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A total coloring of a graph G is a coloring of all elements of G, i.e. vertices and edges, in such a
way that no two adjacent or incident elements receive the same color. Many combinatorial problems
can be efficiently solved for partial k-trees (graphs of treewidth bounded by a constant k). However, no
polynomial-time algorithm has been known for the problem of finding a total coloring of a given partial
k-tree with the minimum number of colors. This paper gives such a first polynomial-time algorithm.

1 Introduction

A total coloring of a graph G is a coloring of all elements of G so that no two adjacent or incident
elements receive the same color. Figure 1 depicts a total coloring of a graph with four colors. This paper
deals with the total coloring problem which asks to find a total coloring of a given graph G with the
minimum number of colors. The minimum number of colors is called the total chromatic number x:(G) of
G. The total coloring problem arises in many applications, including various scheduling and partitioning
problems [Yap96]. The problem is NP-complete [S4n89], and hence it is very unlikely that there exists
an algorithm to find a total coloring of a given graph G with x,;(G) colors in polynomial time.

It is known that many combinatorial problems can be solved efficiently for partial k-trees or series-
parallel graphs [ACPS93, AL91, BPT92, Cou$0, TNS82, ZNN96, ZSN96, ZTN96]. Partial k-trees are the
same as graphs of treewidth at most k. In the paper we assume that k = O(1). Any partial k-tree can be
decomposed into a tree-like structure 7" of small “basis” graphs, each with at most k + 1 vertices. Many
problems can be solved efficiently for partial k-trees by a dynamic programming (DP) algorithm based
on the tree-decomposition [ACPS93, AL91, BPT92, Cou90]. In particular, it is rather straightforward
to design polynomial-time algorithms for vertex-type problems on partial k-trees. For example, the
vertex-coloring problem, the maximum independent vertex-set problem, the minimum dominating vertex-
set problem, and the vertex-disjoint paths problem can be solved all in linear time for partial k-trees
[BPT92, Sch94, TP97]. However, this is not the case for edge-type problems such as the edge-coloring
problem and the edge-disjoint paths problem. It needs sophisticated treatment tailored for individual
edge-type problems to design efficient algorithms. For example, the edge-coloring problem can be solved
in linear time for partial k-trees and series-parallel multigraphs, but very sophisticated algorithms are
needed [ZSN97, ZSN96]. On the other hand, the edge-disjoint paths problem is NP-complete even for
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Figure 1: A total coloring.

partial k-trees [ZN98], although the problem can be solved in polynomial time for partial k-trees under
a certain restriction on the number of terminal pairs or the location of terminal pairs [ZTN96]. The
difficulty of edge-type problems stems from the following facts: the number of vertices in a basis graph
(a node of a tree-decomposition T') is bounded by k+ 1 and hence the size of a DP table required to solve
vertex-type problems can be easily bounded by a constant, say 2¥%! or (k + 1)*+!; however, the number
of edges incident to vertices in a basis graph is not always bounded and hence it is difficult to bound the
size of a DP table for edge-type problems by a constant or a polynomial in the number of vertices in a
partial k-tree.

Clearly the mixed type problem like the total coloring problem is more difficult in general than the
vertex- and edge-type problems. Both the vertex-coloring problem and the edge-coloring problem can
be solved in linear time for partial k-trees. Therefore a natural question is whether the total coloring
problem can be efficiently solved for partial k-trees or not.

In this paper we give a polynomial-time algorithm to solve the total coloring problem for partial
k-trees G. Our idea is to bound the size of a DP table by O(nzn(wl)), applying and extending techniques
developed for the edge-coloring problem [Bod90, ZN95, ZNN96]. The paper is organized as follows. In
section 2 we present some preliminary definitions. In section 3 we give a polynomial-time algorithm for
the total coloring problem on partial k-trees.

2 Terminology and Definitions

In this section we give some definitions. Let G = (V, E) denote a graph with vertex set V and edge set
E. We often denote by V(G) and E(G) the vertex set and the edge set of G, respectively. We denote
by n the number of vertices in G. The paper deals with simple undirected graphs without multiple edges
or self-loops. An edge joining vertices u and v is denoted by (u,v). We denote by A(G) the maezimum
degree of G.

The class of k-trees is defined recursively as follows:

(K1) A complete graphs with k vertices is a k-tree.

(K2) f G = (V,E) is a k-tree and k vertices vy, vq,...,v; induce a complete subgraph of G, then
G = (Vu{uw},Eu{(vi,w):1<i<k})isa k-tree where w is a new vertex not contained in G.

(K3) All k-trees can be formed with rules (K1) and (K2).

