7N I YU X A 60—4
(1998. 1. 22)

TET 5 7 BRI & DEREHAREIC DV T

&¥ 1°* Peter Eades'

* RERAZ TR 54 606-01 naga@kuamp.kyoto-u.ac.jp
t =2 —% ¥ R VK% eades@cs.newcastle.edu.au

H5EL FRXTE., LLEHLETEES 77 G (727201, kidBE»5\Vid k=3)
DEEDH s I2BWVWT, 777D LLEKELTEERRARICRD L) L%
WEBHREDFET B2 L 2R L. 20 &5 lBBREERD S O(ndlogn) B
BMO7PNTY)X8%E522%, 22T, n iz A0, k5 U LOFROBEICITE
D& HMERBRIEL R RVT T 7 ORBFET 5. F LVaDEERErHv

AL HEEY T ICRABODLEMAPESEERo % T LDEEICREICH
KEEBHEE O(nBlogn) BT T LHTES (72720, kidBEED I VI
k=3).

¥—7—-F ®WS 57,5877, FAY 77, 0FHES T 7, LEHKE, DiEERF,
B/hH o b

Edge-Splitting and Edge-Connectivity Augmentation
in Planar Graphs

Hiroshi Nagamochi* Peter Eadest

* Dept. of Applied Mathematics and Physics
Kyoto University, Kyoto, Japan 606-01
‘naga@kuamp.kyoto-u.ac.jp
-t Dept. of Computer Science and Software Engineering
University of Newcastle, NSW 2308 Australia
. eades@cs.newcastle.edu.au

Abstract In this paper, we prove that, for a k-edge-connected planar graph G

" where k is an even integer or k = 3, there exists a complete splitting at s such
that the resulting graph G’ is still k-edge-connected and planar, and present an - .
O(n? log ) time algorithm for finding such a splitting, where n = |V|. However,
for every odd k > 5, there is a planar graph G with a vertex s which has no such
cbmplete splitting. As an application of ‘this result, we show that the problem

~ of augmenting the edge-connectivity of an outerplanar graph to an even integer
‘can be solved in O(n3logn) time.

"~ key'-words - undirected graph, ~multigraph, planaf gra,ph, outerplanar graph, edge-
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1 Introduction

Let G = (V;E) stand for an undirected multi-
graph, where an edge with end vertices u and
v is denoted by (u,v). For a subset! S C V
in G, G[S] denotes the subgraph induced by S.
For two disjoint subsets X,Y C V, we denote
by Eq(X,Y) the set of edges (u,v) with u € X
and v € Y, and by cg(X,Y) the number of edges
in Eg(X,Y). The set of edges Eg(u,v) may al-
ternatively be represented by a single link (u,v)
with multiplicity cg(u,v). In this way, we also
represent a multigraph G = (V, E) by an edge-
weighted simple graph N = (V, Lg, cg) (called a
network) with a set V' of vertices and a set Lg
of links weighted by c¢g : Lg — Z*, where Zt is
the set of non-negative integers. We denote |V|
by n, |E| by e and |Lg| by m. A cut is defined
as a subset X of V with @ # X # V, and the
size of the cut X is defined by cg(X,V — X),
which may also be written as cq(X). If X = {z},
cg(x) denotes the degree of vertex z. For a
subset X C V, define its inner-connectivity by
Ag(X) = min{ce(X’) | 0 # X' C X}. In par-
ticular, Ag(V) (i.e., the size of a minimum cut
in G) is called the edge-connectivity of G. For a
vertex v € V, a vertex u adjacent to v is called a
neighbor of v in G. Let I'g(v) denote the set of
neighbors of v in G.

