7N Iy X LA 62-2
(1998. 5. 20)

ATNTY XA ERVE nxm BERMEOHROEE
W T o

HER7A - ¥— A (k) ia&@%ﬁﬁ%}ﬁ

E&% waw&&%;bv 2128V T, HROBREAS LBERORGESN D HBEIT. T
DIEAEADHITH L TRERERDLZ Lk, S OMERR(BICEECL(BEL SRS
bDTH5b, ﬂx.ti’ &@k—)uxFﬁ%E%iﬁﬁEE%Fﬂ%&t’o%(oiﬁtr?n‘]%ﬁkfovvc DL

&%E%F?%%ﬁi(_kﬁfkbaha EWIFEREIIE GV, KRXTIR, 20L 5 nxmBEHE
BRE R DI, A*T LT LAY VT A2 At S8% 258) OFETHELLT
W3, B, EROERRY F T — 7%}13\1)L%Eﬁklof ENLDOTNTY XADMEL M
"%&‘ELT\:%O ,

Computing the n x m Shortest Paths Efficiently
By Using the A* Algorithm

Tetsuo Shibuya
IBM Tokyo Research Laboratory

 Abstract: Computation of all the shortest paths between multiple sources and multiple destina-
tions on various networks is required in many problems, such as the traveling éa,lésperson problem
(TSP) and the vehicle routing problem (VRP). This paper improves the Dijkstra method in two
ways for this kind of shortest paths problems by using the concept of the A* é.lgorithm. The ef-
ficiency and properties of these algorithms are also examined by using the results of experiments

on an actual road network.

1 Introduction , ; is therefore desired.
The Dijkstra method [5] is the most tradi-

Computatioﬁ of all the shortest paths between ,
tional and widely-used algorithm for this kind

multiple sources and multiple destinations on
various networks is required in many problems, °f problem. It can compute the shortest paths
from one source to m destinations in O(|E| +
|V|log({V|) time on a directed graph G = (V; E)
with no negative edges [6]. For a long time, this
algorithm has been believed to be the best for

computingall the shortest paths between two

such as the traveling salesperson problem (TSP),
the vehicle routing problem (VRP), the ware-
house location problem (WLP), and the quadratic
assignment problem (QAP). Accordingly, a func-

tion for performing such computation is required
' ‘ ‘sets of vertices. Using the Dijkstra method, it

takes O(min(n,m) - (|E| + |V]log(|V])) time to
obtain all the shortest paths between n sources

in geographical information systems (GISs), lo-
gistics” tools, and so on. There are many fast

“heuristic algorithms for solving these problems,

and the computation time needed to find all the and m destinations.

shortest paths in the first step is sometimes much On the other hand, much work has been done

longer than that of the main routine. A more ef- oD improving its efficiency in solving the 2-terminal

ficient way of computing the set of shortest paths shortest path problem. The most famous exam-

—9—

ple is the A* algorithm [1, 4, 7, 8, 12, 13, 15],
which improves the efficiency of the Dijkstra al-
Another
famous technique is the bidirectional search al-
gorithm (3, 9, 10, 11, 14], which searches from
both the source and the destination. But these
techniques have been believed to be inapplicable

gorithm using a heuristic estimator.

to the'n x m shortest paths problem.

_ This paper proposes two new algorithms based
on the A* algorithm for solving the n x m short-
est paths problem, and examines the efficiency
and properties of these algorithms by using the
result of experiments on an actual digital road
network in the Kanto area of Japan (around
Tokyo).

One of the algorithms uses an estimator based
on those used for the 2-terminal A* algorithm.
In the case of digital road networks, we can use
an estimator based on Euclidean distance, and

computing the estimates takes O(|V| log max(n, m))

time. According to the experiments, this algo-
rithm reduces the time for loading data, and in
some cases, the total computing time. k
The other algorithm uses the concept of the
network Voronoi diagram (which is a division of
V similar to the Voronoi diagram), Although
it is based on the same principle as the other
one, it is very closely related to the bidirectional
search method, so we call it the bidirectional-
method-based A* algorithm, or simply the bidi-
rectional method. This algorithm can be used
on networks which does not have appropriate es-
timator for 2-terminal A* algorithm (Euclidian
distance, etc), which is also the feature of the
bidirectional method for 2-terminal problems. It
takes O(|E| + |V|log(]V|)) time to compute the
éstimates; this is also the time taken to construct
the network Voronoi diagram. According to the
experiments, this algorithm is 30%-70% faster
than the simple Dijkstra method in most cases.

