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Many combinatorial problems are NP-complete for general graphs, but are not NP-
complete for partial k-trees (graphs of treewidth bounded by a constant k) and can be
efficiently solved in polynomial time or mostly in linear time for partial k-trees. On the
other hand, very few problems on unweighted graphs are known to be NP-complete for
partial k-trees with bounded &. These include the subgraph isomorphism problem and
the bandwidth problem. However, all these problems are NP-complete even for ordinary
trees or forests, and there have been no known problems which are efficiently solvable for
trees but NP-complete for partial k-trees. In this paper we present the first example of
such problems, that is, we show that the edge-disjoint paths problem is NP-complete for
partial k-trees with some bounded k > 2 although the problem is trivially solvable for
trees.
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1 Introduction

Many combinatorial problems are NP-complete for general graphs, and are unlikely to be
solvable in polynomial time. However, many “natural” problems defined on unweighted
graphs can be efficiently solved for partial k-trees (graphs of treewidth bounded by a
constant k) in polynomial time or in linear time although not all problems are solvable
for partial k-trees in polynomial time [ACPS93, ALS91, BPT92, Cou90, TP97, ZNN96).
On the other hand, a very few problems are known to be NP-complete for partial k-
trees. These include the subgraph isomorphism problem and the bandwidth problem
[DLP96, GN96, MT92, Sys83]. However, all these problems are NP-complete even for
ordinary trees or forests (GJ79]. To the best of our knowledge there have been no known
problems which are efficiently solvable for trees but NP-complete for partial k-trees with
some bounded k > 2 and without any restriction on the connect1v1ty or the maximum
degree. :

In this paper we present the first example of such problems, that is, we show the edge-
disjoint paths problem is NP-complete for partial k-trees with some bounded k > 2 al-
though the problem is trivially solvable for trees. ‘

Figure 1: Three edge-disjoint paths P, P, and P; in a partial 3-tree.

" The edge-disjoint paths problem asks whether there exist p pairwise edge-disjoint paths
P, 1 < i < p, connecting terminals s; and t; in a given graph G with p terminal pairs
(si,ti), 1 <4 < p, assigned to vertices of G. Figure 1 illustrates three edge-disjoint paths
‘P, P, and P; in a partial 3-tree. The vertex-disjoint paths problem is similarly defined.
These problems come up naturally when analyzing connectivity questions or generalizing
(integral) network flow problems. Another reason for the growing interest is the variety of
applications, e.g. in VLSI-design [SIN90, SNS89, WW95]. If p = O(1), then the vertex-
disjoint paths problem can be solved in polynomial time for any graph by Robertson
and Seymour’s algorithm based on their series of papers on graph minor theory [RS95].
The edge-disjoint paths problem on a graph G can be reduced in polynomial time to the
vertex-disjoint paths problem on a new graph similar to the line graph of G. Therefore,
the edge-disjoint paths problem can also be solved in polynomial time for any graph by



the algorithm if p = O(1). However, if p is not bounded, then both the edge-disjoint and
vertex-disjoint. paths problems are NP-complete even for planar graphs [MP93, Vyg95]. A
natural question is whether the vertex-disjoint and edge-disjoint paths problems can be
efficiently solved for another restricted class of graphs, say partial k-trees. Indeed Scheffler
showed that the vertex-disjoint paths problem can be solved in linear time for partial k-
trees even if p is not bounded [Sch94]. Zhou et al. showed that the edge-disjoint paths
problem can be solved in polynomial time for partial k-trees if either p = O(logn) or the
location of terminals satisfies some condition, where n denotes the number of vertices in a
given partial k-tree [ZTN96]. The result implies that the edge-disjoint paths problem can
be solved in polynomial time for a partial k-tree G if the graph obtained from G by adding
p edges (s;,%;), 1 < ¢ < p, remains to be a partial k-tree. Furthermore, if a partial k-tree
G has a bounded maximum degree; then clearly the edge-disjoint paths problem can be
solved in linear time for G. However, it has not been known whether the edge-disjoint
paths problem is NP-complete for partial k-trees if there is no restriction on the number
of terminal pairs, the location of terminals, or the maximum degree. In this paper we
show that the edge-disjoint paths problem is NP-complete in general for partial k-trees
with some bounded k&, say k=10.

2 Terminology and Definitions

In this section we give some definitions. Let G = (V, E) denote a graph with vertex set V
and edge set E. The paper deals with simple undirected graphs without multiple edges or
self-loops. An edge joining vertices u and v is denoted by (u,v).

The class of k-trees is defined recursively as follows:

(a) A complete graph with k vertices is a k-tree.

