T Ty X L 60—-6
(1998. 1. 22)

BAOHBBELZVHAIC, kEDY— b SNAFICHT 3
‘ ' BFMEZBRCT VI XL

AR REF R

ZHBTIHRRE

EAERTER

~ Stephan Olariu
Department of Computer Science
Old Dominion University

AR T, RS S BIRFE L # { O(log nlog* n) Bl © EREW-PRAM Lo #4328
BEOEFI TN TV XL %ERT, LT, BRI~ BB O EBOY — F ENFFINEZ
bk &ic, Ea LBREERHRESR O(klog 3) RMOBRT VI) X8k LD
Fo ¥, HFRBET, Ologk(log* k + log £)) BMEFI7 v Y X &% 7T, Bk

I, Ead 0 ERMBUCOWT, . O(logn) B Q43R - BEMEED EREW-PRAM Lo
WH7 NI X L% FTT. :

Weighted and Unweighted Selection Algorithms for k Sorted
- Sequences ’

- Tatsuya Hayashi, Koji Nakano Stephan Olariu
Department of Electrical and Computer Engineering Department of Computer Science
Nagoya Institute of Technology Old Dominion University
Showa-ku, Nagoya 466, JAPAN - Norfolk, Virginia 23529, USA
{hayashi,nakano}@elcom.nitech.ac.jp ‘olariu@cs.odu.edu

Our first main contribution is to provide a novel EREW algorithm for weighted selec-
tion, running in O(log nlog” n) time with optimal work. Our second main contribution
is to propose lower bounds and matching upper bounds for selection and weighted selec-
tion in a collection A of &, (1 < k < n), sorted sequences of combined length n. While
f(n) remains a lower bound on the amount of work needed for weighted selection,
unweighted selection has a lower bound of (klog £). We go. on to propose an optimal
“sequential algorithm for selection in % ‘sorted sequences running in O(k log) time, as
well as a work-optimal EREW algorithm running in O(log k(log* k + log %)) time, Fi-
nally, we present a work-time optimal EREW algorithm solving the weighted selection -
problem in k sorted sequences, running in O(logn) time whenever k < w-b'-‘(m—".
1 Introduction 1< m < n, the (unweighted) selection prob-
lem asks for the m-th smallest item in 4. It

The model of computation adopted in this work
is the EREW-PRAM [7]. Consider a parallel
algorithm that solves an instance of size n of
some problem in time Tp(n) using p processors.
The work W(n) performed by the algorithm is
the product p x T(n). The algorithm is termed
work-optimal if W(n) = ©(T*(n)), where T*(n)
is the running time of the fastest sequential algo-
rithm for the problem. An algorithm is termed
work-time optimal [7] if it is work-optimal and,
in addition, its running time T,(n) is best possi-
ble among the work-optimal algorithms in that
model.: o o

Given a'set A of n items and an integer m,

is well-known that selection can be solved in
©(n) sequential time [2]. By parallelizing this
sequential selection algorithm, Akl [1] obtained
a work-optimal EREW selection algorithm run-
ning in O(n¢) time and performing O(n) work,
for every fixed 0 < € < 1. Vishkin [9] showed
that selection can be solved in O(lognloglogn)
time and ‘O(n) work. Later,: Cole [4] obtained
a selection algorithm running in O(lognlog*n) -

"EREW time and performing O(n) work. To this

day it is not known whether Cole’s algorithm is
work-time optimal. . i

Consider a positive number m, a set 4 = -
{a1,02,...,a,} of items, and a set of non-negative

weights {wy,ws,...,w,}, where w; is the weight
of a;, 1 < i € n. The weighted selection prob-
lem asks for the largest item a; in A for which
the total weight of the items smaller than or
equal to a; does not exceed m. It is straight-
forward to design an O(n) time sequential algo-
rithm for the weighted selection problem. As it
turns out, the task of designing an efficient par-
allel algorithm for this problem is much harder.
Somewhat surprisingly, none of the known par-
allel selection algorithms work for weighted se-
lection. This motivated Chen et al. [3] to de-
sign an EREW algorithm for this problem run-
ning in O(lognloglogn) time and using O(n)
work. Our first main contribution is to mod-
ify the unweighted selection EREW algorithm
in [3] to solve the weighted selection problem in
O(lognlog* n) time and O(n) work.