A graph is a partial k-tree if it is a subgraph of a k-tree. Thus a partial k-tree G = (V, E) is a simple
graph, and |E| < kn. Figure 2 illustrates a process of generating a 3-tree. The graph in Figure 1 is
indeed a subgraph of a 3-tree in Figure 2, and hence is a partial 3-tree.



Figure 2: 3-trees.

A tree-decomposition of G is a tree T' = (Vp, Er) where Vr is a family of subset of V with the following
properties:

4 UXeVTX =V
o for each e = (u,v) € E, there is a node X € Vr such that u,v € X; and
e if node X; lies on the path in 7' from node X; to node X;, then X; N X; C Xj.

Figure 3(a) illustrates a tree-decomposition of the partial 3-tree in Figure 1. The width of a tree-
decomposition T = (Vr, Er) is max{|X| -1 : X € Vp}. The treewidth of graph G is the minimum
width of a tree-decomposition of G, taken over all possible tree-decompositions of G. It is known that
every graph with treewidth < k is a partial k-tree, and conversely, that every partial k-tree has a tree-
decomposition with width < k.

Bodlaender has given a linear time sequential algorithm to find a tree-decomposition of a given graph
with width < k for bounded k [Bod96]. We consider a tree-decomposition of a partial k-tree G with
width < k. We transform it to a binary tree T as follows: regard the tree-decomposition as a rooted
tree by choosing an arbitrary node as the root Xj and replace every internal node X; with r children
Xj1) Xjas -y Xj, by r + 1 new nodes X;,, X;,,..., X, ,, which are copies of X;, where X;, has the
same father as X;, X; is the father of X; ,, and the ¢-th child X; of X; (1 < ¢ <r), and X;,,, is
a leaf of T. This transformation can be done in linear time and doesn’t change width [Bod90]. T is a
tree-decomposition of G with the following properties:

e The number of nodes in T' is O(n).
e Fach internal node X; has exactly two children, say X; and X,., and either X; = X; or X; = X,.
e For each edge € = (u,v) € E, there is at least one leaf X; with u,v € X;.

Such a tree T is called a binary tree-decomposition. Figure 3(b) illustrates a binary transformation of
the tree-decomposition in Figure 3(a). Let T be a binary tree-decomposition with width < k of a partial
k-tree G. For each edge ¢ = (u,v) € E(G), we choose an arbitrary leaf X; with u,v € X; and denote it
by rep(e). We define a vertex set V; C V(G) and an edge set E; C E(G) for each node X; of T' as follows
1 if X; is a leaf, then let V; = X; and E; = {e € E(G) : rep(e) = X;}; if X; is an internal node with



Xo={v1,09,U3,04 }

Xo={v1,03,U4,05}

X1={v,u,03,07})

X3 ={v3U4,U5V6}

(a) Tree-decomposition

X01= { U1,U2,U3,V4 }

Xo2 Xg91={V1,V3,V4,V5 }

X03 = XOl Xll = { U1,U2,U3,U7 } X31 = { v3,v4,v5;v6 }

(b) Binary tree-decomposition

Figure 3: Tree-decompositions of the partial 3-tree in Figure 1.



children X; and X,, then let V; = VUV, and E; = E; U E,. Note that NV, C X; and EyNE, = 0.
We denote by G; the graph with vertex set Vi and edge set E;. Then graphs Gi and G, share common
vertices only in X; because of the third property of a tree~decompos1tlon

3 A Polynomial-Time A_l'goritlhm
In this section we prove the following theorem.

Theorem 3.1 Let G = (V,E) bea partial k-tree of n vertices given by its tree-decomposztwn with width
< k, let C be a set.of colors, and let a = |C|. Then it can be determmed in time : :

(n{a(k+l)(k+2)/2 + (a+ 1)z°( +1>})
whether G has a total calon’ﬁg: VUE—=C.
One can easily know that the following lemma holds.
Lemma 3.1 E‘very‘pa'rtz'al k-tree G'satisﬁcs |
AG)+1< x:(G) <AG) +k+2.

Thus one can compute x:(G) by applying the algorithm in Theorem 3.1 to G for k 42 distinct values a,
A(G)+1 L |C} = a < A(G)+ k + 2. Furthermore, since a < n+k 42 and k = O(1), both the first term
a(¥+1)(E+2)/2 and the second term (o + 1)2’( W
Thus we have the following corollary.

in the braces above are bounded by a polynom1a1 in-n.

