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. Abstract ]

We give an optimal bound on the number of transitions of the minimum weight base of an integer valued
parametric polymatroid. This generalizes and unifies Tamal Dey’s O(k'/3n) upper bound on the number
of k-set (and complexity of k-level of an arrangement), David Eppstein’s lower bound on the transition
of the minimum weight base of a parametric matroid, and also the ©(kn) bound for the complexity
of at-most-k level (union of i-levels for ¢ = 1,2,..,k) of the arrangement. As applications, we improve
Welzl's upper bound of the sum of compiex.itiés of multiple levels, and considered the number of different
equal-sized-bucketing of a planar point set with parallel partition lines.

1: k-level of an arrangement of lines (k = 3)' o
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1 Introduction

A polymatroid (to be precise, integer valued
polymatroid) is a pair (E,r) ofaset E = {1,2,..,n}
and the rank function r, which assigns nonnega-
tive integers to X € 2F and satisfies the following
three conditions:

(@) r(®) = 0;

(b) Monotenicity: X C Y implies r(X ) < r(Y);
and

(c) Submodularity:

F(X)+ £(¥) 2 HX UY) + F(X NY) for every
pair X,Y € 2F

7(X) is called the rank of X, and r(E) is
called the rank of the polymatroid. A nonneg-
ative integral vector v = (v1,...,v,) is called an
independent vector of the polymatroid (E,r) if
Yiex vi < 7(X) for every X € 2E. We often say
that v; is the multiplicity of i in the vector. A
base of the polymatroid is an independent vector
satisfying 3°;cpv; = r(E). Let B be the set of
bases. Let U = U(r) = max;eg r({vi}), which is
the largest multiplicity in the polymatroid.

For each i € E, we define a weight w;, and
consider the base v € B which minimizes Y ;._; wiv;.
This base is denoted by B, min, and called the
minimum weight base. We also consider the max-
imum weight base By mac.

For example, (E, r) where r(X) = min{k, | X|}
for a fixed k < n is a polymatroid, and its base
must be a 0-1 vector with k nonzero entries. The
minimum weight base is the support vector of
the set of k smallest elements (with respect to
weights) of E; Here, the support vector of a set
X C E is a 0-1 vector where multiplicity of is1
if and only if # € X. In this case, the set of sub-
sets of cardinality at most k of E forms a uniform
matroid of rank k, and r coincides with its rank
function in the terminology of matroids. Indeed,
for any matroid M C 2%, its rank function
(as a matroid) is a rank function of a polyma-
troid, where the independent vectors are support

vectors of elements of M. In other words, a ma-
troid can be considered as a polymatroid where
U = 1. See Fujishige [9] and Murota [14, 15] for
the theory of matroids and polymatroids.

Gusfield [10] considered the change of the min-
imum (or maximum) weight base when the weight
changes as a linear function with respect to a pa-
rameter t. The weight function for 7 is denoted by
w;(t). The minimum weight base and maximum
weight base at a fixed ¢ is denoted by By min(t)
and By maz(t), respectively. Since the argument
for the maximum weight base is analogous, we
concentrate on By min(t). The trajectory of the
map t — B, nin(t) from R to B is called the
parametric minimum weight base. We consider
the number of transitions in this trajectory.

If we consider the set of weight functions as
a set of lines, the problem can be considered as
a combinatorial problem in an arrangement of n
lines. In particular, if we consider the rank func-
tion of the uniform matroid of maximum rank &,
the number of transitions is asymptotically same
as the complexity of k-level (Figure 1) of the ar-
rangement, which is the trajectory of the k-th
lowest line at t in the arrangement.

A classical result by Lovisz [13] for k-sets (dual
concept of k-level) and the result by Gusfield [10]
for the graphic matroid can be extended to the

following upper bound:

Theorem 1.1 The number of transitions on
Brmin(®) is O(n(r(E))/?).

The above bound can be improved for some
special r. Indeed, for the rank function rjs of
a matroid, Dey (7] showed an O(n(ry(E))'/?)
bound. This bound matches Q(n(rp (E))!/?) lower
bound of Eppstein [8], and hence tight for the
rank function of matroids. Unfortunately, we can
show that Q(n(r(E))'/?) transitions can occur if
we consider the polymatroid associated with at-
most-k level of an arrangement for k = U, where



7(E) = U2. Here, at-most-k level is the union of

i-levels fori = 1,2, .., k.