Consider a collection A of k, (1 < k < n),
sorted sequences of combined length n. Our
second main contribution is to propose lower
bounds and matching upper bounds for the prob-
lems of selection in k sorted sequences. We prove
that selection in k sorted sequences has a lower
bound of Q(klog %) time and show that this
lower bound is tight by exhibiting a simple selec-

tion algorithm running in O(klog) time. Clearly,

our sequential algorithm translates into a selec-
tion algorithm in a sorted matrix of size m X n,
(m < n), running in O(mlogn) time. Thus,
whenever m < n!~¢ for every fixed € > 0, our
sequential algorithm matches the running time
of the optimal sequential algorithm in [6]. We
also propose a work-optimal EREW algorithm
running in O(logk(log” k + log)) time using
- O(klog %) work.

A matrix is sorted if its rows and columns are

independently sorted. Frederickson and Johnson[6]

offered an optimal sequential selection algorithm
in a sorted matrix of size m x n, (m < n), run-
ning in ©(m log &) time. Quite recently, Shen [8]
presented an EREW-PRAM algorithm for selec-
-tion in a sorted matrix of the same size run-
ning in O(log mlog” m(loglogm + log &)) time
and using O(EET;'T"@?'H) processors. Shen’s al-
gorithm is work-optimal whenever mlogm < n.
When applied to a sorted matrix of size m x n,
(m < n), our algorithm runs in O(log m(log* m+
logn)) time and O(mlogn) work. Thus, when-
ever m < nl~¢, our algorithm is work-optimal
even for sorted matrices and runs faster than
Shen’s algorithm [8].

Next, we address the weighted selection prob-
lem in k sorted sequences. Although (unweighted)
selection can be performed in sublinear time,
Q(n) remains a lower bound on the work needed
for weighted selection. We show that for k <

E-(a’{ﬁy; the weighted selection problem in k&
sorted sequences can be solved by a work-time
optimal EREW algorithm in O(logn) time and
O(n) work. Since Q(log k) is a time lower bound
for this problem, regardless of the number of
processors, our algorithm is work-time optimal
whegever nf <k < W&m for every fixed
€> 0.

2 Preliminaries

Let A = {ai,az,...,0,} be a set of distinct!
items with each a; having a weight w; > 0. Enu-
merate A in sorted order as ai1) < ayz) <--- <
ai(ny. We say that ay) is the i-th smallest item
in A or that its rank is i. The weighted.rank of
ay;) is defined to be r(I(1)) = wyr) +wyg)+-- -+
Wi(s)-

Given a positive number m, the weighted se-
lection problem asks for the item a;;) in A, if
any, satisfying 7(I(i)) < m < r(I(i + 1)). I such
an item ay(;) exists, it is termed the item of lower
weighted rank m. The item of upper weighted
rank mis ay;) if r(1(i)) = m and ay;4q) oth-
erwise. It is obvious that the task of selecting
the m-th smallest item has a time lower bound
of Q(n) because, in the worst case, every item
must be accessed at least once. This implies
an (n) lower bound for the weighted selection
problem as well. The problem can be solved in
O(n) time as follows:

Sequential-Weighted-Selection(A,m)

Step 1 If n = 1return 1 or @ depending on whether
of not wy < m;

Step 2 If n > 1 compute the [3]-th smallest item
of A and its weighted rank r;

Step 3 If r = m then output z. If r > m then
remove all items larger than z and recursively
find the item of lower weighted rank m among
the remaining items. Otherwise, remove z and
all items smaller than z and recursively find
the item of lower weighted rank (m—r) among
the remaining items.

