7T Y X LA 59-2
(1997. 11. 28)

Suffix Array R 7)Y XLOLLE

T HiE
RRERAZEREFRBZERFRPHERBZEYL
T 113 R XA 7-3-1
sada@is.s.u-tokyo.ac.jp

XETF— I X APb—BXFHNERETLLODI R Ve F—-FiEEL LT
suffix array % 5, CNIELFEFIOESTOFERFEORA ¥ ¥ 2 HEIRICER L A-BEHT
AEELDDOUERAT) PN EODOKRELTF—IR—-ARF L THEMTH S, T/
suffix array DHEIZ 70y 7 V— FEBETHLETH 5. 20 suffix array ZHET
ALK DOPDT VTN XLIEDOVWTLEAT) LEETREL, ThozllAaSdbEl
EAE)TEELTLVIT) AL RET S, SOTNVTY XL TFEFIRICEYELD
ZVIBEBILERHTH 5,

Comparison among Suffix Array Construction Algorithms

Kunihiko Sadakane

Department of Information Science, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
sada@is.s.u-tokyo.ac.jp

Suffix array is a compact data structure for searching matched strings from text
databases. It is an array of pointers and stores all suffixes of a text in lexicographic
order. Because its memory requirement is less than tree structures, it is effective
for large databases. Moreover, constructing the suffix array is used in the Block
Sorting compression scheme. We compare algorithms for constructing suffix arrays
on speed and required memory and propose a fast and memory efficient algorithm
by combining them. It is effective when the length of repeated strings in a text is
large.

1 Introduction

1.1 Suffix array

Today large databases become available, such as full text of newspapers or Web pages, and
Genome sequences, therefore it is important to store them on memory for quick queries. The
suffix array {9] is a compact data structure for on-line string searches. For such purposes, suffix
tree is used because it enables us to find the longest substring of a large text that matches the
query string in linear time. However, the suffix tree requires huge memory and therefore it is
impossible to use it for large text.

Though the suffix tree can be constructed in linear time [10, 12, 8], the time complexity
depends on alphabet size. Searching time also depends on alphabet size, it becomes slow if

.

the alphabet size is large. On the other hand, construction and searching time of the suffix
array does not depend the size of alphabet. Therefore searching time of the suffix array may be
comparable with the suffix tree though it is O(P logn) time where P is the length of a query
string and n is the length of a large text.

1.2 Block Sorting data compression

The Block Sorting is a lossless data compression scheme [4]. Though its compression ratio
is comparable with variants of the PPM [6], its compression speed is faster than them and
decompression speed is much faster than compression. Moreover, the required memory is smaller
than the PPM, therefore the block sorting is a promising scheme.

The Burrows-Wheeler transformation used in. the Block Sorting is a permutation of a text
to be compressed and it requires sorting of all suffixes of the text. Though the Block Sorting
is faster than the PPM, it is slower than the gzip because sorting of long text is required.
Therefore speeding-up of sorting suffixes is. important.

1.3 Owur results

We propose a fast and memory efficient algorithm for sorting all suffixes of a text. It requires
9n bytes for sorting a text of length n. Note that word size of integers is four. We define
a property of texts: average match length (AML). Our algorithm is faster than other sorting
algorithms when AML is large. Its speed is compared with a suffix tree construction algorithm
and it requires less than half of memory for the suffix tree. The AML becomes large if a text is
long, therefore our algonthm is practical for large texts.

1.4 Definitions

Assume that we make a suffix array of a text X = z[0.n — 1] = zoz;...2n—1. The size of
alphabet T is constant. We add a special symbol ‘$? at the tail of the text X, that is, z, = $. It
is not in the alphabet and smaller than any o6ther symbols in the alphabet. Suffixes of the text
are represented by S; = z[i..n]. The suffix array I[0..n] is an array of indexes of suffixes S;. All
suffixes in the array is sorted in lexicographic order. ‘A suffix. S; is lexicographically less than a
suffix §; if 3 > 0 zfi.i+1 - 1] = z[j. J+l—1]and:z:[z+l] <:z:[J+l]

We use another ordering <j.

o 5;<i S; = 0<3!<kx[z z+l—1]—x[7 j+l—1]anda;[z+l <$[J+l]
°* Si=kS8; <=> glii+k—1]=z[j.j+k-1] ’
e 5>, 8 & 0<3A<kzfi.i+l-1] =z J+l—1]and:c[1.+l]>:r[j+l]

2 Related works

It is necessary to sort all suffixes of a string in lexicographic order for making a suffix array, Sev-
eral algorithms below are available to sort suffixes. First two algorithms are general algorithms
for sorting strings and last two algorithms are for sorting suffixes of a string.