We give the following combinatorial bound which

is sensitive to both r(E) and U:

Theorem 1.2 The number of transitions on
By min(t) is O(n(Ur(E))'/3). Also, the bound is
tight if r(E) = Q(U?).

The above theorem unifies Dey’s upper bound
and Eppstein’s lower bound on parametric ma-
troid, and Alon-Gyéri’s tight upper bound [3] on
the at-most-k level of an arrangement.

We apply this to give the O(n(s L5, ki)*/?)
upper bound for the sum of complexities of k;-
level for ¢ = 1,2,..,s in an arrangement of n
lines. This improves Welzl’'s O(n(X 5 ki)'/2)
bound [16], since s2 < 3°7_, k;. For a special case
where k; = ky +¢ ~ 1 (i.e., consecutive levels),
Day gave a O(nk'/3s*/%) result, which matches
our bound.

If we consider the dual of these levels, and
set k; = [in/s], this gives the transition on the
equal-sized bucketing of n pointsin the plane with
s parallel lines if we rotate the angle of parallel

lines. Hence, we can show that The number of

different equal-sized bucketings of n points in a
plane with s parallel lines is O(n*/35?/3), This
can be utilized to find the optimal angle for the
orthogonal grid bucketing generated by an pair of
equal-sized bucketings to have the most uniform
distribution.

2 Upper bounds for the num-
ber of transitions

When we consider the parametric polymatroid,
each element e of E has a weight w,(t) which is
linear with respect to t. Since y = w,(t) can
be considered as a line in the (¢,y)-plane, we re-
gard E as a set of line from now. Theorem 1.1
can be proven analogously to Dey’s proof for the

O(k'/*n) bound for the k-level of an line arrange-
ment.

An important fact is the following simultane-
ous exchange property [15] (see [11] for a proof):

Lemma 2.1 If there are two bases B = (by, ..., b,)
and B' = (b}, ...,b,), there are two indices i and
J satisfying b; > b}, b; < ¥}, such that both of
B+ é; ~ €; and B' — €; + € are bases, where ¢;

18 the i-th characteristic vector.

Let us consider the arrangement of lines cor-
responding to w;(t) (: = 1,2,..,n). Then, each
transition corresponding to a vertex of this ar-
rangement. The following lemma is straightfor-
ward from Lemma 2.1 :

Lemma 2.2 There exists a family Y of r(E) con-
cave chains in the arrangement, satisfying that:
(1) Each edge of the arrangement is contained
in at most U concave chains, and
(2) transitions of the minimum base occurs at

vertices of the concave chains.

Consider a graph G which has n vertices each
corresponding to a line in the arrangement. There
is an edge between two vertices in Gif and only if
the intersection of the corresponding two lines in
the afra.ngement corresponds to a transition. It
suffices to estimate the number m of edges in G.

We can draw G in a plane so that each vertex
is placed to the dual point of the cérresponding
line in the arrangement. We draw each edge as
the straight-line segment between vertices. Let
Cr(G) be the number of crossing of edges in this
drawing. The following is a very famous lemmas:

Lemma 2.3 [2/
There s a constant c such that
Cr(G) > cm? [n? - O(n).

Dey [7] gave the following observation:

Lemma 2.4 Cr(G) i3 at most the number of com-
mon tangents of the family Y of concave chains.



For each common tangent, we charge it to the
intersection between the concave chains lying be-
low the tangent. The only difference from Dey’s
proof for the matroid is that more than two con-
cave chains may pass an intersection. For a vertex

'p in the arrangement, let mult(p) be the num-
ber of concave chains in Y’ p:;ssing p. Thus, the
charge at an intersection is O(mult(p)?).

Lemma 2.5 Let I be the set of intersections be-

tween concave chains in' Y. Then,

Tper mult(p) = O(r (E)n).

Proof: A concave chain intersects at most twice
with a line. We count these intersections for each
pair of concave chain and line. Then, each vertex
p is counted mult(p) times. Hence, we obtain the

lemma. B

. Thus, we have Cr(G) = O(r(E)nU), and hence,
r(EnU > em®/n?. Thus, m = O(n(r(E)U)/3,
and our upper bound is obtained.