Corollary 3.1 The total coloring problem can be solved in polynomial time for partial k-trees. -

In the remainder of this section we will give a proof of Theorem 3.1. Although we give an algorithm
to decide whether G = (V, E) has a total coloring f : VU E — C for a given set C of colors, it can be
easily modified so that it actually finds a total coloring f with colors in C. Our idea is to reduce the
size of a DP table to O((a+ 1)22(':+ )) by considering “pair-counts” and “quad-counts” defined below. A
similar technique has been used for the ordinary edge-coloring and the f-coloring [Bod90, ZN95, ZNN96].
Let C = {1,2,...,a} be the set of colors. Let G = (V, E) be a partial k-tree, and let X; be a node
of a binary tree-decomposition T of G. We say that a total coloring of graph G; is eztensible if it can
be extended to a total coloring of G = Gyp; without changing the coloring of G;, where Xo; is the root
of T. Figure 4 illustrates total colorings of Gos and Gy, for the partial 3-tree of G'in Figure 1 and its
binary tree-decomposition T in Figure 3(b), where Xo3 = {v;, v, v3,v4} is the left child of the root Xo;
and Xy = {v1,vs, v4,v5} is the right child. Both of the colorings are extensible because either can be
extended to the total coloring of G in Figure 1.
For a total coloring f of G; and a color ¢ € C, we define subsets Y/(X;; f, c) and Z(X;; f,¢) of X; as
follows:
Y(X;;f, o)={veX;: f(v)= c} and
Z(Xi; f,¢) = {v € X; : G; has an edge (v, w) with f(v,w))=c).

Clearly, ‘ '
Y(X,';f, c)ﬂZ(X,';f,c) =0. (1)

We call a mapping v : 2% x 2%Xi — {0,1,2,...,a} a pair-count on a node X, A palr-count v on X; is
defined to be active if G; has a total coloring f such that

v(A,B) = I{ceC A=Y(X;; fc),B= Z(X.,f,c)}l

for each pair of A, B C X;. Such a pair-count ¥ is called the pazr—count of the total coloring f. Clearly, for
any active pair-count v, ) , BCx: Y v(4,B) = |C| = a. Furthermore; Eq. (1) implies that if v(A4,B) > 1
then AN B = 0.



Let f be the total coloring f of G = Go, for the root Xo; = {v1,v3, 3,24} depicted in Figure 4(a),

then
Y (Xo1; f,1) = {m}, Z(Xo1; £,1) = {vs, va},
Y(Xo1;£,2) =0, Z(Xo1; ,2) = {v1,v2,v3,v4},
Y(Xo1; £,3) = {va,v3,v4}, Z(Xo1;f,3) =9,
Y(Xo1; f,4) =0, Z(Xo1; £,4) = {v1,v2,v3,v4}.

Therefore f has the pair-count vx,, such that

7){01({7)1}1{”3:"4}) = 1| 7Xo‘(ﬂv{vl)02)v31v4}) = 2» 74\'01({”21"3)”4}10) =1

and 7x,, (A, B) = 0 for any other pair of A, B C Xg;. On the other hand, the total coloring of Gg3 for
the left child Xo3 = {vy, v, v3,v4} of Xo; depicted in Figure 4(b) has the pair-count YXo, Such that

7Xaz('(vl}) o) = 1: ) 7on(01 {vl)vayvs}) = 1!

X0z ({2, v3,v4},0) = 1, ¥x0,(0, {v1,v2,04}) = 1,
and ¥x,,(A, B) = 0 for any other pair of A,B C Xo3. The total coloring of Gy for the right child
X321 = {v1,v3,v4,s} of Xo; depicted in Figure 4(c) has the pair-count yx,, such that

Txn({v1} {va, va,us}) =1, ¥x,,({vs}, {va}) = 1,
YXay ({1)3, 04}1 ‘(05}) =1, 7x21(0!(v31"5}) =1,

and yx,, (A, B) = 0 for any other pair of 4, B C X;.
We now have the following lemma.

Lemma 3.2 Let two total colorings f and g of G; for a node X; of T have the same pair-count on X;.
Then f s extensible if and only if g is extensible.

Thus an active pair-count on X; characterizes an equivalence class of extensible total colorings of G;.
Since |X;} < k + 1, there are at most (a + 1);=(k+l) active pair-counts on X;. The main step of our
algorithm is to compute a table of all active pair-counts on each node of T from leaves to the root Xg;
of T' by means of dynamic programming. From the table on the root X1 one can easily check whether
G has a total coloring using colors in C, as follows.

Lemma 3.3 A partial k-tree G has a total coloring using colors in 'C if and only if the table on root X,
has at least one actlive pair-count.

