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Abstract ' Given an undu‘ected multlgraph G = (V, E) and two positive integers k and £, the"
~ edge-and-vertex connectwnty augmentation problem asks to augment G by the smallest number of ‘
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1 Introduction

The problem of augmenting a graph by adding the smallest number of new edges to meet edge-connectivity
or vertex-connectivity requirement has been extensively studied as an important subject in network
design, and many efficient algorithms have been developed so far. However, it was only very recent
to have algorithms for augmenting both edge-connectivity and vertex-connectivity simultaneously (see
[6, 7, 8] for those results). '

Let G = (V, E) stand for an undirected multigraph with a set V' of vertices and a set £ of edges.
We denote the number of vertices by n, and the number of pairs of adjacent vertices by m. The local
edge-connectivity Ag(z,y) (resp., the local vertex-connectivity kg (x,y)) is defined to be the maximum
k (resp., £) such that there are k edge disjoint (resp., £ internally vertex disjoint) paths between z and y
in G (where at most one edge between z and y is allowed in the set of internally vertex disjoint paths).
The edge-connectivity and vertez-connectivity of G are defined by A(GZ/: min{g(z,y) | 2,y € V,z # y}
and k(G) = min{xg(e,y) | 2,y € V,e # y}. Let r be a function: (3) — Z*, where (%) denotes the
set of unordered pairs of £,y € V and Z1 denotes the set of nonnegative integers. We call a multigraph
G ra-edge-connected if Ag(z,y) > ra(z,y) for all z,y € V. Analogously, G is called r-vertez-connected
if kg(z,y) > re(z,y) for all ¢,y € V. The edge-connectivity augmentation problem (resp., the vertes-
connectivily augmentation problem) asks to augment G by the smallest number of new edges so that the
resulting multigraph G’ becomes rj-edge-connected (resp., r¢-vertex-connected).

As to the edge-connectivity augmentation problem, Watanabe and Nakamura [10] first proved that
the problem with r(z,y) = k for all z,y € V can be solved in polynomial time for any given integer k.
For a general requirement function r, Frank [2] showed by using Mader’s edge-splitting theorem that
the problem can be solved in polynomial time. . :

As to the vertex-connectivity augmentation problem, the problem of making a (£~ 1)-vertex-connected
multigraph #-vertex-connected was shown to be polynomially solvable for £ = 2 [1] and for £ = 3 [11]. Tt
was later found out that, for £ € {2,3, 4}, the vertex-connectivity augmentation problem can be solved in
" polynomial time in [1, 4] (for £ = 2), [3, 11] (for £ = 3), and [5] (for £ = 4), even if the input multigraph
G is not necessarily (£ — 1)-vertex-connected. However, whether there is a polynomial time algorithm for
an arbitrary constant £ was still an open question (even if G is (£~ 1)-vertex-connected).

Hsu and Kao [6] first treated the problem of augmenting edge-connectivity and: vertex-connectivity
simultaneously, and presented a linear time algorithm for. augmenting G = (V, E) with two specified
subsets X and Y of V by adding the smallest number of edges so that the resulting multigraph G’
satisfies Ag/(z,2') > 2for all 2,2’ € X and xg/(y,y") > 2for ally, o €Y. The connectivity augmentation
problem in the general setting was first studied in {7, 8]. For two given functions 7y, 7y . (‘;) — 7t
we say that G is (ra,rx)-connected if G is ra-edge-connected and re-vertex-connected. The edge-and-
verter-connectivity augmentation problem, denoted by EVAP(ry,r,), asks to augment G by adding the
smallest number of new edges so that the resulting multigraph G’ becomes (7, 7y )-connected, where
ra(z,y) > re(z,y) is assumed for all z,y € V without loss of generality. When a requirement function
7, satisfies r.(z,y) = £ € Z* for all z,y € V, this problem is also -denoted ‘as EVAP(ry,£). The
authors presented algorithms EV-AUGMENT: [7] and EV-AUGMENTS3 [8]. The first algorithm solves
EVAP(ry,2) in O(n®mlog(n2/m)) time, and the second solves EVAP(k,3) in O(n*) time, under the
assumption that k is a fixed constant and the input multigraph is already 2-vertex-connected. However,
it is left open whether EVAP(k, 3) with a fixed k can be solved in polynomial time for an arbitrary input
multigraph G. :

In this paper, we consider EVAP(k,3) for an arbitrary input multigraph G = (V, E), which is not
necessarily 2-vertex-connected., It seems difficult to extend directly the above EV-AUGMENTS to this
case, since many properties used in EV-AUGMENT3 heavily depend on the 2-vertex-connectivity of the
input multigraph. Alternatively, one may first apply EV-AUGMENT to an input multigraph G to obtain
a (k,2)-connected multigraph G', and then apply EV-AUGMENTS3 to G’ to obtain a (k, 3)-connected
multigraph G*”. However, in this case, the resulting. multigraph G" may not be optimally augmented
from the original multigraph G. ) ‘

In this paper, we first derive two lower bounds [a(G)/2] and 5(G) on opt(G), where opt(G) is the
optimal value of EVAP(k, 3). We next obtain a (k,2)-connected multigraph G, = (V, E U F') with |\F| =
[a(G)/2]. We show that such G, can be computed by applying EV-AUGMENT. We then apply several
procedures used in EV-AUGMENTS in order to replace some edges in F -with the same number of edges
to attain the 3-vertex-connectivity while preserving its (k,2)-connectivity. However, those procedures
cannot be directly used unless G is 2-vertex-connected. To remedy this, we show that there exist some



edges in F' for which the procedures can be applied. As a result of applying these procedures;, we can
show that either opt(G) = max{[a(G)/2], B(G)} or opt(G) < 2k — 3 holds and that a set of the smallest
number of new edges can then be constructed in O((2k — 3)n%*~3 4 n?m+n3logn) time. Furthermore, we
can show that if 6(G) > k or opt(G) > 2k—2 holds, then it can be found in O(n2m+ n®log n) time, and if
opt(G) < 2k —3 holds, then a feasible solution F’ with [F| < min{20pt(G)— 1,2k —3, opt(G) + (k+1)/2},
can be found in O(n?m + n®logn) time. The entire algorithm is called EV-AUGMENT3*.