2.1 Bentley-Sedgewick algorithm

This is a practical algorifhm for sorfing strings [3]. It is similar to the quick sort, but it
recursively partitions pointers of strings into three parts. A pivot used to partition is the first

symbol in a string and all strings are partitioned into less than, equal to and greater than the
symbol according to their first symbols. A key idea of this algorithm is to use the equal part.
Strings in it have same first symbols, therefore we can sort the strmgs without comparing the
first symbols.

The Bentley-Sedgewick algorithm is used in a free software bzip2 [11], an implementation
of the Block Sorting.

2.2 Andersson-Nilsson algorithm (Forward Radix Sort)

This is a general algorithm for sorting strings using radix sort {1]. First all strings are sorted
and split into groups according to their first symbols by using a radix sort. Next all strings are
moved to buckets according to second symbols. The buckets are traversed in alphabetical order
and strings in them are returned to their own groups. Now all strings are sorted according to
first two symbols, therefore we split the groups and iterate these operations until all strings are
sorted. This algorithm is simple, but it theoretically has good time complexn;y

2.3 Karp-Miller-Rosenberg (KMR) algorlthm

This is an algorithm for finding repeated patterns in a string [7] and it can be used for sorting
suffixes. First all suffixes S; of a string are split into groups according to their first symbols and
given numbers V[i]. All suffixes in a group have the same v = V[i] and the group is represented
by the number v. All groups have different numbers. Next suffixes of each group are split into
subgroups according to the V[i] of suffixes. As a result, all suffixes are split according to their
first two symbols. This operation continues until all suffixes belong to groups of size one. If
groups are split ted and ordered in alphabetical order, all suffixes can be sorted in lex1cograph1c
order.
The key of the algorithm is called doubling technique. Because all suﬂixes in a group have
the same first k£ symbols z[i..i + k — 1] after an iteration, we can split the groups according to
zli + k..n]. Since the numbers Vi + k] are already calculated in the last iteration, we can split
the groups according to z[i + k..i 4+ 2k — 1] in the next iteration. Consequently, all sufﬁxes can
be sorted in lexxcographlc order within [logn] 1terat10ns '

2.4 Manber-Myers algorithm

This algorithm [9] uses the doubling technique in the KMR algorithm. First we sort and group all
suffixes by their first symbols using bucket sort. Suffixes are given V'[i] like the KMR algorithm.
Next all groups are traversed in order of V] to sort suffixes in groups by the second symbols.
If I{0] =4, S;_; is the smallest suffix among the group V[i — 1]. We can move suffixes to‘their
correct position according to first two symbols. The number of iterations is less than [logn]
and each iteration can be done in O(n) time, therefore this algorithms works in O(n logn) time.

2.5 Larsson’s suffix tree construction algorithm

This algorithm can maintain a sliding window of a text in linear time and it can be used for
PPM-style data compression [8]. Though the suffix tree requires more memory than the suffix
array, it enables us to search substrings in linear time.

3 Proposed algorithm

3.1 Idea

We propose an algorithm for sorting suffixes using the KMR algorithm and the Bentley-Sedgewick
algorithm. Though the original KMR algorithm uses bucket sort for each group, it is not prac-
tical because the number of different values of V; becomes large and the number of unsorted
elements becomes small as iteration of the KMR, algorithm proceeds and cost of initializing the
bucket becomes large. The algorithm of Manber and Myers solved the problem of the KMR
algorithm, but it traverses all suffixes in each iteration even if almost all suffixes were already
sorted. We use a comparison-based algorithm for sorting each group and sort only unsorted
strings in each iteration.

Our algorithm maintains <j order of all suffixes in an array V[0..n] and iterate until all
V[i] have different values. After iteration i, all suffixes are sorted according to their fist k = 2!
symbols. Suffixes whose first k¥ symbols are equal form a group. Groups are called unsorted if
their size is more than one and they are called sorted if the size is one. We want to update V]
and I[i] for only unsorted groups, therefore V[i] and I[i] of sorted groups must be consistent in
all iterations, that is, if a suffix S; is in a sorted group, V[i] and I[j] = ¢ must be equal to the
values in case of all suffixes are sorted.

Definition 1 The array V[0..n] is consistent with <y order if
e 8;< 8= Vi <V[j,
e 8;>8S; = V[i] > V[j], and
* Si#k 8j = VIi] # V[j].

Note that we can assign different values v1, v2 to V[i], V[j] even if S; = §j;. It enables us to
sort suffixes without temporary arrays.

Our algorithm continues maintains V[0..n] is always consistent. If V[i] represents the number
of suffixes which are less than a suffix S; according to <j order, the value is consistent and
V[I[i]} = 4 if a suffix S; is in a sorted group. This numbering comes from [9, 1].