(b) If G = (V,E) is a k-tree and k vertices vy, v, --*, v induce a complete sub-
graph of G, then G' = (VU {w}, EU {(v;, w)|1 < i < k}) is a k-tree where w
is & new vertex not contained in G. : :

(c) All k-trees can be formed with rules (a) and (b).

A graph is a partial k-tree if it is a subgraph of a k-tree. Thus a partial k-tree G = (V, E)
is a simple graph, and |E| < kn. In this paper we assume that k is a fixed constant.

A tree-decomposition of a graph G = (V,E) is a tree T = (Vr, E7) with Vg a family of
subsets of V satisfying the following properties [RS86]: ‘

® ‘UXiEVT X = V; : .
e for every edge e = (v, w) € E, there is a node X; € Vp with v,w € X;; and
¢ if node X; lies on the path in T from node X; to node Xj, then X; N X; C X;.

The width of é, tfee-decomposition T = (Vr, Br) is maxx,ev, [Xi| — 1. The treewidth
of graph G is the minimum width of a tree-decomposition of G, taken over all possible



tree-decompositions of G. It is known that every graph with treewidth < k is a partial
k-tree, and conversely, that every partial k-tree has a tree-decomposition with width < k.
Bodlaender has given a linear-time sequential algorithm to find a tree—decompos1t10n of G
with width < k for fixed k£ [Bod96].

3 The Edge-Disjoint Paths Problem

Our main result is the following theorem.

Theorem 3.1 The edge disjoint paths problem 1s NP-complete for partial k-trees with
some bounded k.

In the remainder of this section we will give a proof of Theorem 3.1. Let X =
{z1,29, -+, 2,} be a set of n Boolean variables. A literal of z; € X is either a Boolean
variable z; or its negation ;. We denote by 3-CNF the set of Boolean formulas in a
conjunctive normal form over the n variables in X with at most 3 literals per clause.
For a Boolean formula f € 3-CNF, the 3-SAT problem which asks whether there is an
assignment a of true-false values to the n variables such that f(a) is true [Coo71]. If there
is an assignment a such that f (a) is true then we say that f is satisfiable. Clearly the
edge-disjoint path problem is in NP. Therefore it suffices to show that the- 3-SAT problem
can be reduced in polynomial time to the edge-disjoint paths problem for partial k-trees
with some bounded k.

For example, consider the following Boolean formula f with n = 4 Varlables and m = 3
clauses: ‘ ‘

f = (T1+ 22+ z4) (21 + T3) (T2 + 73 + Ty).

As illustrated in Figure 2, we will construct a graph Gy which contains edge-disjoint paths
connecting terminal pairs if and only if f is satisfiable. The formula f above is satisfiable
for a true-false assignment such that z; = 1, zz = 0, 23 = 0 and z4 = 1, while G in
Figure 2 has edge-disjoint paths connecting terminal pairs drawn in thick, dotted or weavy
lines. Roughly speaking, Gy has n rows and m + 2 columns. The ith row corresponds
"to variable z; for each 4, 1 < i < mn. The leftmost column, i.e. Oth column, contains
n quadrangles 8;Ti8:0T;, 1 < i < n, and the rightmost column, i.e. (m + 1)th column,
contains n quadrangles t;;tynZ;, 1 <4 < n. Each of the other m columns corresponds to
a clause and contains n “gadgets.” Any two consecutive columns, jth and (5 + 1)th, are
connected through exactly two vertices v; and v; for each j, 0 < j < m. These vertices v;
and ; are called connection vertices. The graph Gy constructed in this way is a partial
k-tree for some bounded k as we will observe later.

We now describe how to construct Gy in detail. Consider a Boolean formula f € 3-CNF
with m clauses Cy,C,, -+, Cy and n variables in X. We write z; € C; and Z; € Cj if
clause C; contains literals z; and Z;, respectively. One may assume that, for any variable
z;, 1 <4 < n, and clause Cj, 1 < j < m, exactly one of the following three cases occurs:

(1) z, T & Oj,’
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Figure 2: Graph G and edge-disjoint paths.
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Figure 3: Three gadgets ij, Gij, Gij and paths in them.

(2) T; € Cj and T; & Cj, and
(3) T; ¢ Cj and T; E1 Cj.

?,» Gij and G, respectively, as three types
of gadgets to build the whole graph Gy. That is, for each pair of variable ; and clause Cj,
we construct a graph GI if Ti, T & Cj, agraph Gj; if z; € Cj, and a graph G’zJ ifz; € Cj.

