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Geometry Helps Clustering Texts in Information Retrieval and
Text Databases
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Abstract: In the field of information retrieval of full text databases, the vector-space model
has been developed to process texts efficiently over 20 years. In this model, each text is mapped
to a point in the feature space by considering frequencies of keywords appearing in the text. So
far, this geometric structure is mainly used to derive the distance between two texts only. This
paper describes that the geometric structure of this feature space can further be employed in
clustering texts in databases. We propose using geometric clustering algorithms for variance-
based clustering developed by our groups. This paper then surveys such a geometric clustering
approach to analyze texts by making full use of their geometric structures. Thus, besides near
neighbor search algorithms, existing geometric clustering algorithms can be made use of to
automatically analyze texts in text databases.

1 Introduction the similarity value between two texts, and fur-
ther processing such as text analysis, text theme
identification, etc., is done simply using such
values without returning to the geometric struc-

A geometric approach, called the vector-space
method, has been developed for advanced infor-
mation retrieval of full text databases (Salton v
et al. [15, 14]). Recent trends, that an emor- ‘W% , .

mous amount of machine-readable texts become 11t this paper, we show a geometric cluster-
available very easily via Internet, CD, etc., shed mg aPPma?h_ which fl{lly utlllze?s- the ’geomet—
strong light on this method, and investigations rlg‘structure in clustering texts in 'the space of
from theoretical sides has also emerged (e.g., see weighted term vecto%'s. Here, as a'dls_tancermea-
Indyk, Motwani, Raghavan, Vempala [11]. How-  Sur® between_two pO{ntS in the space, we l-.lse‘the
ever, so far, geometric structure in the space of  Squared Euclidean distance, which is justified as

weighted term vectors is only used in deriving follows. ' .
In the vector-space model, the similarity is



defined as
sim(¢;, t;) cos @

for angle 6 between two vectors ¢;, ¢; correspond-
ing to the two texts. By defining the dissimi-
larity, or distance, dis(t;,t;) to be 1 — cosé, we
show that this model corresponds to a geometric
model on the normalized vectors #; such that the
distance between two points is measured by the
square of their Euclidean distance.

In view of this fundamental geometric obser-
vations, this paper considers a clustering prob-
lem of finding a k-clustering (51, S2,...,5%) of a

set S of n normalized vectors %; in the d-dimensional

space minimizing
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which is equivalent to minimizing

k
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(It should be noted that this problem is strongly

connected to a clustering problem considered in’
Salton et al. [15] to design a nice space of weighted
term vectors for retrieval.) Furthermore, when

the cost of a cluster is defined to be the average

distance for each point to points, including it-

self, in the cluster, the problem becomes finding

a k-clustering minimizing
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This problem is known as the clustering problem
minimizing the sum of squared distances [6, 10].

In Hasegawa, Imai, Inaba, Katoh, Nakano [6]
and Inaba, Katoh, Imai [10] (see also [8, 9, 13]),
these problems are considered as a geometric
clustering problem minimizing the all-pair sum
of squared distances and that minimizing the
sum of squared distances, and geometric anal-
yses are performed. We here summarize their

implications in this space of weighted term vec-
tors.

For automatic analysis, theme generation of
texts, so far only clustering methods using the
similarity matrix are used (Salton, Allan, Buck-
ley, Singhal [14], Kitagawa, Mizuuchi, Tajima,
Tanaka [12]). In general, the clustering problem
based on the similarity matrix is more general
than the geometric clustering, since in the lat-
ter problem the similarity matrix is basically in-
duced from the coordinates of objects and hence
is less general (or, has more properties induced
by geometry). However, for texts, as summa-
rized above, the similarity and dissimilarity be-
tween objects are defined utilizing geometric struc-
tures, and then the clustering problem for text
databases becomes a special case of the geomet-
ric clustering, as depicted in Figure 1. Hence,
what have been done for clustering texts can
be done in geometric setting. Then, it is more
powerful to apply geometric techniques, as dis-
cussed in this paper, to the problem. For ex-
ample, in the geometric setting, the concept of
representative points such as centroids (see [4]),
medoids are well-defined and computationally
easy to find, while such concepts are difficult to
define or hard to compute in the simple similar-
ity/dissimilarity matrix setting.

We expect that our geometric clustering ap-
proach would be useful enough to tackle these
problems as the geometric clustering paradigms
such as the ordinary k-means has demonstrated
their power. Computational results will be re-
ported in subsequent reports for this geometric
clustering approach which is theoretically founded
in this paper.

2 Vector-Space Model

To explain the vector-space model [15, 14], we
are here based on the descriptions in [14].