2 Preliminaries

2.1 The Dijkstra Method

The Dijkstra method [5] is the most basic algo-
rithm for the shortest path problem. The origi-
nal algorithm computes the shortest paths from

~omne source to all the other vertices in the graph,

but it can be easily modified for the problem of

computing the shortest paths from one source to

several specified other vertices.

Let G = (V,E) be a directed graph with
no negative edges, s € V be the source, T =
{t1,%2,...,tm} be the set of destinations, and
I(v,w) be the length of an edge (v, w) € E. Then
the outline of the algorithm is as follows:
Algorithm 1
1. Let U be an empty set, and the potential p(v)

be +oo for each vertezv € V' except for p(s) =
0. '

. Add to U the vertez vy that has the smallest

potential in V — U. If T C U, halt.

3. For each vertez v € V such that (vo,v) € E,
if p(vo) + l(wg,v) < p(v), update p(v) with
p(vo) + l(vo, v) and let previous(v) . be vp.

4. Goto step 2.

IS

The s-2; shortest path is obtained by tracing
previous(v) from ¢; to s, and its length is stored
in p(t;). Note that the overall required time for
this algerithm is O(|E| + |V |log(|V]) [6].

The most traditional and widély used method
for solving the n x m shortest paths problem is
doing this procedure n times. Note that it is
better to do m times the same kind of proce-
dure in which we search from the destinations if
m < n. Thus the required time for this problem
is O(min(n,m) - (|E| + |V|log(|V|)). This paper
focuses on how to improve these methods.

2.2 The A* Algorithm .

The A algorithm, an extension of the Dijkstra

method, is a heuristic algorithm for the 2-terminal
shortest path problem. It uses a heuristic es-

timator for the shortest path length from ev-
ery vertex in the graph to the destination. Let

h(u,v) be the estimate for the u-v shortest path
length, and A*(u,v) be the actual u-v shortest
path length. Then the algorithm is as follows,
lefting t be the destination. »

Algorithm 2

1. Let U be an empty set, and let the potential
p(v) be +o0 for each vertez v € V except for
p(s) =0.

2. Add to U the vertex vy that has the smallest
value of p(v) + h(vo,t) in V —U. Ifvy =1,
halt. '

3. For each vertez v € V such that (vy,v) € E,
if p(vo) + Uvo,v) < p(v), update p(v) with
p(vo) + l(vo,v), let previous(v) be vy, and

‘ remove v from U if v e U. '

4. Goto step 2.

If h(v,t) satisfies the following constraint,
which means h(v,¢) is a lower bound of A*(v, 1),
the obtained path is guaranteed to be. the op-
timal shortest path and the algorithm is called
the A* algorithm [1, 4, 7, 8,-12, 13, 15].

Vw eV h(v,t) < h*(v, 1))

Note that if h(v,t) equals h*(v,1) for all v €
V, the A* algorithm is known to search only
the edges on the s-t shortest path. Moreover,
the removal of vertices from U in step 3 can be
omitted if the estimator satisfies the following
constraint, which is called monotone restriction:

Y(u,v) € E l(u,v)+ h{v,t) > h(u,t) (2)

An estimator under this constraint is called a
dual feasible estimator. For example, the Eu-
clidean distance on a road network is a dual fea-
sible estimator. Obviously, A*(v;t) also satis-
fies the above constraint. Note that the number
of vertices searched in this case is always not
larger than the number searched by the Dijkstra

method.

2.3 The Bidirectional Method

The bidirectional method (3, 9, 10, 11, 14] is also
considered for the 2-terminal shortest path prob-
lem. It does not require any heuristic estimator,

but can reduce the number of searched vertices
in many cases. In this algorithm, the searches
are done not only from the source but also from
the destination. The algorithm is as follows:

Algorithm 3

1. Let U and W be empty sets, and let the po-
tentials ps(v) and pi(v) be +o0 for ea.cﬂ ver-
tezv € V except for p,(s) = 0 and p;(t) = 0.