The graph G”, illustrated in Figure 3(a), contains exactly four outer vertices: two
vertices on each of the two sides; vertices v; and 7; on the left side, and the other two
vertices vj4; and T;4; on the right. The graph G‘b contains 6 inner vertices including two
terminals ¢;;_;) and s;;. Thus G‘P- contains 10 vertices in total, and these vertices are
connected as in Figure 3(a). : :

As illustrated in Figures 3(b) and (c), both Gj; and Gy; contain exactly eight outer
vertices: two vertices on each of the four sides; vertices ; and T; on the left side, vertices

For the three cases above we construct graphs G?;



v;+1 and T;;; on the right, vertices a;; and b;; on the top, and vertices cij and d;; on the
bottom. The graph G; contains 30 inner vertices including 8 terminals: two terminals
ti-1) and s;; and three pairs (sj;, t};), (82, t%) and (s}, £5;). Thus G;; contains 38 vertices
in total, and these vertices are connected as in Figure 3(b). The graph G;; contains 22
inner vertices including 6 terminals: two terminals ¢;;_1) and 8ij and two pairs (Sw J)
and (s”, ). Thus G;; contains 30 vertices in total, and these vertices are connected as
in Figure 3(c)

Graphs ij, G;; or @ij in the ¢th row of the jth column contains terminals ti(j—1) and
Sij; tij—1) 1s paired with a terminal s;;_y) in the ith row of the (j — 1)th column, and
s;; is paired with a terminal tij in the ith row of the (5 4+ 1)th column in G;. Only the
outer vertices in G”, Gi; and G;; are connected to vertices in other gadgets or connection
vertices.

We now construct a graph G for each clause C;, 1 < j < m. The graph G; has n rows
ordered from the top to the bottom by 1,2,---,n; the ith row corresponds to the variable

. For each 4, 1 < i < n, we put to the ith row gadget G,J if z;,Z; € C;, Gy if z; € C},

and G;; if 7; € C;. Identify all the n outer vertices v; on the left side of gadgets with the
connection vertex v;; identify all the n outer vertices 7, on the left side of gadgets with
the connection vertex 7;; identify all the n outer vertices vj.4; on the right side of gadgets
with the connection vertex v;y;; and identify all the n outer vertices Tj41 on the right
side of gadgets with the connection vertex 7;y;. There are three cases on the number of
literals in Cj; three literals in Cj, two in C; and one in C;. For the sake of convenience, we
consider only the case when C; has exactly three hterals The construction for the other
two cases is similar. We thus assume that C; = (I;;; + li,; + li;;) and z;,, z;, and z;, are
the Boolean variables corresponding to litera,ls li, li,; and l;,;, respectively. Therefore
lij = Ty or Ty, biy; = Ty, Or Ty, and liy; = x4, or Ti,;. Furthermore we may assume
without loss of generality that 4; < iy < 43. We identify vertex Ciyj With aj,j, d;,; with b,;,
Cigj with a,; and di,; with b;,;. Furthermore we add to- G; a new terminal pair (scj,tcj)
by setting sc; = a;,; and tg, = dy;.
- We now construct the Whole graph Gy by connecting m + 2 graphs in cascade. The
graph G; has m + 2 columns ordered from the left to the right. by 0,1,2, ---, m, m + 1.
The graph Gj; is put to the jth column, 1 < j < m. Any two consecutive columns G;
and Gji1, 0 < j < m + 1, are connected through exactly two connection vertices v;4q
and 7;,,. For each variable z;, 1 < ¢ < n, we introduce a terminal pair (sh t;) and two
quadrangles s;x;8;0%; and ;2 timT;; these two quadra.ngles are put to the ith tow of the
0th and (m + 1)th columns, respectively, where s;,t;, T;, z}, T;, T, T}, 8o and ty, are vertices
in graph Gy. Finally; add edges (z;,v1), (Zi,U1), (2}, Um+1) and (T}, Omy1), 1 < i < m, to
the graph Gy. Thus we have completed the construction of Gy. Let N be the number
of vertices in Gy, and let p be the number of termlnal palrs Then N = O(mn) and
p=0O(N). B ‘ | '

We have the following lemma.

Lemma 3.2 G has edge dzsgomt paths connecting terminal pairs if and only if f is sat-
1sfiable. , . , :



By Lemma 3.2 it suffices to verify that Gy is a partial k-tree for some bounded k. For each
J,» 1 <5 £ m, the deletion of four connection vertices v;, T;, v;4+1 and T;4; from G; leaves
n — 2 connected components of bounded size; one corresponds to the i;th, 4sthand isth
gadgets, and each of the other n — 3 components corresponds to Gg Thus one can observe
that the resulting graph Gy is a partial k-tree for some bounded k, say k£ = 10. Actually
graph G; has a bounded pathwidth. Thus this completes the proof of Theorem 3.1.
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