Since each recursive call takes linear time and
the number of remaining items is reduced by
half in each recursive call, we have the follow-
ing result.

Lemma 2.1 An arbitrary instance of size n of
the weighted selection problem can be solved op-
timally in ©(n) time.

1This is not really a restriction, since we can make
all the elements distinct by interpreting them as ordered
pairs of the form (a;,1).

3 A parallel algorithm for
weighted selection

In this section we present a work-optimal EREW
algorithm for weighted selection. This algorithm
is based on the technique used by Cole’s parallel
unweighted selection algorithm [4]. We begin by
taking note of the following naive solution.

Naive-Weighted-Selection(4,m)

Step 1 Sort A = {a1,az,..

.,a,,} as ai(1) < ai(2) <
-+ < Gi(n); :

Step 2 Compute the prefix sums of the correspond-
ing weights wy), wi(a), .. .y Wi(n) and deter-
mine the weighted ranks r(I(1)),r((2)), ...,
r(I(n));

Step 3 Find the index i satisfying r(I(i)) < m <
r(1(i+1)) and return ay(;y as the item of lower
weighted rank m.

Clearly, the complexity is dominated by Step 1
that runs in O(log n) time using n processors [5].
Thus, we have

Lemma 3.2 An arbitrary instance of size n of
the weighted selection problem can be solved in
O(logn) time and O(nlog n) work on the EREW.

Similarly to the Cole’s parallel unweighted
selection algorithm [4], we present an approxi-
mate weighted selection algorithm. Consider the
sequence defined by ¢; = 1 and by #;41 = 2% for
i 2 1. Clearly, logn < tiog*n < n. Consider
the weighted selection problem with parameters
(A,m), where A = {al,ag,...,aﬂ.}. Write A
in increasing order as ayqy < ag'(z) < - <
al(.qr) and let ay,) be the item in A of lower
welghted rank m. The following algorithm finds
a good approximation of ay,) in O(logn) time
and O(£) work. More precisely, the a.lgonthm
returns the item a5y satisfying s — W <
s <s. e

Approximate-\vleighted-Selection(A, m)

Step 1 If ¢; > logn, then use algorithm
Naive-Weighted-Selection to find the exact
solution and EXIT. Otherwise, execute the
following steps.

Step 2 Partition A4 into —4—-; subsets A;, A3,..

_‘_n_,. each of size 4t,+1, such that for each
|+l i

(A< < —;—r), 4; = {a4tg+1(;-1)+1,---,

Qg it Sort each Ajasaj1<ajp<- <

B0t and let wj,x be the weight of a;,x.

Step 3 Pa.rtltlon each sequence A; into 4t7,, sub-
sets Aj1,Aja,.. of 13, items each

.4:3 +1k}

,«7 1 (F=1)+1

-1 4j, i
such that 4;; = {ah“'z+1 (k=1)+1>- -
Compute the total weight w} , =
+ot Wil & of each A; 1.

Step 4 Let a,,,, denote the item a;, “l, ks that is,
the last item in A;; and denote its weight
by w} ;. Run the algorithm recursively w1th
Pm"te’s A= U1<J<_rn_,. 1<hg el

and m, a.nd return the resultmg item as ay(,/).

Note that if ¢; > logn, Step 1 runsin O(logn)
time with O(El-"-f—) < O(f) work, I t; <