Let s € V be a deszgnated vertez in V. A
cut' X is called s-proper if @ # X C V — s.
The size Ag(V — s) of a minimum s-proper cut
is called the s-based-connectivity of G. Hence
Ag(V) =
eration at s replaces two edges (s, u) and (s, v) in-
cident to s with a single edge (u,v). A set of split-
ting operations at s is called complete if there is no
edge incident to s in the resulting graph. A split-
ting at s is (k, 5)-feasible if Ag/(V — s) > k holds
for the resulting graph G’. Lovész [6] showed the
following important property:

Theorem 1.1 [2, 6] Let G = (V, E) be a multi-
graph with a designated vertex s € V with even
cg(s), and k be an integer with 2 < k < Ag(V -
). Then there is a complete (k,s)-feasible split-
ting. |

Since a complete (k, s)-feasible splitting effec-

A singleton set {z} may be simply written as z, and

“ C” implies proper inclusion while  C ” means “ C” or
[

min{Ag(V — s),cg(5)}. A splitting op-

tively reduces the number of vertices in a graph
while preserving its s-based-connectivity, it plays
an important role in solving many graph connec-
tivity problems (e.g.; see [1, 2, 8]).

In this paper, we prove a new type of exten-
sion of Lovész’s edge-splitting theorem, aiming to
solve the edge-connectivity augmentation prob-’
lem with an additional constraint that preserves
the planarity of a given planar graph. Firstly, -
we consider the following type of splitting; for a
multigraph G = (V, E) with a designated vertex
s, let Tg(s) = {wovwh""wp—l} (p = IFa(s)])
of neighbors of s; and assume that a cyclic order
7w = (wo, w1, ..., wp—1) of ['g(s) is given. We say

that two edges e; = (wp,w;) and ez = (w;j,wy)
are crossing (with respect to m) if e; and e;
are not adjacent and the four end vertices ap-
pear in the order of wp, wj, wi, w, along 7 (ie.,
h+a=j+b=1i+c=£(mod p) holds for some .
1<c<b<a<p-1). A sequence of splittings
at s is called noncrossing if no two split edges re-
sulting from the sequence are crossing. We prove
that there always exists a complete and noncross-
ing (k, s)-feasible splitting for even integers k, and
such a splitting can be found in O(n%(m+nlogn))
time.

Next we consider a planar multigraph G =
(V,E) with a vertex s € V of even degree.
A complete splitting at s is called planarity-
preserving if the resulting graph from the split-
ting remains planar. Based on the result of non-
crossing splitting, we prove that, if k is an even

. integer with k < Ag(V — s), then there always

exists a complete (k,s)-feasible and planarity-
preserving splitting, and the splitting can be
found in O(n® logn) time. For k = 3, we prove by

. a separate argument that there exists a complete

(k, s)-feasible and planarity-preserving splitting if
the resulting graph is allowed to be re-embedded
in the plane.

Example 1 (a) Fig. 1(a) shows a graph Gy =
(V, E) with ¢g, (s,w;) = 1 and cg, (w;, wi41) = @,
0 < i < 3 for a given integer a > 1. Clearly,
Mg, (V —s) = k for k = 2a+ 1. For a cyclic
order 7 = (wp, w1, w3, w3), G1 has a unique com-
plete (k, s)-feasible splitting (i.e., splitting pair
of (s,wp), (s, ws) and a pair of (8, w1), (s, w3)),
which is crossing with respect to 7. This implies
that, for every odd k > 3, there is a graph G with
a designated vertex s and a cyclic order of I'g(s)
which has no complete and noncrossing (k, s)-
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feasible splitting. Note that the planar G; has a
complete and planarity-preserving (k, s)-feasible
splitting (by putting one of the split edges in the
inner area of cycle C; = {wp, w1, ws, w3}).

(b) Fig. 1(b) shows a planar graph G, = (V, E)
with eg, (Wi, wit+1) = a (mod 12) for 0 < 1 < 11
and cg,(e) = 1 otherwise for an integer a > 1,
which satisfies Ag,(V — s) = k for k¥ = 2a + 1.
The G, has a unique complete (k, s)-splitting,
which is not planarity-preserving unless the em-
bedding of subgraph G3[V — s| is not changed;
if G3[V — 3] is re-embedded in the plane so that
block components {w3, w3, ws} and {ws, we, w10}
of Go[V — s} are flipped and two vertices w3 and
wy share the same inner face, then the complete
(k, s)-splitting is now planarity-preserving. From
this, we see that for every odd k > 3, there is a
planar graph G with a designated vertex s which
has no complete and planarity-preserving (k, s)-
feasible splitting (unless the embedding of G is
re-embedded). '