We first compute the table of all active pair-counts on each leaf X; of T' as follows:
(1) enumerate all mappings : V(G;) U E(G;) — C;
(2) find all total colorings of G; from the mappings above; and
(8) compute all active pair-counts on X; from the total colorings of G;.

Since |C| = @, |Xi|] < k+ 1 and |E;| < k(k + 1)/2 for leaf X;, the number of distinct mappings
f : V(Gi) U E(G;) — C is at most a*+1)(3+2)/2_ For each mapping f of Gj, one can check whether
f is a total coloring of G; in time O(k?) = O(1). For each total coloring f of G;, one can compute
the pair-count of f in time O(k2) = O(1). Therefore, steps (1), (2) and (3) can be done for a leaf
in time Oga(k“)(’“'z)/’). Since T has O(n) leaves, the tables on all leaves can be computed in time
O(na(k+1){k+2)/ 2), which corresponds to the first term in the braces of the complexity mentioned in
Theorem 3.1. . .

We next compute all active pair-counts on each internal noode X; of T from all active pair-counts of
its children X; and X,. We may assume that X; = X;. Note that V(G;) = V(G|) U V(G,), E(G;) =
E(Gi)U E(G,) and E(G;)N E(G,) = 0. We call a mapping p : 2% x 2%t x 2%+ x 2%+ — {0,1,2,...,a} a
quad-count on X;. We define a quad-count p to be active if G; has a total coloring f such that, for each
quadruplet (A4, By, A,, B,) with A;, B; C X; and A,, B, C X, o :

P(AI;BT;A}yBr)=|{CEC : Al=Y(X1;flvc)|.Bl=Z(Xl;fhc)v
A,-=Y(Xr;fnc)yBr=Z(Xr;.fﬁc)}‘
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Figure 4: Total colorings of (a) G = Goy, (b) Goz, and (c) Ga1.

where fi = flg, is the restriction of f to V(G;) U E(G)) and f, = flg, is the restriction of f to
V(G,) U E(G,). Such a quad-count is called the quad-count of the total coloring f of G;. Then we have
the following lemma. h

Lemma 3.4 Let an internal node X; of T have two children X; and X,, and let X; = X;. Then a
quad-count p on X; is active if and only if the following (a) and (b) hold: .

(a) +f p(A1, Bi; A, B.)> 1 then AAnX,=A,NX; and BiN B, =0; and
(b) there are two active pair-counts v; on X;.and v, on X, such that

(i) for each pair A1, By C X1, mi(A1, B) = 34 pcx, P(A1, Br; A, B);
(ii) for each pair Ar, B, C X,, ¥-(Ar, B,) = ZA,BQX; p(A,B; A, B,).
Using Lemma 3.4, we compute all active quad-counts p on X; from all pairs of active pair-counts v,
on X; and 7, on X,. Since there are 22(**1) pairs of active pair-counts on X; and X,, there are at most
(a+ 1)2’()‘“) distinct quad-counts p. For each p of them, we check whether p satisfies Conditions (a) and

(b) in Lemma 3.4. For each p, one can check in time O(1) whether p satisfies Condition (a) since there

are at most 24(F+1) = O(1) distinct quadruplets (A;, By, A, B,). Furthermore, checking Condition (b) for
all possible p’s can be done in time O((a + 1)2°“*") since there are at most (a+ 1)2’,(*'“) pairs of v; and

¥r. Thus we have shown that all active quad-counts p on X; can be computed in time O((a + 1)22(“‘)).



We now show how to compute all active pair-counts on an internal node X; from all active quad-counts
on X;.

Lemma 3.5 Let an anternal node X; of T have two chzldren X; and X, with X; = X;. A pair-count v
on X; is active if and only if there ezisls an active quad-count p on X; such that for each pair A,B C X;
7(4,B) = o(41, Bi; A, By). (2)

The summation above is taken over all quadruplets (Ay, B:,A,', B,) such that A = A; and B = (BjUB,)N
X. '

Using Lemma 3.5 we compute all active pair-counts v on X; from-all active quad-counts p on X;.
There are at most (& + 1)22(“1) distinct active quad-counts p. From each p of them, we compute v
satisfying Eq. (2) in time O(1) since |Ai,|Bil,|ArL |Brl, [ X:l, 1X),1X] < k+ 1. Thus we have shown
that all active pair-counts 4 on X; can be computed in time O((a+ 1)27(””) Since T has O(n) internal

)22(k+l)

nodes, one can compute the tables for all internal nodes in time O(n(e+1 ), which corresponds to

the second term of the complexity in Theorem 3.1.
This completes a proof of Theorem 3.1.
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