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MAX SAT (the maximum satisfiability problem) is stated as follows: given a set of clauses with weights,
find a truth assignment that maximizes the sum of the weights of the satisfied clauses. In this paper,
we consider several hybrid approaches to MAX SAT proposed so far and give a new hybrid approach
combining the algorithms of Goemans-Williamson and Yannakakis. We discuss the relations among these
hybrid approaches and show that our new approach leads to a unified analysis of the performance guarantee.
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1 Introduction

We consider MAX SAT (the maximum satisfiability problem): given a set of clauses with weights, find
a truth assignment that maximizes the sum of the weights of the satisfied clauses. MAX SAT is NP-
hard and many researchers have proposed approximation algorithms for MAX SAT. See [1] for algorithms
proposed so far and the notations in this paper. The hybrid approach of Goemans-Williamson combining

- semidefinite programming and linear programming relaxations is quite natural [7]. On the other hand, the
hybrid approach in [2] did not seem so natural and used a rather ad hoc technique for analysis. This is
because Yannakakis’ algorithm [10] changes a given instance to snother instance and it seems difficult to
analyze the performance quarantee of the hybrid approach of combining Yannakakis' algorithm with the
hybrid approach of Goemans-Williamson.

In this paper, we consider several hybrid approaches to MAX SAT proposed so far and give a new
hybrid approach combining the algorithms of Goemans-Williamson and Yannakakis. We discuss the rela-
tions among these hybrid approaches and show that our new approach leads to a unified analysis of the
performance guarantee. The new approach leads to a better approximation algorithm with performance
guarantee 0.770, if we use a refinement of Yannakakis’ algorithm proposed in [1].

2 Formulations of Hybrid Approaches

In this section we will give formal formulations of hybrid approaches to MAX SAT proposed so far.
Goemans-Williamson gave the following formulation of MAX SAT:

(IP): Maximize Y w(Cj)z

C;€eC '
subject to: Z ¥+ Z (1-w)2z VCjecC
. zeX) - mexy , ,
ne{01} vz, e X
7 €{0,1} vC; eC.
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In this formulation, variables y = (y;) correspond to variables X = {1, %2, ..., Zn} and 2z = (z;) correspond
to the clauses C. Thus, variable y; = 1 if and only if z; = 1. Similarly, z; = 1 if and only if C; is satisfied.
The first set of constraints implies that one of the literals in a clause is true if and only if the clause
is satisfied. The objective function represents the total weight of the satisfied clauses. Thus, the above
formulation exactly corresponds to MAX SAT. : ‘

Then, Goemans-Williamson considered the following linear programming relaxation of MAX SAT where
the variables y and 2z can take any value between 0 and 1.

(GW1): Maximize Y w(C))z

cjec

subject to: Z %+ Z (1-4)22; VC;eC (1)
:h'EX;' z-'EXJ'
0<y <1 Vz; € X 2
0<z<1 vC; €. ‘ 3

Using an optimal solution (y#, 2#) to this program, they set each variable z; to be true with probability
v¥. Then a clause C; with k literals is satisfied with the pobability 1 - T, ex+(1 - v e x5 y¥ >

a-@a- }‘-)")zf, since

1- [ a-v ] o

zieX} z€X]
5 1o (Zmexi(s W+ zk,;exi-(l -(1- yz*»)k
' A Ligy, #
2 1-(1--5)20-0-9%% @

by (1) and the arithmetic/geometric mean inequality. Thus, the expected value Fe(x#) of this random
truth assignement z# = y* = (y¥) is at least

8 1 1
W +0.75WF + (1 - 57-)Wg‘f +ya-01- -E)k)w,? >(1 -;)W#, (5)
k>4 .

where W =Y. cc, w(C;)zf and W# = T ¢ w(Cy)2f = i WY » :

Note that this found is good for short clauses and the expected value of the random truth assignment
obtained by Johnson is good for long clauses. Thus, if we choose the better one between these two random
truth assignments then the expected value is at least the bound 3~ , B Wy with 26, = 2— F-(1-p*