(c) Let @ > 2 be an integer, and consider
the graph G3 = (V,E) in Fig. 1(c), where
cgs (wi, wi1) = a for i € {1,7}, cgy(wi, wiy1) =
a (mod 12) for < € {0,1,...,11} — {1,7}, and
cg;(e) = 1 otherwise. 'Clearly, Ag (V' —s) =k
for k. = 2a +1 (> 5). It is easily observed
that the unique complete (k, s)-feasible splitting
is not planarity-preserving for any choice of re-
embedding of G in the plane. This implies that
for every odd k > 5, there exists a graph which
has no complete and planarity-preserving (k, s)-
feasible splitting even if re-embedding after split-
ting is allowed. ‘ a

2 Preliminaries

2.1 Computing s-based connectivity

The vertex set V' of a multigraph G = (V, E) are
denoted by V(G). We say that a cut X separates
two disjoint subsets Y and Y/ of Vif Y C X C
V-Y (ot Y C X CV-Y). The local edge-
connectivity Ag(z,y) for two vertices z,y € V is
defined to be the minimum size of a cut in G that
separates z and y. A cut X crosses another cut
Y if none of subsets XNY, X -Y,Y — X and
V - (X UY) is empty.

An ordering vy, vs,...,v, of all vertices in V
is called a mazimum adjacency (MA) ordering
in G if it satisfies cc({vi,va,...,vi},vip1) 2>
cG({”lv”Za"'svi}avj)y 1<5i<j<n

Lemma 2.1 [7] Let G = (V, E) be a multigraph,
and vy be a vertez n V.

(i) An MA ordering v1,vs,...,vn of vertices in G
can be found in O(m + nlogn) time.

(i) The last two vertices vi—; and v, satisfy
Ag(Vn-1,v) = cg(vn). m]

Lemma 2.2 For a multigraph G = (V, E) with
a designated vertez s € V, a cut X* such that
ce(X*) = Ag(V ~ 5) < Ag(X*) can be computed
in O(n(m + nlogn)) time. o

Figure 1: Example of three planar graphs (a) Gi, (b) Gy and (c) Gs.



2.2 Splitting edges for a pair of neigh-
bors

Given a multigraph G = (V,E), a designated
vertex 5 € V, vertices u,v € I'g(s) (possi-
bly u = v) and a non-negative integer 6 <
min{cg(s,v), cg(s,v)}, we construct graph G =
(V, E') from G by deleting & edges from Eg(s,u)

and Eg(s,u), respectively, and adding new &

edges to Eg(u,v). We say that @' is obtained
from G by splitting § pairs of edges (s,u) and
(s,v) by size 6), and denote the resulting graph
G' by G/(u,v,6). Clearly, for any s-proper cut
X, we see that

€G/(u,6)(X)
_Joce(X)-26 ifuveX
= { ca(X) otherwise. (2.1)

Given an integer k satisfying 0 < k < Ag(V - 8),
we say that splitting 6 pairs of edges (s,u) and
(s,v) is (k, 8)-feasible if Ag)(uu,6)(V — 8) 2 k.
For an integer k, let Ag(u,v,k) be the maxi-
mum & such that splitting edges (s, ) and (s,v)
with size & is (k, s)-feasible in G. In this subsec-
tion, we show how to compute Ag(u,v,k). An

s-proper cut X is called (k, s)-semi-critical in G

if it satisfies cg(s,X) > 0, k < cg(X) < k+1
and Ag(X) > k.

An algorithm, called MAXSPLIT(u,v, k), for

- computing Ag(u,v, k) is described as follows. -

1. Let 6maz = min{cg(s,u),ca(s,v)} if v # v,
and bpmaz = |ca(s,4)/2) if u = v, and let Gmaz =
G/(u, v, 8maz)-
2. Compute Ag,,,.(V —s) and an s-proper cut X
With €G,m0e (X) = AGmae(V—8) < AGpmas (X ) (such
X exists by Lemma 2.2). If Ag,...(V —38) 2 k,
then Ag(u,v,k) = Smas, Where at least one of u
and v is no longer a neighbor of s in Gmaz in the
case u # v, OF €G,,,. (8, u) £ 1 in the case u = v.
3. If k— Ag,...(V =) > 1, then u,v € X (for

otherwise cg(X) = €Gpae(X) < k would hold)."