In the vector-space model, all information items,
of stored texts as well as information queries, are
represented by vectors, or points, of terms, or
keywords, in the space whose dimension is the
number of terms. A term is typically a word. In
automatic processing of various texts, the terms
are derived directly from the texts under consid-
eration. :

Since the terms does not equally represent the
contents of texts, it is important to use a term-
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Figure 1: Relations among clustering problems: As far as distances induced from geometry of the
corresponding space in clustering texts, the clustering problem is a geometric clustering, and hence
by utilizing the corresponding geometric structures more powerful clustering results may be obtained!

weighting system which assigns high weights to
terms deemed important and lower weights to
the less important terms. There are many term-
weighting systems, and a typical one described
in [14] is given by the equation f; x1/f.(term fre-
quency times inverse collection frequency), which
favors terms with a high frequency (f;) in partic-
ular documents but with a low frequency overall
in the collection (f.).

Then, texts are represented by weighted term
vectors t; in the d-dimensional space where d is
the number of terms. Of course, the I-th element
in ¢; is the weight‘ assigned to the I-th term in
the document i. The similarity sim(t;,t;) be-
tween two vectors ¢; and ¢; of given two docu-
ments is defined by

ti-tj
lIElllies )

where - is the vector inner product operation, || ||
denotes the Ly norm and @ is the angle between
two vectors ¢; and ¢;. The similarity value ranges
from 0 (low similarity) to 1 (high similarity).

The latent semantic indexing applies the sin-
gular value decomposition to a matrix of the
above set of vectors (see Berry, Dumais [3]). When
the dimension is reduced to two, the results can
be presented visually, and clusters may often
be found in this planar configuration of points.
In this sense, the latent semantic indexing ap-
proach is sometimes viewed also as a clustering
method. This dimension reduction may be con-
sidered as a way of removing noisy and/or use-
less parts in the original vectors. 'However, by
this dimension reduction, much information is
lost, and it is often the case that even after the
dimension reduction we still have to treat vec-
tors in dimensions, say. 50 to 100. Then, again,
some clustering methods based on the geometric
of this reduced space are needed.

sim(;,t;) = = cos @

~ partition of S into k subsets S; (I =

3 Dissimilarity and Clustering
Criterion

For information retrieval, using the similarity
is more natural. For example, it would eluci-
date quantitatively users or analyzers of text
databases to answer, ‘texts t; and t; matches
98%’ for very similar texts when the similarity
is 0.98.

For clustering purposes, it is more convenient
to have an appropriate definition of dissimilarity.
The dissimilarity may be defined as the minus,
inverse or minus logarithm of similarity. Since
the value of the similarity defined by the cosine
of angle has been recognized as useful, the minus
of similarity is more suitable in this case. Fur-
thermore, to treat the problem in a geometric
setting without losing any meaningful informa-
tion, we here define the dissimilarity as follows:

Definition 1 (Dissimilarity of two vectors)
The dissimilarity dis(ti,t;) between two vectors
t; and t; is defined to be 1 — sim(t;, ;).

By this definition, the all-pair sum of similar-
ities of two vectors in a cluster of I vectors is
exactly (1) minus the all-pair sum of dissimilar-
ities of two vectors in the cluster. Again, the
dissimilarity value ranges from 0 (high similar-
ity) to 1 (low similarity).

Now we proceed to defining our clustering prob-
lem. For aset S of n vectors ¢; in the d-dimensional
space, a k-clustering (Si, Ss,...,8%) of S is a
- k),

ie.,

k

Usi=
=1

Since the geometric structure of this space of
weighted term vectors has not yet fully been un-
derstood (this is left as a future problem), we
here adopt the most simple all-pair criterion for
our cluster cost:

SiNSy=0(1#0),



Definition 2 (Intracluster cost: all-pair case) Proof: For an isosceles triangle with edge length

The all-pair intracluster cost of a cluster S is
defined to be

> dis(ti, ty).
tit; €Sy
Note that dis(¢;,¢;) = 0 when ¢; = ¢;
Now, the average intracluster cost of a cluster
S; is defined to be

Definition 3 (Intracluster cost: average case)

The average intracluster cost of a cluster S is
defined to be

}Sl Z dis(t;, ]) = I l Z (Z dis(t,-,tj)) .

Ut ties €S, \tES

The intercluster cost is defined, as usual, by

the summation of all intracluster costs Intracost(S;):
Definition 4 (Intercluster cost) The interclus-

ter cost of a k-clustering (Si1,S2,.. .,
fined to be '

Sk) is de-

k
Intercost(Sh, ..., Sk) = Y Intracost(S)).

=1
Now, our clustering problem is stated as follows:
Definition 5 The clustering problem is to find
a k-clustering (S1,S2,...,Sk) of S that mini-
mizes Intercost(S1,. .., S) in each of all-pair end
average intracluster costs.