On the other hand, Goemans-Williamson obtained a 0.878-appraximation algorithm for MAX 2SAT
based on semidefinite programming, and made a breakthrough for MAX 2SAT algorithms [6],{7). They
also applied this to the above linear programming relaxation, to obtain a better performance for
SAT. Thus, they used another hybrid approach combining a linear programming relaxation with their
MAX 2SAT algorithm based on semidefinite programming and obtained a 0.758-approximation algorithm.
This is a kind of breakthrough for MAX SAT, since it is believed to be difficult to overcome the bound
0.75. Let X; denote the set of variables in C; (i.e., X; = X;’ U X;") and let

sgnj(a:;)={ il‘ E::i%-i o . o

Then the following is the formal formulation of their new hybrid apprbéch.v

(GW2): Maximize Y w(Ci)y

CjecC B
_subject to: Z 1_4%5_(_.’5)& 2z; VC;eC )
2€X; :




gcj(” (¥)22  VC €ChVk22 ®)

wi=1 0<Vi<n 9)
0<z<1 VC; eC (10)
Y = (y5,4,) is a symmetric positive semidefinite matrix. (11)

Since all hybrid approaches desribed in this paper are closely related to this formulation, we briefly
review the notations. Variables y = (yo, %1, . ..,¥n) corresponding to

Yoys = 2z; — 1 with |yo| = g = 1 (12)

are first introduced for semidefinite programming. Thus, 2; (Z;, resp.) becomes Liyow (1=gomi resp.) and
a clause C; € C can be considered to be a function of ¥ = (40,1, .., ¥s) as follows by (??):

. 1—
Cj = Cj(y) =1- II ___L_sgn2(zi)yoy;_ (13)
z€Xy

Using an (n + 1)-dimensional vector v; with norm ||v;]| = 1 corresponding to 3 with |y;| = 1, they replace
¥, Yi; With an inner vector product v;, - v;, and set y;,;, = v;, - v;,. Thus, -1—*'-2?&* corresponds to z; and
the matrix ¥ = (13,4,) is symmetric and positive semidefinite since ¥ = vTv for v = (vo,v1,...,Vn).
The first set of constraints (7) exactly corresponds to (1), the set of constraints of the linear programmmg
relaxation of MAX SAT of Goemans-Williamson explained before. It implies that, if C; =1 (ie, z; = 1)
then one of the literals in C; is true and thus, it holds for any truth assignment x.
The second set of constraints (8) corresponds to a MAX 2SAT relaxation. Each clause C; € Cp with

k > 2 is approximately represented by C(z), the set of weighted clauses with two literals in ‘Cj. The
weight of Cj-is evenly shared and the weight of each clause in C{> becomes ,‘_;",g.c.g For example, if
Cj =a1VazVag then Cj(z) = {ay Vag,ay Vag, az V a3} and each clause in CJ@) has the weight w(C;)/3
(thus total weight of clauses in C}z) is w(Cy)). Clearly, Cj(z) = C; for a clause C; with two literals. Thus,
by (13), '

cPy) =

1
HE=T) > (3 + sgn(@s, )Jyous, + sgny(ia)yotha — sg15(21,)sgm (Zi2)¥0 41 ¥3)

Ziy Bing €EX,8iy ETig
and C}z) is a function of Y as follows.
cP(v) =

m DT B+ sgny(®i )i, + 59m5(ia)y0is — 59m5(%i, )sgns(s)Yinia).  (14)

Tiy 1 Tig €Xy,34) #Tig

Note that, if a clause C; € C; is satlsﬁed then one of the literals in Cj is true and at least k-1

clauses in C( ) are satisfied. Thus, the second set of constraints holds for all truth assignments and the
formulation above is a combination of a linear programming rela.xatlon a.nd a MAX 2 SAT relaxation based
on semidefinite programming.

The solution to this program is used in two ways. One is as a random truth assignment correponding
to the linear programming relaxation and the other is as a random truth assignment correponding to the
MAX2SAT relaxation. Choosing the best random truth assignment among the randem truth assignments
including above two assignments and the random truth asstgnment obta.med by Johnson leads to a 0.7584-
approximation algorithm, ‘

After Goemans-Williamson's hybnd apporaches, various hybrid approaches are propased to obtain better

_ bounds. Feige-Goemans [4] used a hybrid approach which adds the following constraints to (GW2).

(FG): Maximize Z w(Cy)z;
C,‘EC .



subject to: (7), (8), (9), (10), (11) and (15)
Yigia + Yigia + Yigin 2 =1, —Viria + Yigsa — Yigiy = —1,
—Yiria = Yiais + Yisiy 2 -lr Yiria — Yizia — VYiais 2 -1

Vi, i2,13 with 0 < i1 <1y <13 <n. (16)

Asano-Ono-Hirata [2] have proposed another relaxation of MAX SAT which is a hybrid approach com-
bining the linear programming relaxation and the semidefintie programming methed as follows.