Output Ag(t, v, k) = maz — [3(k = AGma. (V —
5))] and the s-proper cut X assuch a (k, 8)-semi-
critical cut with u,v € X. ‘

The correctness of step 2 is clear. In step 3,
we see from (2.1) that G’ = G/(u,v,6) with § =
bmaz— [ (k= AGrmas (V —5))] satisfies A (V —39) =
k or k -+ 1. This implies that Ag(u,v,k) = 6. We
show that the X has a property that

ce'(Z)> ce(X) for any Z with u,v€ZCX,

where we call such a.(k, s)-semi-critical cut X
with u,v € X admissible (with respect to u,v)
in G'. For any Z with u,v € Z C X, we have
¢(Z) = Gpar(2) + 204k = Agpaa(V = )] >
cg(X), since Ag .. (X) > AGpae. (V — 5) implies
€Gpan(Z) > CGoo(X). By summarizing this, we
have the next result.

Lemma 2.3 For a multigraph G = (V, E) with a
designated vertez s € V, and vertices u,v € Ta(s)
(possibly u = v), let k be a nonnegative integer
with k < Ag(V - s), and let G' = G/(u,v,9) for
6 = Ag(u,v,k). Then: ‘

(i) If cer(s,u) > 0 and cgi(s,v) > 0 in the case
u# v or if cg(s,u) > 2 in the case u = v, then
G' has an' admissible cut X. '

(i) The cut X in (i) (if any) and Ag(u,v, k) can
be computed in O(mn + n?logn) time. i

3 Noncrossing Edge Splitting

For a cyclic order m = (wo,wy,...,Wp-1) of
T'¢(s), a sequence of splittings at s is called non-
crossing (with respect to ) if no two split edges
(wp, w;) and (w;, wy) are crossing with respect to
m (see Section 1 for the definition). In this sec-
tion, we show that for any even k < Ag(V — 9),
there always exists a complete and noncrossing
(k, s)-splitting. However, as observed in Exam-
ple 1(a), for every odd k > 3, there is a graph
that has no such splitting.

3.1 (k,s)-semi-critical collections

Before computing a complete (k, s)-feasible split-
ting, we first find a family X’ of subsets of V — s
(by performing some noncrossing edge splittings
at s) as follows. For a multigraph G = (V,E)
and $ € V, a family X = {X1, X3,..., Xr} of dis-
joint subsets X; C V — s is called a collection in
V —s. A collection X may be empty. A collection
X is called covering if T, cg(s, Xi) = ca(s)- A
collection X 'in V — s is called (k, s)-semi-critical

in G either if X = 0 or if all X; € X are (k, 5)-

semi-critical. We can easily see that a (k, s)-semi-
critical covering collection in G with cg(s) > 0
satisfies | X| > 2 [8]. :

Let X be an s-proper cut with cg(X) < k+1.
Clearly, splitting two edges (s,u) and (s,v) such
that u,v € X is not (k, s)-feasible. Then the size
of any cut Z C X remains unchanged after any



(k, s)-feasible splitting in G. We say that two s-
proper cuts X and Y s-cross each other if X and
Y cross each other.and cg(s,X NY) > 0. It is
ot difficult to prove the following properties by
using submodularity of cut function cg (the detail
is omltted)

Lemma 3.1 Let G = (V, E) be a multigraph with
a designated vertez s, and k be an integer with
k< Ag(V ~s). Then:

(i) If two (k, s)-semi-critical cuts X andY s-cross
each other, then cg(X) = cg(Y) =k+1, cc(X —
Y)=cg(Y=X) =k and cg(XNY,V—(XUY)) =
1

(ii) Let X; be an admissible cut with respect to
u,u' €V —s (possibly u = u'), and Y be a (k,s)-
semi-critical cut. If X and Y cross each other,
then cg(X) =cg(Y) =k+1 and cg(Y - X) =

(iii) Let X; (resp., X;) be admissible cuts with
respect to u;,u} (resp., with respect to uj,u}),
where possibly u; = uj or u; = wuj holds, but
uj # ui # o and u; # u} # uj. Then two cuts
Xi and X; do not cross each other. O

We now describe an algorithm, called COL-
LECTION, which computes a (k, s)-semi-critical
covering collection X in a graph G* obtained from
G by a nponcrossing sequence of (k,s)-feasible
splittings. Let © = (wg,wy,...,wp—1) be a.cyclic
order of ['g(s) and initialize X' to be @.