2. Add to U the vertex vg that has the smallest
potential p,(v) in V —U. Ifvy € W, goto
step 7.

. 3. For each vertex v € V such that (vo,v) € E,

if ps(vo) +1(v0, 1) < ps(v), update py(v) with
ps(vo) + I(vo, v) and let previous,(v) be vp.

4. Add to W the vertex vy that has the smallest
potential py(v) in V — W. If ug € U, goto
step 7. v

5. For each vertez v € V such that (v,v) € E,
if pe(vo) + 1(v, o) < pe(v), update p:(v) with
pi(vo) + I(v,vo) and let previous;(v) be v.

6. Goto step 2.

7. Find the edge (ug, wp) € E that has the small-
est value of ps(u) + Uu, w) + py(w). The s-
't shortest path consists of the s-ug shortest
path, the edge (uo, wo), and the wo-t shortest
path.

3 New Approaches for Comput-
ing the n x m Shortest Paths
3.1 The Basic Principle

We discuss in this section how to compute all
the shortest paths between two sets of vertices
efficiently. Let § = {51, 9,...,8,} be the set of
sources, and T = {t1,13,...,%y,} be the set of
destinations. It does not matter if some of the
vertices are in both S and 7.

The basic idea of our approach is to find an
estimator that can be used in every search be-
tween two vertices s; and ¢;. Let h(v,%;) be an
estimator for ¢;. Then consider the following es-
timator:

h(v) = min h(v,) 3

Can this estimator be used in the search from
any source to any destination? To answer this
question, we obtain the following theorems:

Theorem 1 The estimator h as in egpression
(3) can be used as an A* estimator for any t;, if
h(v,t;) is a lower bound of h*(v,t;) for each j.
Proof: Consider the ca;se.of searéhing the short-
est path to ty.

hv) = min h(v,) < h(o,) < (v, 1) (4)

This inequality means that h(v) is also a lower
bound. Thus we can use it for an A* estimator
for any ;. : [m]
Theorem 2 The estimator h as in ezpression
(3) is a dual feasible estimator for any t; if, for
any j, h(v,t;) is a dual feasible estimator for t;.
Proof:
some arbitrary edge (u,v). There must be some
k such that h(v) = h(v,), and the following
inequality is ‘derived from the dual feasibility of
h(v, tr):

Consider the dual feasibility around

(u,v) + h(v,) 2> h(u, te) (5)
Thus we can obtain the following inequality:

I(w,v) + h(v)

I

I(u,v) + h{v,ty)

h{u, tg)

miin h(u, t;)

| W) ®)
This means that () is a dual feasible estimator.

a

Using this dual feasible éstimator, we can

WV

I

solve the n X m shortest paths problem as fol-

lows:)

Algorithm 4 For each ¢, do the following:

1. Let U be an empty set, and let the potential

. p(v) be +oo for each vertexr v €V except for
p(si) = 0.

2. Add to U the vertex vy that has the smallest
value of p(v)+h{(v).in V-U. If T C U, halt.

3. For each vertex v € V such that (vg,v) € E,
if p(vo) + I(vo,v) < p(v), update p(v) with
p(vo) + (vo,v) and let previous(v) be vp.

‘building the tree.

4. Goto step 2.

3.2 Techniques for a Road Nétwork
For the 2-terminal problem in a road network,
we often use the Euclidean distance d(v, w) as a
dual feasible estimator of the v-w shortest path

length. Thus we can consider the following esti-
mator for the n X m shortest paths problem:

ho) =minde,t) ()

This estimate is the Euclidean distance to the
nearest vertex in the destination set 7.

k-d tree [2] is a very efficient data structure
for coping with this nearest neighbor problem.
In k-dimensional Euclidean space, the time for
building a k-d tree for m points is O(mlogm),
and the time for querying the nearest neighbor
of some other point is O(log m), for any k.

