Proof : From lemmas 4, 5 and 7,

F@) [P®)|+ (@ — Q)| + |(R — R())|
< |P(d)|+|Ql+(R|
< "%+2(w‘+1)( n/2"_1 )

+(w+1)(n’;2).

It is well-known [1] that

(nr/ii)’(n/zn—l):o(%)”

Thus, we have

|F(®)| = 0'(% +(V+ 1)%).

If we choose ¥ = (logn)/2 —loglogn — 1 then & =
Vn/logn and we have ‘
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