3 Lower bound

First, we demonstrate that O((r(E))'/?n) bound

of Lovasz is tight for some polymatroid function
7. We define a function f; on 2% by fi(A) =
k+k—1+..+ (k—|A|+1)if |4] < k, and oth-
erwise k(k +1)/2. It is easy to see that (fi, E) is
a polymatroid, and fi(E) = k(k + 1)/2.

~ We can observe that By, min(t) correspond
to the sorted list of the smallest k elements in
{wi(t)":

By, min(t) occur at each vertex in the “at-most-

i = 1,2,.,n}. Hence, a transition on

E-level” of the arrangement, for which an Q(kn)
bound is known. Hence, the following bound is
obtained:

Proposition 3.1 For any k < n, there exists
a polymatroid function r. satisfying that r(E) =
k(k +1)/2 and the number of transztwns on

‘B, ,,,m(t) i3 Q(T(E)l/zn) '

In the above lower beund construction, U(fi) =
k, and indeed, we can make U larger without
decreasing the number of transitions. If U =
Q(r(E)'/?), the O(min{n?,7(E)}/?n}) bound is
tight, and also better than O((r(E)U)Y/%n).

However, most of interesting cases satisfy that
U < r(E)Y/2. We show that our o((r(E)U)l/3 )
bound is tight for this case.

Theorem 3.1 For any positivé integers U and R
satisfying that U? < R, there exists a polymatroid
function v such that r(E) < R'and U(r) < U on
a set E of n elements satisfying that the number
of transitions on By min(t) is Q(n(RU)/3).

We devote the rest of this section for proving
the above lower bound. Since r(E) < nU always
holds, we can assume that. U < n.

Let k = |[R/U?]. We use the Eppstein’s con-
struction [8] of concave chains Ci,...,Cy in an
arrangement of m = n/U lines where each con-

cave chain has Q(mk~%/3) vertices (without loss

“of generality, we assume that n/U is an integer).

In this construction, no pair of different concave
chains shares an edgé in the arrangement. Also,
we can make that each line in the arrangement
has a positive slope.

We replace each line / in the arrangement by
I(U) where /() is obtained by hor-
izontally tra.nsla,tmg 1 by je to the right, where €

U copies I(1),

is an infinitesimally small positive real number.
E is the set of all these copied lines; hence E has
n lines. Let S; be the set of translated copies of
lines of those contributing C;. We considered the
transversal i)olymatroid associated with the set
{S; :1 <1 < k} of subsets of E.

We consider the function rp on 2F as fol-
lows: For a subset X of E, we subdivide X into
Xi,..., Xi such that X; C S;. We define g() such
that for Y C E ¢(Y) =UU +1)/2if{Y| 22U

; otherwise, g(Y) = ELZ'I(U —j).” We define

‘rp(X) to be the maximum of E,_l g(X) over

all possible subdivision of X.



Lemma 3.1 The function rp(X) is a polyma-
troid function.

Proof: For subsets X and Y of E, let (X UY);
and (X NY); be the partitions of X UY and
X NY assigned to the index i, respectively. Note
that (X UY); need not include (X NY);. The
key observation is that we can find subsets X;
and ¥; of X NS; and Y N Sy, so that X; UY; =
(XUY);u(XAY);, X:nY; = (XUY);n(XNY);,
min{ X, [Yi} 2 min{|(XA¥)i], (X UY)q), and
X;(i = 1,2,..,k) and Yi(¢ = 1,2,..,k) are parti-
tions of X and Y‘ respectively. Thus, g(X;) +
9(Yi) 2 g((XUY))+g9((XNY);),and rpis a
polymatroid function. |

Note that rp(E) = k(U(U + 1)/2). Next, let
us consider the minimum base at t = £, where
there is no vertex of the chains in the horizon-
tal interval [ty — Ue,to + Ue]. Let I(i;10) be the
line forming the edge of C; at t = {. Then, the
minimum wefght base at tp has the following mul-
tiplicity vector: 1(3;t0)? has multip]icity j for
i=1,2,.,U and i = 1,2,.., k; Other lines have
multiplicity 0.