Our algorithm proceeds as follows:

1. sort S; by their first symbols using bucket sort initialize V[i] (1 <i<n)let k=1

2. sort unsorted groups according to <j order using a comparison-based sorting algorithm
3. split groups and update V'

4. combine consecutive sorted groups into one sorted group

5. if the number of groups is n, exit

6. k =k x 2 and goto 2.

Sorting and splitting a group is done as follows. Assume that suffixes in a group G = I[s..¢]
are equal according to <j order and now we calculate <o order and V[i] for i € I[s..e]. First
we sort the suffixes according to V[I[i] + k] (s < ¢ < e) by using a comparison-based algorithm,
then we split the group and update V[i]. The group is split if V[I[i] + k] # V[I[i + 1] + k]

3.2 Implementation

Groups are represented by three arrays: I[0..n], V[0..n] and S[0..n]. After iteration k, they
represents

o I[i]: the index of i-th suffix in <; order,
o V[s]: the group of suffix S;,
e S[g]: the size of the group g.

To implement the algorithm without temporary arrays, we must update groups carefully. All
groups are traversed in <y order in iteration k. The first group begins at index 0 and its size is
S[0]. We sort suffixes S, € I[0..size — 1] according to V{s + k]. The next group begins at index
g = size, therefore we sort S; € I[g..g + S[g] — 1]. After all groups are traversed, they will be
split to form <y order. If consecutive suffixes I[i] and I[i + 1] in group g have different group
V[I[i] + k] and V[I[i + 1] + k], the group g is split between index i and ¢ + 1, that is, the size of
the group is updated. Next we update the array V for having different value according to <g;
order.

If the size of a group g becomes one in iteration k, the group is sorted and it is unnecessary
to sort the group after the iteration. Therefore we want to skip such groups. To do so, we
combine consecutive sorted groups into one group. We use sign flag of the size of groups to
indicate whether a group is sorted or not. '

Figure 1 shows an example of the algorithm for sorting suffixes of “tobeornottobe$.”

Table 1: An example of the algorithm

i 1 2 3 4 5 6 7 8 9 10 11 12 13

k |z t o b e o r n o t t o b e §
I3] 13- 2 11 3 12 6 1 4 7 10 5 0 8 9
S[d] 1002 2 -1 4 -1 3
V[I[i] 0 1 1 3 3 5 6 6 6 6 10 11 11 11

1] VT[] + k] 3 3 6 0 1 10 11 1 6 11 6
I3 2 11 12 3 1 10 4 7 0 9 8
S[i] 102 -3 2 -3 2 -1
VII[i]] 1 1 3 4 6 6 8 9 11 11 13

2 | V{I[i] + k] 8 0 4 3 1 1
Ifd] 1 2 10 1 0 9
Si] -11 2 -1
V[I[i]] 1 2 6 7 11 11

4 [VI[i] + k] 8 0
I[i] 9 0
Si) -14
v [1]i]] 11 12
1[4 13 11 2 12 3 6 10 1T 4 7 5 9 0 8

3.3 Further improvements
3.3.1 One pass implementation

The above implementation requires three passes: sorting, updating S, and updating V. Note
that combining groups can be done in sorting pass of the next iteration. However, we can
change the algorithm to work in one pass. To update V in the sorting pass, we must guarantee
values of V to be consistent. If an element V[i] is updated, the value is always incremented
and it may become larger than other values which are greater than S; in <j order. However,
if we update the array V right to left, it is always consistent. Therefore we use quick sort or
Bentley-Sedgewick algorithm and sort recursively from greater part to less part.

3.3.2 Initial bucket sort

Because we use comparison-based sorting algorithms for each group, the first iteration requires
O(nlogn) time. We can accelerate the iteration using bucket sort by first two symbols of suffixes.
‘We use an array of size |2} and count the number of all patterns of two symbols. All suffixes
are sorted according to first two symbols in O(n) time.

3.3.3 -Word size 6f the array S

Because elements of the array S is the size of groups, range of the values varies from'1 to n.
However, only one byte is enough for each element.

If the size of a group g is's, S[g +1..g + s — 1] are not used. Therefore we can store the size
of the group to the unused array if the size cannot be represented by one byte.

4 Experimental results

We have expenrnented on sorting time of various algorithms. We used SparcStation20 with
128MB memory. Algorithms we experimented are Bentley-Sedgewick, Manber-Myers, Larsson,
and,our algorithm. All algorithm except the Larsson use initial bucket sorting. Larsson is not
a sorting algorithm but a suffix tree construction algorithm. Children of a node are represented
by a linked list and elements of the list is rearranged by move-to-front rule. Our’ algonthm uses
doubling technique of the KMR algorithm and ternary partitioning of the Bentley—Sedgew1ck

Table 2 shows memory requirements of the algorithms. Bentley-Sedgewick uses only one
array I[0..n] and a text buffer. Larsson [8] uses five arrays of size n and a text buffer. Our
algorithm uses two arrays I and V of 4n bytes and an array S of n bytes. Both Bentley-
Sedgewick and our algorithm use stack. However, the depth of the stack of our algorithm is
smaller than that of Bentley-Sedgewick because Bentley-Sedgewick is depth-first algorithm and
ours is breadth-first algorithm. Though Larsson’s suffix tree requires 21n bytes in the worst
case, generally the number of internal nodes is about half of leaves and the tree reqmres about
14n bytes.