logn, Step 2 runs in O(log(4t,+1)) = O(t;) time
with O(4t},, log(4tf,,)) = O(t},,t;) work for
each subset A;. Thus, the total work in Step
2 is O(t}, ;) x m——; = O(f). Step 3 takes
O(logt},,) = O(t,) time and 0(-;) work. In
Step 4, A’ has 4t%; x Tw =TT
items. Hence, the next recursive call in Step
4 needs O(t;41) time and O(3%;) work. Thus,
the total time in all the recursive calls is O(t;) +
O(t,+1)+ -+O(log n) O(logn) and the work
is O(#) +0(‘ﬂ)+ +0(1——) =0($)-
Let ay,) be the item of lower weighted rank
m in A and let aj(y) be the item returned by
the algorithm. Assume that ay(yr) is the item in
A’ of ezact lower weighted rank m and refer to
Figure 1. Here, the shaded part illustrates the
items in A smaller than or equal to ay,). The
dark circles denote items in A’ smaller than or
equal to ay,n. It is clear that, in each A;, the
“error” is bounded by t,_,,1 Thus, the total error
does not exceed ¢, x —-;——7 E’;—" In other

words, ay(,) is the item of lower weighted rank

m with an error of at most W Now, assume

that Step 4 finds the welghted m-th item aj(,ry of
A’ with error e;4;. With this assumption, ay(ar)
is the item of lower weighted rank m with error
at most t2+1 X (4—t4—7+e.+1) = m—t?+t'+le'+1

Thus,e,—Olf:-—log na.nde,_;t-m+

X t! < t’

t31eip1 for 1 < i < log*n — 1. It is easy ‘to
show that e; < z—tﬁ,— for1<i<log*n-1.

Lemma 3.3 With a collection A of 3 7 weighted

items and a positive number m as mput algo-

rithm Approximate-Weighted-Selection returns

an approzimation to the item of lower weighted

rank m with error at most sT— in O(logn)
341

time and O(}) work on the EREW.

With minimal modifications the above algorithm
produces an approximation to the item of upper

"W N IONNONNONN®
 \omEomemN oM«
NN N Y omue
Y N N N omIome
NN () 0

P
4174

.
BN
N N -

MW W N YHOENOE
N k\!.-.-ﬂ-‘-

i

Figure 1: Illustrating the ftems smaller than ay).

weighted rank m as well. Speciﬁcally,,if ay(z) is
the item of ezact upper weighted rank m, we ob-
tain an item a;(,n such that z < 2’ < z+2‘t’3?1‘+_1'

Observe that, in the previous notation, s’ < 8 <
z < z' and so we can eliminate all the items out-
side of these bounds. Using this fact, Cole’s par-
allel unweighted selection algorithm [4] repeats
" the approximate unweighted selection algorithm
to remove items that cannot be the item to be
selected. More precisely, in the i-th iteration
(1<i<log* n), the number of items is reduced
from 5 to ;g— In the same manner, by repeat-

ing Appronmate-We1ghted-Se1ect10n, we can
find the exact weighted item. Due to stringent
page limitations, the details are omitted. The
reader should refer to [4] for this iteration tech-
nique. Thus, we have the following result.

Theorem 3.4 An arbitrary instance of size n
of the weighted selection problem can be solved
in Olognlog” n) time and O(n) work on the
EREW.

4 Unwelghted selection in &
sorted sequences

Let A be a collection of k sorted sequent:es All, Az,

., Ag of combined length n. The problem is to
retum the m-th smallest item in A. To prove
a lower bound on the computing time for se-
lection in k sorted sequences, we introduce the
checking problem for selection as follows: given
k sorted sequences Aj, Ag,..., Ak, and an item

z, decide whether z is the m-th smallest item in
the collection. Clearly, the checking problem is
not harder than selection and, consequently, any
lower bound for the checking problem is also a
lower bound for selection.

If the rank of z with respect to some A; is
not known, then we cannot decide whether the

.rank of z is m. Thus, the rank of x with respect

to every A; has to be computed. To compute
the rank z with respect to A;, Q(log|4;|) com--
parisons are necessary; If each |A;| has } items
then, overall, {(klog %) time is required to check
whether z is the m-th item. Thus, we have

Lemma 4.5 Any algorithm that correctly solves
the selection problem in k sorted sequences of
combined length n requires Q(klog §) time in the
worst case. .