4 Normalizing Weighted Term
Vectors

The domain of weighted term vectors may not be
bounded in general. Since the similarity of two
vectors is defined by the cosine of their angle,
normalizing each vector t; to ‘

where || -|| denotes the Lz norm, does not change
the similarity value. For normalized vectors, we
have the following.

Lemma 1

dis, &) = 51 - &

1, 1 and d and angle 6 between two edges of
length 1, we have '

d? = 2(1 - cos),

which implies the lemma. ]

Thus, the clustering problem in the all-pair
case is to find a k-clustering minimizing
k -
Z Z lti - tj ”29
I=1§,t;e5
and that in the average case is to find a k-clustering
minimizing

kg -

Em > Ia-11P
=1 €S

both of which are considered in [6, 10]. It should

be noted that minimizing the average cost is

equivalent to minimizing the sum of dis(Z, t;) from

the centroid £ of the cluster to each point #;.

5 Survey of Our Previous Re-
sults to the Clustering Prob-
lem and Their Implications

5.1 Clustering into k clusters

The above clustering problem is studied in [6,
10] as the ‘all-pair sum of squared errors’ prob-
lem and ‘sum of squared errors’ problem. Op-
timum clusterings in both cases are induced by
the Voronoi diagrams [10], which are powerful
tools in computational geometry. See Figure 2
and'3. Applying the theorems in [10], we obtain
the following. o
Theorem 1 ((Inaba, Katoh, Imai [10])) The
k-clustering problem for n vectors of texts in the
space of weighted term vectors can be solved in
time O(n(@+Dk+1) and O(n®*+1) in the case of
all-pair and average cases, respectively. .0

The bounds in this theorem are polynomial
in n but exponential in d and k. In the:appli-
cation to text databases, d is not so small (in
fact, reducing d by using the principal compo-
nent decomposition, etc., is another research is-
sue for the vector-space method). In this regard,
this theorem is not so useful, although it can be



Figure 2: 3-clustering of 12 points (case of the
sum of squared distances)

Figure‘&‘ 3-clustering of 10 points (case of the
all-pairs sum of squared distances)

used to derive a nontrivial bound for the follow-
ing practical clustering algorithm.

For the average case, the following well-known
k-means algorithm works well in practice (see
(5, 7, 16])

Standard k-Means Algorithm:
Find an initial k-clustering S; (j = 1,.
n vectors &; (i = 1,. ,n),
repeat
Compute the centroid of each cluster:

| f(sj),— o 2 tJ,

155l ies,

., k) for

Update the k-clustering to the Voronoi par-
tition induced by the Euclidean Voronoi di-
agram of #(Sj); '

until a local minimum is found.

Thus, for the average case, this well-established
algorithm can be fully utilized. -

* Concerning the implementations of the k-means
algorithm, many computational-geometric tech-
niques such as near neighbor search can be ap-
plied. The nearest neighbor search problem be-
comes harder for higher dimensional problems,
and recently efficient algorithms for approximate
nearest neighbor have been proposed (e.g., see
Indyk, Motwani, Raghavan, Vempala [11]).

Besides these things, computational geome-
try can be used to find good initial solutions.
Randomized algorithm for the case of minimiz-
ing the sum of squared distances in Inaba, Ka-
toh, Imai [10} may be used. Also, a simple clus-
tering technique of dividing points by only hy-
perplanes perpendicular to some axis (e.g., see
Wan, Wong, Prusinkiewicz [17]) may be effective
in the high dimensional case. In fact; when this
clustering technique is considered from the view
point of decision functions, this has connection
with a decision tree algorithm T2 (Auer, Holte,
Maass [2]). Since initial solutions strongly af-
fects local minima obtained by the k-means al-
gorithm, this approach needs further investiga-
tions.

5.2 Finding a most related cluster

So far, we have discussed grouping object in the
“target space into k similar groups. For example,

find a group of texts, among huge collections of

" texts, having the most similarity in some mea-

sure to a given text. In such problems, finding
one group of texts which are closely rela.ted to
one another is important.

As such a type of geometric clustering with
respect to the measure used above, the problem
of finding a subset of k& points, for given &, that
minimizes the all-pair sum of squared Euclidean
distances among them is considered in Aggarwal,
Imai, Katoh, Suri {1]. By changing k& appropri-

ately, we can find a most: closely related cluster

among the target objects. Applications of such
results should also be investigated.

6 Concluding remarks

In this paper we have presented a theoretical
framework for making full use of geometry in
the space of weighted term vectors in the vec-
tor space model. Checking the efficiency of this
framework is definitely necessary for real appli-
cations, and this will be done in a subsequent



work: We do hope that our theoretically founded
framework work well in practice.
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