1. for each w;, i:=0,...,p—~1 do

if w; is not in any cut X € A then ex-
ecute MAXSPLIT(w;, w;, k) to compute G' =
G/(w;, w;, 8) with § = Ag(w;, w;, k) and an ad-
missible cut X, in G’ (if cgr(s,w;) > 2); let
G=G;

ificg(s,w;) = 2 then X := YU{X,,}, dlsca.rdmg
all X € X with X C X, from X

end { for } -

2. for each w; such tha,t ce(s;w;)) = 1, 1 :=
0,...,p—1do

if w; is not in any cut X € X then exe-
cute MAXSPLIT(w;,w;, k) for w; and its near-
est neighbor-w; in the current G to compute

G' = G/(w;,w;,6) with § = Ag(w;, w;, k) and

an admissible cut X; in G' (if cgr(s, w,) =1);
let G =G .

if cg(s,wy) =1 then X:i={X - Xy, | ca(s,X -
Xw) >0, Xe€ X} U{Xy,}. else (if cg(s,w;) =
0) remove any cut X with cG(s X) =0 from X.
end { for }

._.29_

Output.G* :=G. O
Clearly, the resulting sequence of splitting is
(k, s)-feasible and noncrossmg

Lemma 3.2 Algorithm COLLECTION correctly
computes a (k, s)-semi-critical covering collection
X in the output graph G*.

Proof: Let X be the set of cuts obtained af-
ter step 1. If two cuts Xy, Xu, € & (0 <
i < j < p—1) has a common vertex v, then
wj & Xu, and X, — Xu; # 0 (otherwise, X,
must have been discarded). However, this im-
plies that X,,, and X, cross each other, contra-
dicting Lemma 3. 1(111) Thus, the X is a (k, s)-
semi-critical collection.

Now we prove by induction that X is a (k, s)-
semi-critical collection during step 2. Assume
that MAXSPLIT(w;, w;, k) is executed to com-

‘pute G' = G/(wi,wj,8) with § = Ag(w;, w;, k).

If cgr(s,w;) = 0, then a cut X € A with w; € X
may satisfy cg/(s,X) = 0 after the splitting.
However, such a cut will be removed from X. If
cg'(s,w;) = 1, then an admissible cut Xy, in G' is
found. Clearly, any X € X satisfies one of the fol-
lowings: (i) X N Xy, =0, (ii) X C Xy, and (iii)
X NXy, #0# X — Xy, Since X is updated to
{X - Xy, | ca(s, X —Xu,) >0, X € X}U{Xy,},
it is sufficient to show that cg(X — Xy,) = k
holds in the case (iii) (note that Agr(X — X,,;) >
k follows. from Ag(X) > k). Since two cuts
X and X,, cross each other in the case (iii),
cg'(X — Xu,) = k follows from Lemma 3.1(ii).
This proves that X remains to be a (k, s)-semi-
critical collection, which becomes covering after
step 2. ) - ‘ m}

3.2 Algorithm for noncrossmg edge—

splitting

In this subsection, k is assumed to be a positive
even integer. We can prove the next property by

.Lemma 3.1(i). and the evenness of k (the detail is

omitted).

Lemma 3.3 Let G = (V, E) be a multigraph with
o designated vertex s, and k be an even integer
with k < Ag(V — s). Further, let X be a (k, s)-

semi-critical cut, and Y and Y' be (k,s)-semi-
critical cuts with Y NY’' = 0. Then X can s-cross
at most one of Y and Y. (i



- Using the lemma, we now describe an algorithm
that constructs a complete and noncrossing (k, s)-
feasible splitting from a given (k, s)-semi-critical
covering collection X in a graph G.