(A96): Maximize Y w(C))z

C;€eC

subject to: (7),(9), (10), (11) and 17
2k—1
Tc;‘) (Y) > 2 YC; € Cx, Vk > 2. (18)

We briefly review the notation cgl). c§1) () is the sum of the terms in Cj(y) of forms 1+ sgn(z:)yoy:
and 1 — sgny(zi,)sgny(Zi, )%, ¥ia, ie., for Cj € Cy,

1 1
)= 7% Y (1+ sgnj(@:)yom) + = 3 (1 — sgn;(zi, )sgn; (Tiz )4, Yiz)
. i€ X5 iy 1 Fig €X;5,%i, £Tiy
and k
‘ 1 1 i
W) =5 Y Uhemw) 5 Y. (L-sgni(za)sons(zayns)  (19)
z,€X; ‘ Tiy Tig €X5,Tiy FBig

The constraints (18) are introduced in [2] and serve as a kind of approximation of original MAX SAT
constraints. 'Of course, they hold for any truth assignment = and thus, (496) can be considered to a
relaxation of MAX SAT. In this paper we also consider the following relaxation of MAX SAT obtained by
adding the constraints introduced by Feige-Goemans [4].

(A97): Maximize Y. w(C)C;(Y)+Y. Y. w(C)z

. C;€C1,32 k>3 C;€C,
subject to: (9), (11), (16) and (20)
) k—1
3-k-— W(Y)>2 VO €Cp with k>3 1)
0<z<1 VC; € Cewith k > 3, ‘ (22)

where Cm =CUCs.
For completeness, we first show that (A97) is a relaxation of MAX SAT, although it was su¥sted by
Feige-Goemans [4]. Let z? = (z{) € {0, 1} be any truth assignment for (C,w). Define Y? = (y,,.) to be
Yoo =1 0 = vio = 22{ — 1 (1< i < m) and g, =9, =18,96, (1< i <iz <m).

Then
ygi € {"1» 1}’ yfli, € {'—1, 1} and y;" =1.

Thus, (9)‘ is satisfied. (16) can be shown to be satisfied as follows. For example,
g, +vh, F ok, =220 - 14227 — 14 (220, - 1)(22], - 1) = (22 )(22%,) - 1> -1.
Similarly, ‘
Yia + aia + Ui = V00 W0 + U00aWin + 80is¥in = s, + 95,006, +93) — 08,7

Thué, by symxﬁetry,' if (at least) one of y§, , 43;,. 4¢;, is equal to 1 then Yiyin H¥ihis Ui, = —1is obtained
as above. Otherwise (i.e., y3; =g, =¥§;, = —1), ¥}, + Ui, + ¥, =3 > —1 Other cases are similarly
shown. Thus, (16) is satisfied. For C; € Ci with k > 3, define .

2§ = 1if C; is satisfied by 27 and 2§ = 0 otherwise.
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Then (22) is satisfied. If Cj is satisfied by =7, then some literal in Cj, z; € X;’ or Ty with zy € X
istrueand (1+9§)/2=af =1or (1-98,)/2=2} =1and cg.l)(Y") # 0. Thus, by Lemma 1 in [2],
Z2eD(Y9) > 1= 2 for k > 3. Otherwise, all literals in C; are false and (1+ y%;)/2 = 7 = 0 and

(1-98,)/2 =23 = 0and ¢{”(Y9) = 0= 2{ for k > 3. Thus, (21) holds. Similarly, since c;”(Y¥) = C;(Y)
for any C; € C; 2 and

(1+yo:)/2 (Ci=z,€Cr)
(1 —yo:)/2 (Ci=z,€Cy)
Ci(Y) = (3+yoi, + Yoip — Uiria)/4 (Cj =1 Vi, €Ca) (23)
(3 — yoi, + Yoiz + Yiria)/4 (Ci=%y Vi, €Cy) ,
(3 = Yoi, — Yoia — Yiria)/4 (Cj =24y VI, € C2),

3 w(C)C(¥Y)+Y . Y w(Cy)2] is the total weight of the clauses satisfied by 27. Furthemore, Y7 is
C;€Cra k>3 Cj€Ck
a symmetric positive semidefinite matrix and (11) is satisfied, since Y = (1, 43,, 4%, -, ¥8,)T (1, 481, 482, - ¥ds):
Thus, (A97) was shown to be a relaxation of MAX SAT.