Let us consider the number of transitions near
a vertex of C;. In our construction, C’,- 'is trané-
formed into U copies, and a vertex of C; causes
U? intersections between copied chains. Among
these intersections, the U(U + 1)/2 intersections
circled in Figure 2 are associated with transitions
on the parametric minimum base.

‘Since there are (mk/3) = Q(nU~1(R/U?)}/3)
C, the to-
tal number of transitions of the'minimum base of
our polymatroid is Q(n(UR)'/?). r(E) = U(U +
1)/2 x k ~ R, and obviously, U(r) = U. Thus,

we have the lqwer bound.

vertices in the concave chains Cy, ...,
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Figure 3).

2: U(U +1)/2 intersections

4 Applications

4.1 Network flow

In this subsection, we consider a polymatroid
associated with maximum flows (equivalently, min-
imum cuts) of a network. We later give geometric
applications using this polymatroid in the next
subsection.

Let G = (V,F) be a directed graph (e-g-s
" We fix a source node s and a set
T = {1,2,..,n} of sink nodes of V. Fach edge
e of F has its capacity c(e), which is a positive
integer. ‘

Suppose that we want to distribute marchan-
dize shipped from s, which will be sold at each
‘ What
transportation flow gives the maximum pfoﬁt?
We define a function r on 27T so that r(X) is the
size of maximum flow from s to X. Then, it is

vertex ¢ € T with w; dollars per unit.

well-known that r is submodular, and becomes
the rank function of a polymatroid (r,T). A vec-

tor x = (1,23, ,:c,,) is a base of this polyma-

troid if and only if there is a maximum flow from

s to T such that the node i receives a flow of size
z;. In this polymatroid, U(r) is max; Cut‘(s,‘i),
where Cut(s,1) is the size of minimum cut sepa-
rating s and ¢. 7(T) is the size of the minimum
cut separating s and 7. Each node ¢ of T has



3: Graph G (capacity of an edge without a

number is one)

a weight w;. The weight of the flow associated
with x is Y., z;w;, and the base maximizing
the weight naturally gives the maximum profit.
Since this is a polymatroid problem, the maxi-
mum weight base can be computed by using a
greedy algorithm. For example, if the weight vec-
tor w = (wy,ws, .., wy) is (2,4,1,5,3,0,1,3,2) in
the network of Figure 3, the maximum weight
base xis (1,3,0,3,2,0,0,2,1), and flow is the one
shown in Figure 4.

Now, we replace w; by w;(t), and consider the
parametric version. For example, suppose t is the
discount parameter on which the cost of manu-
facturing a unit of the marchandize also depends.
We control ¢, and a transition of the maximum
weight base of the polymatroid gives a transition
of the maximum flow to give the maximum profit.
Note that we do not give weights to edges, and
the weight only depends on the node weight at

sink nodes.

Theorem 4.1 There are O(n(r(T)U(r))*/?) tran-

sitions of the mazimum weight maz flow of the

above network if wi(t) are linear. The same bound

4: Maximum base x and its associated flow

holds for the minimum weight maz flow. More-
over, the above bound is tight if U(r)? < r(T).

Proof: The argument for the minimum weight
base can be applied similarly to the maximum
weight base; hence, the upper bound is immedi-
ate. The lower bound is obtained since the poly-
matroid in the lower bound construction in the
previous section can be realized as the above poly-
matroid associated with a network flow. We omit
details. I

Usually, edge weights are also considered in
a transportation problem. If the graph is a tree,
we can admit edge weights, since there is a unique
path from s to each sink node, and we can accu-
mulate the sum of the edge weights on the path to
consider it as the node weight of the sink. Unfor-
tunately, this argument fails for a general graph.

4.2 Geometric applications

Parametric matroids are useful in cbmputar
tional geometry [7, 12], and so are parametric
polymatroids. Let 0=ko < k1 < k3 < ... < ks <
n be an increasing sequence of integers. Consider
a network G = (V, F), where V = {s}uY uUT,



Y = {y1,..,¥s},and T = {1,2,..,n} From s to y;,
an edge with capacity k; is given. Between Y and
T, we have the complete directed bipartite graph
(direction of each edge is from Y to T) Ksn in
which each edge has capacity one. Consider the
polymatroid (r,T) defined in the previous subsec-
tion. It is easy to see that r(T) = X i, ki and
U(r) = 5. Indeed, the network in Figure 3 is this
network for (k1, k2, ks) = (2,4,6).