We have to. compute the nearest neighbor
of a particular point only once, because we use
the same estimator in each. search from each
source. Thus, the extra time needed to com-
pute all the required estimates is O(|V}|logm),
because we can ignore the time O(mlogm) for
We call this algorithm the
Euclidean-distance-based A* algorithm.

3.3 The Bidirectional Method

In this subsection, we discuss how we can solve
the n x'm shortest paths problem efficiently even
if we do not have any appropriate estimator, as
when we use the bidirectional method in the 2-
terminal case.

Consider the following estimator in the 2-
terminal shortest path problem

h(v,t) = min(c, h*(v,1)),. c: constant (8)

The following corollary of Theorem 2 shows that
this estimator is dual feasible. ,.
Coroliary 1 The estimator b’ (’v t)
is dual feasible if h(v,t) is a dual feaszble esti-
mator and c is a constant.

How does the algorithm behave if we use thié
estimator? First, we must search from the des-

tination ¢ to obtain the estimates until we firid

= min(c, h(v,t))

some vertex from which the shortest path length
to the destination is larger than c. Let 7" be the
set of vertices covered by this backward search.
The search will be done from the source s until it
encounters some vertex in 7”. Let S’ be the set
of vertices searched by this forward search at the
time, and let E’ be the set of edges (u,v) € E
such that u € S’ and v € T'. Let vy be the ver-
tex such that e = (up,v) € E’' for some up € S’
and the s-t shortest path includes the vertex vp.
After the encounter, the algorithm searches only
edges in E and on the vp-t shortest path. Thus,
its behavior is very similar to that of the bidirec-
tional algorithm (Algorithm 3). If we let ¢ be the
largest value of p;(v) in the bidirectional method
except. for 400, the region searched by this algo-
rithm is almost the same as that searched by the
bidirectional method. Thus, the bidirectional
method can be said to be a variation of the A*
algorithm. : ,‘
On this assumption, the bidirectional method
can be extended for the n x m shortest paths
problem to the A* algorithm, which uses the fol-

lowing estimator:
h(v) = min A* (v, ;) 9)
7 .

This estimator gives the shortest path length to

the set of destinations. According to the theo-

rems in the last subsection, it is a dual feasible
estimator.

We can obtain this estimator by a variation
of the backward Dijkstra method as follows. Let
U be the set of vertices for which we want to
know the value A(v).

Algorithm 5

1. Let W be an empty set. Let the potential p(v)
be +oo for each vertex v € V — T, and p(v)
be 0 for each vertez v € T. '

2. Add to W the verter vo‘ that has the smallest
potential in V — W, and set h(vo) with p(vo).
IfU C W, halt. ' ‘

3. For each vertexv €V su'ch’ that (v,v) € E,
update p(v) with p(ve) + I(v,vo) if p(wo) +
1(v,v0) < p(v). ‘

B 1: An example of the network Voronoi dia-
gram on a digital road network

4. Goto step 2. v
Thus, the extra time taken to compute es-
timates as in (9) for all the nodes is O(|E| +
[V'|log(|V]), which is the same as the time taken
by the ordinary Dijkstra method. Note that we
here construct the network Voronoi diagram of
the destination set 7. The network Voronoi di-
agram of T is a subdivision of V' to {V;} where
the shortest path length from v € V; to ¢; is
not larger than those to any other vertices in
T. Figure 1 shows an example of this network
Voronoi diagram of 20 points on an actual dig-
ital road network around Tokyo. In the figure,
we show the boundary between the regions in
which most (not all) of the nearest neighbors of

. the nodes are the same point. Note also that we

do not have to compute these estimates twice or
more, because we use the same estimator in each
search from each source. We call this algorithm
the bidirectional-method-based A* algorithm, or

“simply the bidirectional method.