" If s has at most three neighbors, then any com-
plete (k, s)-feasible splitting is noncrossing (with
respect to any cyclic order of I'g(s)) and such a
splitting can be found by applying MAXSPLIT
at most three times. In what follows, we assume
that [Tg(s)| = 4.

First, we define a notion of segment. For a
given covering collection X with |X| > 2 in a
multigraph G with a designated vertex s and a
cyclic order m = (wo,wy,...,wp—1) of I'g(s), a
subset P C ['g(s) of neighbors of s which are
consecutive in the cyclic order is called segment if
there is a cut X € X with P C X such that P is
maximal subject to this property. Note that there
may be two segments P and P/ with PUP' C X
for the same cut X € X. A segment P with
|P] = 1 is called trivial. We now describe the two
cases.

Case-1:
P =
X).
then MAXSPLIT(w;, wji1, k). If one ' of
w;—1, Wi, Wj, w41 is no longer a neighbor of s in
the resulting graph G”, then the nhumber of neigh-

{wi, wig1, ..., w5} (with respect to

bors of s decreases at least by one: (in this case, -

a cut X € X with cgn(s,X) = O (if any) is re-
- moved from X). Let us consider the case where
all of w;_1, w;, wj, wjy1 remain neighbors of s in
G". Thus, the resulting graph G” has admis-
sible cuts X; and X; (with respect to w;_1,w;
and wj, wjy1, respectively). By Lemma 3.1(iii),
two cuts X; and X; do not cross each other.
Let Y7, Y2 and Y3 be the cuts in A" such that
wi-1 € V1, {wi,...,w;} C Y2'and wjy1 € Y3
(possibly ¥1 = Y3). There are two subcases (a)
XinX; =@ and (b) X;CXjorX; CX;.

(a) X;nX; = 0. We prove that Y1 # Y3
and UY,UYs C X;UX;. Since (k,3)-
semi-critical cuts X; and Y, s-cross each other,
cgn(Ya—X;) = cgn(Xi~Y2) = k by Lemma 3.1(i).
Note that Y2 — X; is a (k, s)-semi-critical cut.
Thus Y, — X; cannot cross another admissible cut
X; (otherwise cgn(¥Yz — Xi) = k. would contra-
dict Lemma 3.1(ii)), and hence Y2 C X; U Xj.
By Lemma 3.3, X; which already crosses Y3 can-
not s-cross Y3, and thus Y3 C X;. Similarly,
we have Y3 C X;. Therefore, ¥; # Y3 and

There is a nontrivial segment

We execute MAXSPLIT (w;-1,w;, k) and

YiuY,UYs C X; UX;. There may be some
cut X € X ~ {Y1,Y3,Y3} which crosses X;. By
Lemma 3.1(iii), cev(X — Xi) = k. We see that
cgi(s, X — X;) = cgn(s,X) 2 1, because if
cg(XNX;) >1 (ie, X and X; s-cross each
other) then cgn(X; — X) =k < k+1 = cgn(Xi)
by Lemma 3.1(i), contradicting the admissibility
of X; (note {w;—;,w;} C X; ~ X). Thus X — X;

is a (k, s)-semi-critical cut in G". Similarly, if
some cut X € X — {¥},Y3,Y3} crosses X; then

X — X is a (k, s)-semi-critical cut in G”. There-

fore, we can update X by X := {X — X; — Xj |

cg(s, X — Xi— X;) >0, X e X}u{X; X;}.

(b) X; € X; or X; € X;. Without loss of
generality, assume X; C X;. Since cgn(s,Y2 N
X;) > 2 holds by w;,w; € Y2 N X;, we see by
Lemma 3.1(i) that Y3 cannot cross X; (hence,
Y; C X;). By Lemma 3.3, at most one of 1}
and Y3 can s-cross X;. Thus Y7 € X;orYs C X;.
For any cut X € X — {Y3} which crosses X;, we
can show that X — X; is a (k, s)-semi-critical cut
in G” using similar reasoning as for Case-1(a).
Therefore, we can update X by X := {X - X; |
cg(s, X - X;) >0, X e X}u{Xi}.

Note that the number of cuts in X in cases (a) .
and (b) decreases at least by one after updating.