4.1 - An optimal sequential algorithm

In this subsection we design an sequential algo-
rithm matching the lower bound we just proved.
Our idea is simple: in each iteration we remove
a constant fraction of the number of items that
cannot be the m-th smallest item. This removal
is repeated O(log £) times, until the number of
items is reduced to O(k), at which moment we
use the selection algorithm of [2]. -

To remove a constant fraction of the remain-
ing items in O(k) time, we develop a novel sam-
pling technique. Forsimplicity, assume that m >
2. Select a sample B = {bi,bs,...,bi} by re-
taining in each A; the LL‘%ﬂJ'th smallest item
b;. (In case A; has fewer than four items, we

set b; = +o00.) The item b; partitions A; into
two subsequences A7 = {z € 4; | = < ¥}
and AT = {x € A; | z > b;}. With every
sample item b; in B we associate the weight
w; = |Ai]. Notice that the total weight of B is
n. By reindexing A4, As,..., Ay for'the sorted

order of B we assume without loss of generality -

that b; < by < -+- < by,

Next, having selected the item b, of upper
weighted rank % in B, we proceed to partition
B into two subsets B~ = {by,bs,...,b,}, and
B* = {bs41,bs+2,..-,bk}. We now partition A

into six subsets: A=~ = A7 UA; U.--UA,,
A =AfUAFU---UAL,, At = 45, U

ASia U UAL, A% = AT UAY,U---UAL,
A7, and A}, as illustrated in Figure 2.

Lemma 4.6 If m > 3 then AU A cannot
contain the m-th smallest item in A.

Proof. Since b, is the item of upper weighted -
rank 7 in B, A™7 U A~ contains at most | %]
items. Also, since each A; has [‘%51_] items of
Ai, A7 U A7 U At has at most 2] items.
Thus, A7~ UA7 UA+*~ U A+ has less than 3
items, and A** U A} has more than 2 items. -
Further, every item in At U A7 is larger than
bs. Hence, the m-th smallest item must be larger
than b,. Also, no item in A=~ U A is larger
than b;. Thus, A=~ U'A; cannot contain the
m-~th smallest item in A. [Lemma 4.6 guar-
antees that all the items in A=~ U A; can be
removed from further consideration. As it turns
out, A""UA; has approximately 1% items. Thus,
we can remove a constant fraction of the remain-
ing items. Note that if m < §, we can remove
items'in a symmetric way.

Lemma 4.7 A™~U A contains at least ﬂ-_i},i"
items. :

Proof. Since b, is the item of upper weighted
rank £ in B, ATTUATUATUAY = A3 U
A2 U--- U A, contains at least § items. Since
each b; is the l_l%l_[-th smallest item in A;, we
have |A"" UAS| = 37, Uﬁ}l_l > Wi Aulee :il-s. >
n~12s ~ n—12k O K)
16 = 16 *

Lemmas 4.6 and 4.7 suggest the following selec-
tion algorithm in- & sorted sequences.

Selection-in-Sorted-Sequences(4,m)

Step 1 Compute the total number of remaining items
and chieck whether it is less than or equal to
13%. o o

Step 2 Ifat most 13k ifems remain, find m-th small-
est item in O(k) time and EXIT. Otherwise,
execute the following steps.

Step 3 Check whether or not m > 2.

Assume,
without loss of generality, that m > %.

Step 4 Select asample B by retaining the]_l‘%‘-lj-th
smallest item in each 4; .

Step 5 Find b,, the item of upper weighted rank %
in B, - !

Step 6 Remove all items in A=~ U 4;.

Step T Compute the number m' of items removed
in Step 6.

Step 8 Recutsively find the (m — m')-th smallest
item in the remaining items.