~This backward search should be performed
as required at the same time of the forward search.
In this' way, we can, in most cases, reduce the
number of vertices covered by the backward search.
But if there are vertices from which there is no
path to any of the destinations, the backward
search may continue throughout the graph with-

out stopping. Thus, if the graph has such ver-
tices and is very large compared with the regions
searched by the forward searches, we should mod-
ify the estimator as follows, using some appro-

priate g:bnstant c
(10)

According to corollary 1, this is also a dual feasi-

h(v) = min(c, miin h*(v,t;))

ble estimator. To compute this kind of estimate
for all the vertices, we only have to let p(v) be
c in step 1 of the algorithm 5. Note that this
estimator is more similar to the estimator in ex-
pression (8) than that in expression (9). If we
use this estimator, we do not have to search the
whole graph to obtain this estimate for any ver-
tex, but it may be difficult to decide an appro-
priate ¢. A good way to set ¢ is to set some ap-
propriate value larger than max; min; h*(s;, t;),
which means that we do not set ¢ until the esti-

mates for all the sources are computed.

4 Computational Experiments
~on a Road Network

In this section, we investigate the efficiency of
our algorithms by using actual digital road net-
work data. The network covers a square region
of 200 kilometers x 200 kilometers.in the Kanto
area in Japan, which contains several large cities
such as Tokyo and Yokohama, There are 387,199
- vertices and 782,073 edges in the network. We
did all the experiments on an IBM RS/6000 Model
7015-990 with 512M bytes of memory. We use
the time taken to traverse an edge as the length
of that edge. Thus we compute the Euclidean-
distance-based estimator using the value of the

Euclidean distance divided by the maximum speed.

In this section, we call the Euclidean-distance-
based A* algorithm simply “the A* algorfthm,
” and the bidirectional-method-based A* algo-
rithm “the bidirectional method.”

- Table 1 shows the results of the experiments
in several cases. In the table, #Searched means
the total number of vertices searched by all the n
searches, #Loaded means the number of vertices

loaded to memory, T;yq means the total com-
puting time (in seconds), and T,simate means
the time taken to compute estimates. Note that
Tiotal includes Thgpimate. In case 1, we compute
all the shortest paths among 50 points around
Tokyo. The problem in case 2 is to compute the
shortest paths between 20 sources and 150 des-
tinations; both of which are distributed around

Tokyo, while in case 3, the problem is to com-

pute the shortest paths between 30 sources around

Tokyo and 40 destinations around Yokohama.
According to the table, the bidirectional method

-shows the best performance in all cases. It is

about 30% faster than the simple Dijkstra method
in normal cases (1 and 2). If the sources and des-
tinations are located in two distant clusters, as in
case 3, it is almost 70% faster than the Dijkstra
method, because the number of searched vertices
is dramatically reduced. Note that both the
original A* algorithm and the original bidirec-
tional method are about 40% to 60% faster than
the normal Dijkstra method in the 2-terminal
case on such a road network. The A* algorithm
also reduces the number of searched vertices, but
takes a long time to compute the estimates, even
though we use a 2-d tree as in section 3.2. Thus
it is not efficient, especially when the number
of the destinations (sources if the searches are
done from the destinations) is large, as in the
case 2. However, it performs well compared with
the Dijkstra method in situations like case 3, be-
cause the searching is done mainly in the direc-
tion of the destinations by using the Euclidean-
distance-based estimator. Figure 2 shows the re-
gions searched from the same source as in case 2.
We can easily see that the bidirectional method
searches the fewest vertices.

The A* algorithm is not fast as the bidirec-
tional method on our system, but the experi-
ments reveal that it may be useful on some other
systems. Table 1 shows that the number of ver-
tices loaded to memory is small if we use the A*
algorithm. Figure 3 shows the region loaded to
memory in case 2. We can e@sily see that the A*

algorithm loads to memory the fewest vertices
among the three algorithms. To compute the
estimates, the bidirectional method must load
more vertices to memory than the A* algorithm.
This means that the A* algorithm is one of the

choices if the data,storagé device on the system

is very slow.

5 Concluding Remarks

We have proposed new a.lgbrithmé for the n x m
shortest paths problem. We showed what kind of
estimators for the A* algorithm could deal with

this n x m shortest paths problem. As examples,

we proposed two kinds of estimators, one based
on Euclidean distance, and the other on the bidi-
rectional method. We examined the efficiency of
the algorithms using these estimators through
experiments on an actual digital road network.