The minimum weight base is obained as fol-
lows: First, we sort {w; : i = 1,2,..,n}, and let
h(7) be the sorting rank (in non-increasing fash-
ion) of w; in the sorted list. The base is defined by
z; = s—j if kj < h(3) < kj41, where we artificially
set ksy1 = n. Note that z; > z; if wi < wj. In
other words, if we re-order the nodes of T so that
w; < wy < ... < Wy, the base is (s,s,..,5,(s —
1),y (5=1), 02,2, 2,..2,1,1,1..1,0, .., 0), where
j occurs k;j — kj_; times as entries, and hence it
is the “conjugate” (see [4]) of the nonincreasing
sequence (kg, ks—1,..., k1, 0).

If we consider the parametric version, each
weight w;(t) changes linearly on ¢, and the tran-
sitions on By min(t) occurs at t = tp if and only
if two indices 7 and j satisfies z;(tg) = z;{(fo) + 1
(before the transition) and w;(t) = wj(te). Af-
ter the transition, z;(t) is increased by one, and
zj(t) is decreased by one.

I z;(to) = j, the transition must be a tran-
sition of kj-th level of the arrangement of lines
{l, 1}, where; is defined by y = w;(t). Hence,
the transitions on By, min are corresponded to the
transitions on the union of k;-th levels for : =
1,2,.., s in the arrangement of the lines in an one-

to-one fashion. Hence, we have the following:

Theorem 4.2 The number of transitions on
Ky, ooy Kog-th levels is O(n(s o, k:)'/3).

The dual of these levels gives the partition of
a set of n points in a plane with s parallel lines
with the slope # into s+ 1 subsets with k1, ks —
ki1,....ks — kg—1, and n ~ k, points. The angle 8 is

the counterpart of the parameter ¢. In the dual,
the transitions on the levels corresponds to the
change of the partition when we rotate the angle
0 of parallel lines from 0 to 2w.

For the special case where k; = ni/s, the par-
tition is called equal-sized bucketing of the point
set with the projection angle 8 (Figure 5).

5: Equal-sized bucketing with five parallel lines

We can have different equal-sized bucketing if
we change 6. From Theorem 4.2, we have the
following:

Corollary 4.1 There are O(s*/*n*/3) equal-sized
bucketings.

If we use the direct product of a pair of equal-
sized bucketings with projection angles f and 6 +
7/2, we have a partition of the point set into a
grid with (s+1)? rectangular buckets. (Figure 6).
This is similar to the data partition considered in
{5} (in [5], equal-width bucketings were used in-
stead of equal-sized bucketings). The distribution
of this data partition depends on the rotation an-
gle 6. Since there are only O(s%/3n*/%) transitions
on equal-sized bucketing when we rotate § {from
0 to 2w, the number of different partitions into
a grid constructed as above is also O(s*/3n%/3).

Moreover, we can compute the angle # generat-



ing the most uniform partition (for example, min-
imizing the valuation of the numbers of points
in rectangles) in O(s%/*n*/3log® n) time by using
the algorithm of Cole et al. [6] for constructing
levels of an arrangement..

B 6: Grid generated by an orthogonal pair of
equal-sized bucketings

5 Conclusion

We have considered the transition of the mini-
mum weight base of parametric polymatroid. Al-
though we only consider the base minimizing the
sum of the weights (with multiplicities), we can

similarly handle the lexicographic minimum weight

base. There are many applications of polyma-
troids in combinatorial optimization [9]. By ap-
plying .our theorem on several parametric poly-
matroids (other than the one in the previous sec-
tion), we can obtain some results on graphs, lin-
ear a.lgebfa., and cpmbiﬂatorigl systéms, although
we do not know whether they have practical or
theoretical impact. .Extensions of the results to
the nonlinear weight functions or bivariate weight
'fun‘ctions will have several impacté to coﬁxputa-
tional geometry and control theory. '
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