Case-2: All segments are trivial. We choose a
neighbor w; of s and the neighbor w; of s nearest
to w;, and execute MAXSPLIT (w;, wj, k). As-
sume that MAXSPLIT(w;, wj, k) finds an admis-
sible cut X; (6therwise, the number of neighbors
of s decreases at least by one). Let Y7 and ¥ be
the cuts in A which contain w; and wj, respec-
tively. We see that ¥; C X; or Y3 C Xj, because
otherwise both Y7 and Y> would s-cross X; (con-
tradicting Lemma 3.3). If ¥} s-crosses X;, then
we see that ¥) — X; is a (k, s)-semi-critical cut if
cg(s,Y1 — X;i) 2 1. The case where Y3 s-crosses
X is similar. For any cut X € X —{Y3,Y2} which
crosses X;, we can show that X — X; is a (k, s)-
semi-critical cut in G” using similar reasoning as
for Case-1(a). We update X by & := {X — X; |
cg(s,X —X;) 21, X € X}u{X;}. In this case,
the number of cuts in A never increases, but it
may not decrease, either. However, X; contains
a nontrivial segment in the new X, and we can
apply the above argument of Case-1.

By applying the above argument to Case-1,
at least one vertex is no longer a neighbor of s
or the number of cuts in a collection A" is de-
creased at least by one. After applying the argu-



ment of Case-2, at least one vertex is no longer
a neighbor of s or a nontrivial segment is cre-
ated. Therefore, by executing MAXSPLIT at
most 4(|Tg(s)| + |X]) = O(|Tg(s)|) times, we
can obtain a complete (k, s)-feasible splitting of
a given graph G, which is obviously noncrossing.

Theorem 3.1 Given a multigraph G = (V, E)
with a designated vertez s € V of even degree,
a positive even integer k < Ag(V — s), and a
cyclic order m of neighbors of s, a complete and
noncrossing (k, s)-feasible splitting can be found
in O(|Tg(s)|n(m + nlogn)) time. O

4 Planarity-preserving
splitting

In this section, we assume that a given graph G
with a designated vertex s of even degree and
an integer ¥ < Ag(V — s) is planar, and con-
sider whether there is a complete and planarity-
preserving (k, s)-feasible splitting. We prove that
such splitting always exists if k is even or k = 3,
but may not exist if k is odd and k > 5, as ob-
served in Example 1(c). ‘We initially fix an em-
bedding 9 of G in the plane, and let my be the
order of neighbors of s that appear around s in
the embedding 9 of G.

4.1 ’I_‘he case of even k

Clearly, a complete splitting at s is planarity-
preserving if it is noncrossing with respect to my,.
Therefore, if k is an even integer, then we estab-
lish the next theorem by Theorem 3.1 and the
fact that m is O(n) in a planar graph G.

Theorem 4.1 Given a planar multigraph G =
(V,E) with a designated vertez s € V of even
degree, and a positive even integer k < Ag(V —3s),
there ezists a complete and planarity-preserving
(k, 8)-feasible splitting (which also preserves the
embedding of G[V — s} in the plane), and such
splitting can be found in O(|T'g(s)|n%logn) time.
m}

4.2 The case of k=3

For k = 3 < Ag(V - s), we can prove that there
is a complete and planarity-preserving (k, s)-
feasible splitting. However, as observed in Exam-
ple 1(b), in this case we may need to re-embed the

subgraph G[V — 5] in the plane to obtain such a
splitting. «

Theorem 4.2 Given a planar multigmph G =
(V,.E) with o designated vertex s € V of an even
degree, and A\g(V — s) > 3, there exists a com-
plete and planarity-preserving (3, s)-feasible split-
ting, and such a sphttmg can be found in O(n?)
time.

Proof: (Sketch) By a procedure similar to COL-
LECTION, for the cyclic order my of I'g(s), we
can find a noncrossing sequence of (k, s)-feasible
splittings (which may not be complete) such that
the resulting graph G* sa,tlsﬁes the followmg (i)-

(i):

(i) Ag*y—5)(V—5) = 2 (i.e., the induced subgraph
G*[V —s] is 2-edge-connected), where a minimum
cut X in G*[V — 4] is called a 2-cut, and is called
minimal if cgev_5)(Z) > 2 for all nonempty and
proper subsets Z C X.