The correctness follows directly from Lemma 4.6.
Initially, the sequences A;, Az, ..., A} are stored
in an array a[l..n]. For definiteness, assume
that the items in A; are a[l],a[2],...,qa[|4:]],
the items in A3 are af|A; |[+1], a[| 43]4+2], . . . a[| 41 |+
|[Azf], and so on. Since the remaining items
in each A; form an interval, we use two arrays
u[1..k] and v[1..k] such that for every i, (1 < i <
k), the items remaining in A; are a[u[3]], a[u[s] +
1],...,a[v[f]]. The arrays u and v are updated
in Step 6. S

Observe that the number of items.in 4; is
v[é] — u[é] + 1. Thus, the total number n’ of re-

‘maining items can be computed in O(k) time.

After that, checking whether n’ < 13k can be
done in O(1) time. Therefore, Step 1 runs in
O(k) time. In Step 2 we use
Sequential-Weighted-Selection. By Lemma 2.1
this takes O(k) time. Since the total number n’
of items is computed in Step 1, Step 3 takes O(1)
time. Since afufs] + | L= |] s the | 144l |-th
smallest item in each A;, Step 4 takes O(k) time.
Step 5 uses Sequential-Weighted-Selection
and takes O(k) time. Finding items in B smaller
than or equal to b, can be done in O(k) time
in the obvious way. After that, to remove all
items in A™™ U A7 we update the arrays » and
v in O(k) time. For example, u[1] is updated by
uft] + U=+ | 49, Thus, Step 6 takes O(k)
time. Step 7 runs in O(k) time. Thus, all the
steps can be performed in O(k) time.

To estimate the depth of the recursion, let
S(t) denote the number of remaining items in
the ¢-th recursion level. Clearly, S(0) = n. Lemma 4.7
implies that for ¢ > 1, S(t) < S(¢-1)— §(t—3——m.
The solution:of this recurrence satisfies for all
t>08(t) < (-%%)t n+12k. The recursion termi-

‘nates when S(t) < 13k. Hence, the depth of the

recursion is the smallest T' satisfying (-}g—)r n+
12k < 13k implying that T = O(log £). To sum-
marize, we proved the following important re-
sult.

(b

_ b |
A (]_ I I At
A7 b, | M
_J
C L
. I IA'H'
]
on |
(6]

Figure 2: Nlustrating the partitioning of A.

Theorem 4.8 The task of selecting the m-th

most, §. Let b, be the (unknown) item of upper

smallest item in a collection of k sorted sequences weighted rank F. Further, let b3 < b2 < -+ <
of combined length n can be performed in O(klog £ be—1 be the items in B smaller than b,. Then,

time. Furthermore, this is the best possible.

4.2 A work-optimal parallel algo-
' rithm

We begin by discussing a simple parallelization

of the sequential algorithm of the previous sub-

section. By Theorem 3.4, Steps 2 and 5 can

be implemented in O(log k log* k) time and O(k)

work. All the other steps can be implemented

to run in O(logk) time and O(k) work in the

obvious way. Thus, each recursion level takes

O(logklog* k) time and O(k) work. Since the

depth of the recursion is O(log £), the algorithm
can be implemented to run in O(log klog" klog %)
time and O(klog §) work.

We now show that with a careful implemen-
tation the above algorithm can run in
O(logk(log™ k + log 2)) time, while performing
the same amount of work. The first idea is to use
Approximate-Weighted-Selectionin Step 2 in-
stead of the algorithm for Theorem 3.4. Indeed,
if we use algorithm
Approximate-Weighted-Selection in Step 2,
and if we can still guarantee that a constant frac-
tion of items are removed in each recursive call,
the computing time remains the same. How-
ever, we cannot ensure this fact as we are going
to show. Lemma 3.3 guarantees that, for every
fixed ¢ > 0, an item with an error bound of at
most 2 can be found in O(logn) time and O(n)
work. Now, in Step 5, instead of finding the item
of upper weighted rank % we find the item of
upper weighted rank & with an error of, say, at

in the worst case, the approximate item com-
puted by Approximate-Weighted-Selection is
b,_x. Let us estimate the number of items that
will be removed. Imagine that the input is par-
titioned into six subsets, with respect to b,_x,
as described in the previous subsection. If each
of A3, As,... ’A"'f has few items and Aa—§'+l’
A"‘i"'?’ ..., A; have many items, we cannot
guarantee that the set A™~ U A7 b contains a

constant fraction of the remaining items.
However, in case none of the sequences A;
has too many items, we can guarantee that A~~U