Table 3 shows time for sorting suffixes or making suffix tree. We use files in Calgary corpus [5]
and Canterbury corpus [2] for benchmark. In the table, first, second and third columns show
filename, size and average match length (AML) of the files. The AML is defined as follows.

n—1

1
AML = — ;(match length of SI[i] and S I[i+1])

Note that the AML is average number of symbols per suffix to verify that all suffixes are sorted
correctly. Fourth to seventh columns show time of Bentley-Sedgewick, Manber-Myers, Larsson,

Table 2: memory requirements

algorithm | memory
Bentley-Sedgewick | 5n + stack
Manber-Myers 13n
Larsson 21n
our algorithm 9n + stack

and our algorithm respectively. Bentley-Sedgewick is fast if AML is small (geo, bookl). Larsson

Table 3: sorting time and average match length

files sorting. time (sec)
name size | AML | BS | MM | Lar | ours
geo 102400 35| 06| 09| 33| 0.7
book1 768771 73| 82|18.0|143] 9.5
proge 396111 821 05| 03| 03| 0.2
book2 610856 9.6 76141 89| 6.9
bible.txt 4047392 | 13.9 83| 136 | 65 70
E.coli 4638690 | 17.3 || 142 | 177 84| 101
news | 377109 |. 18.1{ 12.9 | 10.1 | 6.4 | 3.5
world192.txt | 2473400 | 22.9 70 80| 38| 38
progl 71646 | 246 || 3.0| 1.0| 06| 0.4

and our algorithm are fast if AML is large. Larsson is much faster than our algorithm for E.coli
because E.coli is a DNA sequence of a colon bacillus and linked lists in the tree is efficient for
the small alphabet (ATCG). Our algorithm is fast if AML is large because it uses the doubling
technique of the KMR algorithm. Roughly speaking, its sorting time is proportlonal to logarithm
of the AML. On the other hand, sorting time of the Bentley—Sedgew1ck is proportlona.l to.the
AML. C . .

5 Conclusion

We examined speed and required memory of several algorithms for sorting suffixes and making
a suffix tree and we proposed a practical algorithm for sorting suffixes by combining other
algorithms. Our algorithm is faster than other sorting algorithms when average match length of
suffixes is large. Its speed is compared with a suffix tree construction algorithm and it requires
less than half of memory for the suffix tree. The average match length becomes large if a text
is long, therefore our algorithm is practical for large texts.

Our algorithm is slower than the suffix tree construction algorithm if a text is large because it
uses comparison-based sorting. As future works, we will therefore remove the comparison-based
sorting like the algorithm of Manber and Myers.

The Block Sorting compression uses sorting of suffixes. However, sorting is not a necessary
condition. For example, all preceding symbols z;_; of suffixes S; in a group are the same, sorting
of the group is not required. We may accelerate compression speed of the Block Sorting by using
the property.

Acknowledgements

The author would like to thank Prof. Hiroshi Imai for his helpful comments.

References

(1] A. Andersson and S. Nilsson. A New Efficient Radix Sort. In 35th Symp. on Foundations
of Computer Science, pages 714-721, 1994,

[2) R. Arnold and T. Bell A Corpus for the Evaluation of Lossless Compres-
sion Algorithms. In Data Compression Conference, pages 201-210, March 1997.
http://www.cosc.canterbury.ac.nz/ tim/corpus/.

(3] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In
Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360—
369, 1997. http://www.cs.princeton.edu/ rs/strings/.

[4] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithms.
Technical Report 124, Digital SRC Research Report, 1994.

[5] Calgary Text Compression Corpus.
ftp:/ /ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/.

[6] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string
matching. JEEE Trans. on Commun., COM-32(4):396-402, April 1984.

[7] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, arrays and trees. In 4th ACM Symposium on Theory of Computing, pages 125-136,
1972.

[8] N. J. Larsson. Extended application of suffix trees to data compression. In Data Compres-
sion Conference, pages 190-199, April 1996.

[9] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 319-
327, 1990.

[10] ‘E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(12):262-272, 1976.

[11] J. Seward. bzip2, 1996. http://www.muraroa.demon.co.uk/.

{12] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, September
1995.