‘We next show that a solution (Y, z) to (A97) leads to a solution to (A96), that is, (Y, z) with appropriately
setted z; for C; € C, 2 satisfies (7), (10) and (18). We set

z; = CJ(Y) for each C;e 01,2.

Then, clearly (7) is satisfied for C; € C; and (18) is satisfied for C; € C;. Note that, for a clause C; € (i
with k > 2, (7) is redundant since if C; = 2, V23 V -+« V 2y then

k
1 21
3 ;(1 + yoi) - Tc:(,.])(Y)

k k
' 1 1
= 3 S (1 +ym) - ﬂ(‘;(l +yo)+ Y (1= i)
i=1 i=1 1<i1<ia<k

1
= % Z (1 +yos, + 1 +yoi; = 1+ ¥ii,) 20 (24)

1<iy <2<k

by (16) (by symmetry we can argue the other cases similarly). Furthermore, for a clause C; € Cyg,
z; < 1 is automatically satisfied since Cj(Y) < 1 by (16) and (23), y;; = 1 and Y is a symmetric positive
semidefinite matrix. Thus, (Y, z) with z; = C;(Y) for C; € Cy 3, say (¥, 2;), is a solution to (A96) and
both (Y, z) and (Y, 2g) have the same value. lzI‘hus, for an optimal solution (Y, 2) to (497), (Y,2g) isa
solution to (A96) (but not necessarily an optimal solution). Thus, (A97) can be considered to be a better
relaxation of MAX SAT than (A96).

Similarly, a solution (Y, 2) to (A97) leads to a solution to (F'G), that is, (Y, 2) with z; = Cy(Y) for
C; € Ch,3 satisfies (7), (8) and (10). Here, note that, for a clause C; € Cx with k > 3, (83 is redundant
since if C; =z Vz3 V- Vi then

k@ 21
k &
el 1
= WD Qo k-DI+p)+ Y. (A=) - 5;(2(1 i+ Y ()
i=1 1<i1 <ig<k i=1 1<iy <da<k
k-2
= __—4k(k-1) Z A+yoi, + 1+ yoi; — 1+ 95,4,) 20 (25)

1<ii<ia<k

by (16) (by symmetry we can argue the other cases similarly). (
The arguments above also show that, for a clause C; € Cx, (8) with (16) implies (7), since if C; =
2y VZa Ve Vg then .

1 k k (2)
13 (w0 - £y
i=1

i=



1 k 1 k ‘
= '2- ;(1 + yoi) — 4_—(’6 'y (ﬁzl(k - 1)(1 + in) + Z (1 _ yiria))

1<iyi<ia<k
1
= Ik-1) Z (1+ yoi, + 1+ 905 — 1+ ¥i3,) 20 (26)
1< <ia<k

(by symmetry we can argue the other cases similarly).
As a summary we have the following theorem (the other cases not discussed above can be simlarly

treated).

Theorem 1. Let S(GW1), S(GW?2), S(FG), S(A9%), S(A97) be the set of solutions to the programs
(GW1), (GW?2), (FG), (A98), (A97) respectively. Then the following relations hold.

S(GW1) c S(GW?2) C S(FG) C S(A97) and S(A96) C S(A97).
These inclusions are strict and (A96) gives the smallest upper bound among the programs proposed so far.

8 Strongly Equivalent Transformations

We have discussed the relations of the solutions to relaxations of MAX SAT proposed so far and shown
that (A97) is the best dual heuristic [8] in a sense that it gives the smallest upper bound among them. In
this section, we will consider how we can combine Yannakakis’ algorithm with the hybrid approach A(97)
proposed above. Roughly speaking, we might combine Yannakakis’ algorithm (including its refinements)
with any hybrid approach in the previous section, we will only consider (A97), since it gives a more chance
to get a better performance guarantee. First, we will briefly review essential parts of Yannakakis' algorithm
and its existing refinements below. ) :

The 0.75-appraximation algorithm of Yannakakis divides the variables X = {z1,...,Zn} of a given
instance (C,w) into three groups P, P’ and P" based on maximum network flows (some variables will be
negated appropriately). Then it sets independently each variable z; € X to be true with probability p;
such that p; = 3/4ifz, € P, p; =5/9if z; € P' and p; = 1/2if z; € P". The expected value F¢(z?) of
this random truth assignment x? = (py, P2, .., Pn) is &t least the bound in (7).