A]_, contains a constant fraction of n. To guar-

antee this, each sequence is temporary parti-
tioned into subsequences. More precisely, each
A; is partitioned into [H%I] sorted sequences,
each of size at most |£|. For example, 4;

-{a1,az,...} is partitioned into subsequences A; ;

= {a1,a2,..., GL*J}, Az =~{a|'ilj+1’ A2 |+230
azig)}, ..., and the last sequence may have
fewer than |} | items. After partitioning, the in-
put is partitioned into at most 2k subsequences,
each of size at most [£]|. Note that the items

. need not be moved. The only thing we need is to

extend the arrays u[1..k] and v{1..k] into u'[1..2k]
and v'[1..2k]. For example, if A, is partitioned
as discussed above then #/[1] = 1,4/[1] = |[}],
w'[2] = |#] + 1, v'[2] = 2| %], and so on. This
extension can be done in O(log k) time and O(k)
work using an optimal prefix-sums algorithm [7].
After this partitioning, Steps 1 to 4 of

Selection-in-Sorted-Sequences are executed
for the resulting subsequences. In Step 5, the

item of approximate upper weighted rank % in

B with error at most —'§ is computed by using

Approximate-Weighted-Selection. Since B has
at most 2k items, this can be done in O(logk)

time and O(k) work. Let b, be the item re-

turned. The items in B smaller than b, are

retained in the same way as in Step 6. After
that, we update the arrays u[1..n] and v{1..n] to
remove the items in A™~ U A,/. Notice that we
do not update 4'[1..n] and v'[1..n]. It is possible
that B has several items in A; and two or more of
them are smaller than by. In this case, each uli]

is updated by the maximum of the smaller items
for A;. For example, assume that both A; ; and

Ay 2 have an item in B smaller than b,, and
A3 does not have such an item. Then, u[l]

is updated by u/[2] + [”—'E]:—“'EIJ Once this is
done, the algorithm is executed recursively for
the updated arrays u[l..n] and v[1..n].

The partitioning we discussed increases the
number of sequences to at most 2k, but ensures
that each sorted sequence has at most | £ items.
Thus, we can ensure that at least "‘12" - !s‘- X
i = ”'324" items are removed in Step 6, con-
ﬁrmmg that the depth of the recursion is still
O(log £). Note that in Step 2, if the number
of the remaining item is at most 25k then the
weighted selection algorithm for Theorem 3.4 is
used. In this case, the weighted selection al-
gorithm runs in O(log klog” k) and O(k) work.
Thus, we have

Theorem 4.9 The task of selecting the m-th
smallest item in a collection of k sorted sequences
of combined length n can be performed in

O(log k(log™ k-+log %)) time and O(klog %) work
on the EREW. Furthermore, this is work-optimal.

5 Weighted selection in &
sorted sequences

In this section we present a parallel algorithm for
weighted selection in k sorted sequences A4;, A,
-» A, of combined length n. Since every weight
must be accessed in the worst case, the weighted
selection problem needs 2(n) sequential time.
In the ¢-th iteration of the algorithm for The-
orem 3.4, the number of items is reduced from
-,- to pf~. Thus, we have the following conse-
quence.

Corollary 5.10 Given % = weighted items and a

number m > 0, the items of lower (resp. upper)
weighted rank m can be found in O((log*n —i +
1)logn) time and O(n) work.

Using the above as a subroutine, the following

algorithm finds the item of lower weighted rank

m in % sorted sequences A, A, ..., A.&. of total
i H

length n.