The experiments revealed that the bidirectional-
method-based A* algorithm is the best, and that -

it is about 30%-70% more efficient than the sim-
ple Dijkstra method. They also implied that the
Euclidean-distance-based A* algorithm is useful
on systems with very slow storage devices.

ZENB

[1] A. Barr and E. A. Feigenbaum, Handbook
of Artificial Intelligence, William Kaufman,
Inc., Los Altos, Calif., 1981.

[2] J. L. Bentley, “Multidimensional Binary
Search Trees Used for Associative Search-
ing,” Commun. ACM, vol. 18, no. 9, 1975,
pp- 509-517.

[3] D. Champeaus, “Bidirectional Heuristic

Search Again,” J. ACM, wol. 30, 1983,

pp.22-32.

First Search Strategies and the Optimality
of A*,” J. ACM, vol. 32, no. 3, 1985, pp.
505-536. ’

[5] E. Dijkstra, “A Note on Two Problems
in Connection with Graphs,” Numerical
Mathematics, vol. 1, 1959, pp. 395-412.

[6) M. L. Fredman and R. E. Tarjan, “Fi-
bonacci Heaps and Their Uses in Im-
proved Network Optimization Algorithms,”
J. ACM, vol. 34, no. 3, 1987, pp. 596-615.

[7] D. Gelperin, “On the Optimality of A*”
Artif. Intell. vol. 8, mo. 1, 1977, pp. 69-76.

8] P. E. Hart, N. J. Nillson, and B. Rafael,
“A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths,” IEEE
Trans. Sys. Sci. and Cyb. §SC-4, 1968, pp.
100-107.

[9] T. Hiraga, Y. Koseki, Y. Kajitani, and
A. Takahashi, “An Improved Bidirectional
Search Algorithm for the 2 Terminal Short-
est Path,” The 6th Karuizawa Workshop on
Circuits and Systems, 1993, pp. 249-254 (in

Japanese).

[10] T.Ikeda, M. Y. Hsu, H. Imai, S. Nishimura,

H. Shimoura, K. Tenmoku, and K. Mi-
toh, “A Fast Algorithm For. Finding Better
Routes By AI Search Techniques,” IEEE
VNIS’94, 1994, pp. 90-99.

[11] M. Luby and P. Ragde, “A Bidirec-
tional Shortest-Path Algorithm With Good
Average-Case Behavior,” Proc. 12th Inter-
national Colloguium on Automata, Lan-
guages and Programming, LNCS 194, 1985,
pp- 394-403.

[12] N. J. Nilsson, Problem-Solving Methods in
Artificial Intelligence, McGraw-Hill, New
York, 1971.

[13] N. J. Nilsson, Principles of Artificial Intel-
ligence, Tioga, Palo Alto, Calif., 1980.

[14] L. Pohl, “Bi-Directional Search,” Machine

Intelligence, vol. 6, pp. 127-140, 1971.

. i . [18] Y. Shirai and J. Tsuji, “Artificial Intelli-
[4] R. Dechter and J. Pearl, “Generalized Best- .

gence,” Iwanami Course: Information Sci-
ence, vol. 22, Iwanami, Japan, 1982 (in
Japanese). :

% 1: Computational Results

case JLMethod #Searched #Loaded | Tigtar Testimate
1 Dijkstra 5671181 232117 | 65.58 -
(50 x 50) | A" 4793515 180913 | 58.50 5.38
Bidirectional 3860605 247245 | 42.98 1.98

9 Dijkstra | 2636279 215130 | 30.10 -
(20 x 150) | A" 2219739 170147 | 31.20 6.12
Bidirectional 1868263 228316 | 21.83 2.43

3 Dijkstra 4818566 193723 | 56.00 -
(30 x 40) | A" 2901990 125212 [35.13 4.06
Bidirectional 1559049 135635 | 17.37 0.84

(a) Dijkstra method (b) A* algorithm (c) Bidirectional method

[X] 2: Searched regions from one of the sources by various algorithms

(a) Dijkstra method (b) A* algorithm ‘ (c) Bidirectional method

3: Regions of vertices loaded by various algorithms