To divide the variables X of a given instance (C,w) into three groups P, P’ and P”, Yannakakis
transformed (C, w) into an equivalent instance (C’,w’) of the weighted clauses with some nice property by
using network flows. Note that two sets (C,w), (C’,w’) of weighted clauses over the same set of variables
are called equivalent if, for every truth assignment, (C,w) and (C’,w') have the same value. Similarly,
based on 3], (C, w),(C’, w') are called strongly equivalent, if, for every random truth assignment, (C, w) and
(C',w') have the same ezpected value. Clearly, if (C, ),(C’,w’) are strongly equivalent then they are also
equivalent since a truth assignment is always a random truth assignment (the converse is not true). The
following lemma. [3] plays a central role throughout this paper. ‘ - '

Lemma 1 Let all clauses below have the same weight. Then A = {Z; V Zipli = 1,..,k} and A =
{z:iVEiq1li = 1, ..., k} are strongly equivalent (we consider k+1 =1 ). Furthermore, B = {1 }U{&;Vwit1li =
1,...,0} and B' = {z; V Ziali = 1, ..., £} U {2e41} are strongly equivalent. o

For a given instance (C,w), Yannakakis’ algorithm and all existing refinements consist of several steps,
say L + 1 steps, and divide the variables X into groups using flows in networks defined based on Lemma
1. In each step except for Step L + 1, the algorithm outputs a set of weighted clauses which is strongly
equivalent to a set of weighted clauses given as an input of that step. The output.of Step i (i = 1,2, ..., L)
consists of groups of weighted clauses and all but one group are set aside (we call such _groups being split
off). The remaining group becomes an input of Step i + 1. Thus, we have the groups of weighted clauses
split off in Steps 1 to L and the remaining group (D), wy) after Step L. Let (C*,wp) be the set of all
split groups together with (D), wy,). Then (C%,wy) is strongly equivalent to a given instance (C,w). The
crucial point is that a clause C € Cj with k > 3 may be split off and appear in several groups of the finally
obtained instance (CL,wy) but the total weight of C is the same as'in the given input instance (C,w).
Only the total weight of a clause with one or two literals may change. )

After Step L, we obtain a partition of X into several sets {Xx | k=12..} and in Step L + 1, we
obtain a random truth assignment @? = (p1; Pz, -+ Pn) by appropriately setting each variable z; to be true
with probability p; such that p; = py if z; and Ty arein the same set X, in the partition of X. Then, all
groups of weighted clauses split off in-Steps 1 to L and the remaining group (D), wy) of weighted clauses
after Step L are shown to have the expected values at least the bound Y, vWj. Furthermore, we have
the following lemma since (C,w) and (C%,wy) are strongly equivalent (see also 1.




Lemma 2 Let " be any random truth assignment and let WL (CT) be the ezpected value of x" for the
weighted clauses in (C¥, wy) with k literals. S'imilarly, let W (C) be the expected value of =™ for the weighted
clauses in (C,w) with k literals. Let Wi (C) (Wj(CL), resp.) be the value of an optimal truth assignment
x* for the weighted clauses in (C,w) ((CX,w.), resp.) with k literals. Then the following statements hold.
(a) WI(C) = WL (CE) and WE(C) Wi (CE) for all k > 3.
(b) W(C) + W5 (C) =Wy (Ch) + W'(C") end Wy (C) + W3 (C) = Wy (CL) + W3 (CE).
Now we would like to find a relation between a solution to (497) and a solution to the following MAX
SAT formulation (Q) which is equal to (A97) for the instance produced by & refinement of Yannakakis.

(Q): Maximize Y wir(CyCi(¥)+D. 3 wi(Cy)z

ciect, k>3 cjeck
subject to the constraints (9), (11), (16) and
T cO(Y) > 2 VC; € CE with k > 3,
0<z<1 VC; € CFwith k > 3.
As noted before, each clause C of (C,w) with three or more literals has the weight equal to the siim of
the weights of C in (C%,w) in the strongly equivalent tranformations in Section 2 in Lemma 1, (i.e.,

(Cr,w) =-(CE,wz) for k > 3 even if C may be contained in two or more groups in (C%, wL)) Thus, -the
constraints of (A97) and (Q) are the same and we can have the following lemma.

Lemma 8 Both (A97) and (Q) have the same solutions and the same optimal solutions.