Weighted-Selection-in-Sorted-Sequences(A,m)

Step 1 Partition each sequence into subsequences
of size t?. For example, A, is partitioned into
subsequences A;,; = {a1,az,... 1842 } A=
{241,043, .-,852}, and so on. Compute
the total ;veight w;; of each subsequence A;,;
and let a;,; denote the largest item in A; ;.
Let A’ be the set of all the items a;, ;, each
with weight w; ;.

Step 2 Compute the items of lower and upper weighted
rank m in 4'.

Step 3 From each sequence A, remove all items
smaller than the item of lower weighted rank
m. Compute the total weight m' of the items

removed. Remove all items larger than the
item of upper weighted rank m.

Step 4 Return the item of lower weighted rank (m—
m') among the remaining items.

Step 1 partitions the input into at most -1 +

< subsequences Consequently, A’ has at

most 7 items. Corollary 5.10 guarantees that

Step 2 runs in O((log" n — i + 1) logn) time and
O(n) work. Step 3 takes O(log n) time and O(n)
work, Since no item in B is between the items of
lower and upper weighted rank m, each sequence
A; has at most ? remainmg items. Hence, al-
together, at most ¢? x —; = I;' items remain.

Thus, Step 4 can be performed in O((log*n —
i + 1)logn) time and O(n) work. Thus, the
item of lower weighted rank m can be found in
O((log n—i+1)logn) and O(n) work. To sum-
marize, we state the following result.

Theorem 5.11 Given 5 # sorted sequences with
weighted items of combmed length n and a pos-
itive number m, the items of lower and upper
weighted rank m can be found in O((log* n—1 +
1)logn) time and O(n) work.

Let t; = log(o(l)) n. As a corollary, we have,

Corollary 5.12 Given k sorted sequences with
weighted items of combined length n and a pos-
ilive number m, the items of lower and upper
weighted rank m can be found in O(log n) time
and O(n) work, whenever k < _(D'(TD—

Hence, for example, if subsequences of log(o(l)) n
items each are sorted locally, then the weighted

selection can be done in O(log n) time and O(n)
work. Further, in this case, this algorithm is
work-time optimal. .

Acknowledgment

This work is supported in part by NSF grant
CCR-9522093, by ONR grant N00014-97-1-0526,
by Grant-in-Aid for Encouragement of Young
Scientists (09780262) from Ministry of Educa-
tion, Science, Sports, and Culture of Japan, and
by a grant from the Hori Information Science
Promotion Foundation.

References

[1] S. G. AKL An optimal algorithm for parallel
selection. * Information Processing Letters,
19(1):47-50, July 84.

M. Blum, R.W. Floyd, V.R. Pratt, R.L.
Rivest, and R.E. Tarjan, Time bounds for
selection. Journal of Computer and System
Sciences, (7):448—461, 1973.

[3] D. Z. Chen, W. Chen, K. Wada, and
K. Kawaguchi. Parallel algorithms for par-
titioning sorted sets and related probles.
In Proc. 4th European Symposium on Algo-

_ rithms (ESA’96, LNCS 1136), pages 234
245, 1996.

[4

[2

—_—

R. Cole. An optimally efficient selection
algorithm. Information Processing Letters,
26:295-299, January 1987.

[5] R. Cole, Parallel merge sort. SIAM Journal
on Computing, 17:770-785, 1988.

[6] G. N. Frederickson and D. B. Johnson,
Generalized selection and ranking: sorted
matrices, SIAM Journal on Computing,
13:14-30, 1984.

[7] 1. JaJ4. An Introduction to Parallel Al-
gorithms. Addison-Wesley, Reading, MA,
1992, '

—

[8] H. Shen, Generalized parallel selection in
sorted matrices, Proc. Eight IEEE Sympo-
sium on Parallel and Distributed Systems,
October 1996, 281-285.)

[9] U. Vishkin. An optimal parallel algorithm
for selection. In Advances in Computing Re-
search. JAI Press Inc., Greenwich CT, 1987. -