(ii) There is a bijection between the M (G*[V —s])
of all minimal 2-cuts in G*[V — s and the set
Eg«(s) in the following sense. For each edge e =
(s,w) € Eg-(s) there is a minimal 2-cut X with
w; € X. Conversely, for any minimal 2-cut X,

- there is exactly one edge e = (s, w) € Eg*(s)

such that w € X.
It is known that all 2-cutsina 2-edge—connected

-graph can be represented by a cactus struc-

ture, which is obtained by contracting each 2-
component in the graph. Each minimal 2-cut
corresponds to a leaf vertex (a vertex of degree
2) in the cactus. Thus, the remaining task to
find a complete (3, s)-feasible splitting in G* is to
add a set of new edges connecting |Eg«(s)| pair
of leaf vertices in a cactus structure of G*[V — 4]
to destroy all 2-cuts in G*. However, the corre-
sponding complete splitting in G* may not pre-
serve the planarity. In this case, we can re-embed
the graph G*[V —s] so that the splitting preserves
the planarity in the resulting embedding.  Further
details are omitted (see [9] for the details). D

5 Augmenting Edge-
Connectivity of Outerplanar
Graphs

Given a multigraph G = (V, E) and a positive in-

teger k, the k-edge-connectivity (resp., k-vertex-
connectivity) augmentation problem asks to find



a minimum number of new edges to be added to G
such that the augmented graph becomes k-edge-
connected (resp., k-vertex-connected). Watan-
abe and Nakamura [10] proved that the k-edge-
connectivity augmentation problem for general k
is polynomially solvable. In such applications
as graph drawing (see [3]), a planar graph G is
given, and we may want to augment its edge--
(or vertex-) conmectivity optimally while pre-
serving its planarity. Kant and Boldlaender [4]
proved that the planarity-preserving version of 2-
vertex-connectivity augmentation problem is NP-
hard. Kant [5] also showed that, if a given graph
G is outerplanar, then the planarity-preserving
versions of both the 2-edge-connectivity and 2-
vertex-connectivity can be solved in linear time.
For a planar graph G, let 7x(G) (resp., (G))
denote the minimum number of new edges to be
added to G so that the resulting graph G' be-
comes k-edge-connected (resp., so that the result-

_ing graph G" becomes k-edge-connected and re-
mains planar).. Clearly, 7(G) < 4x(G) for any
planar graph G and k > 1. From the results in
the preceding sections, we can show the next re-
sult. -

Theorem 5.1 Let G = (V, E) be an outerplanar
graph. If k > 0 is an even integer or k = 3,
then k(@) = 7x(G) and the planarity-preserving
version of the k-edge-connectivity augmentation
 problem can be solved in O(n?(m+nlogn)) time.’

Proof: (Sketch) Based on Theorems 4.1 and 4.2,
we can apply the approach of Cai and Sun [1]
(also see [2]) for solving the k-edge-connectivity
augmentation problem by using the splitting al-
gorithm (see [9] for details). o

Furthermore, for every odd integer k > 5, there
is an outerplanar graph G such that %(G) <
7(G). Consider the graph Gj obtained from
the graph G in Example 1(c) by deleting s
and the edges in Eg! (s). It is easy to see that
T(G5) = 2 < 3 = 7k(G)-

Remark: Given an undirected outerplanar net-
work N = (V,L,c) and a real k > 0, we con-
sider the kLedge-c’onnectivity augmentation prob-
lem which asks how to augment. N by increasing
link weights and by adding new links so that the
resulting network N’ = (V,L U L',c') is k-edge-
connected and remains planar while minimizing
Tecr(c'(e) — c(€)) + Leer ¢'(€), where ¢ and d

are allowed to be nonnegative reals. It is not dif-
ficult to observe that this problem can be solved
in O(n?(m+nlogn)) time by the argument given
so far in this paper. (It would be interesting to
see whether the problem can be formulated as a
linear programming or not; if the planarity is not
necessarily preserved then the problem is written
as a linear programming.)
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