Before proving the above lemma, we consider the follbwing relaxation of MAX 2SAT formulation (P):

(P) : Maximize Z w(C;)C;(Y) subject to the constrmnts (9), (11), (16).
Cj€Cra

By the same argument as for MAX SAT, (P) can be considered to be a relaxation of MAX 2SAT. Since
cE ’, is a set of weighted clauses obtained from Cy,2 by the strongly equivalent tranformations in Lemma 1,
the following MAX 2SAT formulation (P’) exactly corresponds to (P) for the instance Cf;.

(P') : Maximize Y wy(C})Cj(Y) subject to the constraints (9), (11), (16).
Cject,

Then we have the following lemma.

Lemma 4 Two problems (P) and (P') have the same feasible solutions and values. Thus,

Zw@mm—Ejm@mm

Cj€Cra Cjecty

for any feaszble solution Y and (P) and (P') have the same optimal solutwns

Proof. Clearly (P) and (P’) have the same feasible solutions since constraints are the same. It suffices
to show that both have the same optimal value for the case C1z = A = {Z; V ziy1li = 1,...,k} and
CL2 = A ={z; v :v,+1|1, =1,...,k} (we consider ¥+ 1=1) and the case C;; =B = {z}u{z: Vz;.,.l]i =

.2} and CE; = B' = {z; V Zipai = 1,...,€} U {zi41} in Lemma 1, since Cf; is obtained from Ci,
by the strong]y equivalent tranformations i 1n Lemma 1. We can assume weights’ are all equal to 1.’ Let
612 = = {-’L'. V:ILH.ll‘l, =1,. k} and Clz = .A = {.'::, V$‘+1,1 = 1 k} and Cj = ib‘j V1j+1 and

Ci= :7:,-+1 Vz;. Then

Z@m=2qm'

since 2,7=1 Cy(Y) = 2,:1 4(1 Yoj +1+ 90.1+1 +1+ 7/JJ+1) = 2_7-1 4(3 + yjj+1) and 2_1—1 C’(Y)

Yot 20+ y0s + 1= goga1 + 1+ yg41) = Thy 38 +w3541)- o
Analogous argument can be done for the case C12 = B and C{;, = B'. ' n]
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The proof of Lemma 3 can be obtained immediately by Lemma 4 , since each clause C of (C,w) with
three or more literals has the weight equal to the sum of the weights of C in (C¥,wy) in the strongly
equivalent tranformations in Section 2. ;

Since (Q) is a semidefinite programming problem as in [7}, we can find an approximate optimal solution
(Y#,2#) within a small constant error € in polynomial time. For convenience, we call it an optimal
solution to (Q) (and (A97)). An optimal solution v# = (v¥,v¥,...,v#) can be obtained by Cholesky
decomposition of Y# = (y}'f1I ,)- Thus,

wHhCch = Y wi(C)C*) = Y w(C)CY*) =Wi(C)

cecf, CeC1,a

and
wECh) = Y wi(Cy)zf =WF(C) for k2 3.
C,’EC,"‘

Since the existing refinements of Yannakakis’ algorithm use only strongly equivalent transformations
which keep the total weight of a clause with three or more literals, we can use the same analysis for the
optimal solution (Q) (and (A97)) as that for an optimal truth assignment 2* of (C,w). We have only to

use z# = (zF) with =¥ = 31+ y¥) instead of z*. There, the following inequality plays an essential role:
2§ Smin{1, ¥, xr of + Tpex; (1~ z¥)} for each C; € C; with k > 3.
Lemma 3 and the above argument have shown the following theorem.

Theorem 2 In a hybrid approach of combining Goemans- Williamson’s clgorithm with a refinement of
Yannakakis’ algorithm based on the strongly eguivalent transformations which keep the total weight of any
clause with three or more literals, we can consider them independently. Purthermore, in an analysis, we can
use th:csan;e argumemt for the optimal solution (Q) (and (A97)) as that for an optimal truth assignment
z* of (C,w).

4 Concluding Remarks

We have presented a theoretical framewok of hybrid approaches combining the algorithms of Goemans-
Williamson and Yannakakis. Since the framework presented is so general and can be applied to any
refinements of Yannakakis' algorithm using strongly equivalent transformations in Lemma 1, we believe
further improvements of the performance guarantee for MAX SAT can be achieved by this framework.
Furthermore the framework is easily modified to match with the 0.931-approximation algorithm for MAX
2SAT by Feige and Goemans:[4].
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