In Section 2, after introducing basic definitions and the concept of edge-splitting, we derive a lower
bound on the optimal value of EVAP(k, 3) for an arbitrary muiltigraph G. In Sections 3, 4 and 5, we give
an outline of EV-AUGMENT3*. » ‘ , -

2 Preliminaries

2.1 Definitions

For a multigraph G = (V, E), an edge with end vertices u and v is denoted by (u, v). Given two disjoint
subsets of vertices X, Y C V, we denote by Eg(X,Y) the set of edges connecting a vertex in X and a
vertex in Y, and denote cg(X,Y) = |E¢(X,Y)|. A singleton set {z} is also denoted z. In particular,
Eg(u,v) is the set of multiple edges with end vertices u and v and ¢g(u,v) = |EG(u,v)| denotes its
multiplicity. For a subset V' C V (resp., B’ C E) in G, G[V'] (tesp., G[E’]) denotes the subgraph
induced by V' (resp., E’), and we denote G[V — V"] (resp., G[E — E']) simply by G — V' (resp., G- E').
For an edge set F', we denote by V[F] the set of end vertices of edges in F'. If F satisfies FNE =, we
denote G = (V,EUF) by G+ F. A partition Xy, -, X; of a vertex set V is a family of nonempty disjoint -
subsets X; of V whose union is V, and a subpartition of V is a partition of a subset of V. A cut is defined
to be a subset X of V with 0 # X # V, and the size of a cut X is defined by cg(X,V — X), which may
also be written as cg(X). In particular, cg(v) for v € V denotes the degree of v. Let 6(G) denote the
minimum degree of G. We say that a cut X infersects another cut V" if none of subsets X NV, X — ¥
and Y — X is empty, and X crosses Y if in addition V — (XUY)#0. A family X of subsets X3, -, X,
is called laminar if no two subsets in X intersect each other. A multigraph G is called k-edge-connected
if A(G) > k. For a subset X of V, a vertex v € V — X is called a neighbor of X if it is adjacent to some
vertex u € X, and the set of all neighbors of X is denoted by I'(X). A maximal corinected subgraph G’
in a multigraph G is called a component of G, and the number of components in G is denoted by’ p(G). A
disconnecting set of G is defined as a cut S of V such that p(G — S) > p(G) holds and no S’ C S has this
property. Let G denote the simple graph obtained from G by replacing multiple edges in Eg(u,v) by a
single edge (u,v) for all v,v € V. A component G’ of G with |V(G")] > 3 always has a diseonnecting set
unless G’ is a complete graph. If G is connected and contains a disconnecting set, then a disconnecting
set of the minimum size is called a minimum disconnecting set, whose size is equal to K(G). At TCV
is called tight if I'c(T') is'a minimum disconnecting set in G. A tight set T is called minimal if no proper
subset 7" of T is tight (hence, the induced subgraph G[T7] is connected). A disconnecting set S is called
a disconnecting vertez (resp., disconnecting pair) if |S| = 1 (resp., |S] = 2). We say that a disconnecting
set § C V disconnects two disjoint subsets Y and Y’ of V - S if no two vertices ¢ € Y and y €Y' are
connected in G — S. For a disconnecting set S, there is a unique component X of G such that X 28,
and we call the components in G[X] — S the S-components.

2.2 Edge-Splitting = . ; e L .

Given a multigraph H = (V U{s}, E), a designated vertex s, 'vertices u,v € I'(s) (possibly u = v) and
a nonnegative integer 6 < min{cy (s, ), cu(s,v)}, we construct multigraph H" = (V U {s}, E") from H
by deleting 6 edges from Eg(s,u) and Eg (s, v), respectively; and adding new. & edges to Eg(u,v). We
say that H' is obtained from H by splitting § pair of edges (s, u) and (s,v). A-sequence of splittings.is
complete if the resulting multigraph H’ has'no neighbor of s. The following theorem is due to Lovdsz [9}:

Theorem 2.1 Let H = (V U {s},E) be a multigraph with a designated vertez s and an integer k > 2
such that cy(s) is an even integer and Mg (x,y) > k for all pairs x,y € V. Then, for any neighbor u of
s, there is a neighbor v (possibly v = u) such that Ag:(x)y) > k forallz,y € V — s'in:the malligraph H'
resulting from H by splitting one pair of edges (s,u). and (s, )., ‘ - o

" By applying this re]:ieatédly, we see that there alWéys exists a complete splitting at s such that the
resulting multigraph H' satisfies Tg/(s) = § and Az, y) > k forallz,ye V. ) '



2.3 Lower Bound on the number of new edges

In the subsequent discussion, we consider EVAP(k,3) for an arbitrary multigraph G, and assume k>4
(since the problem is equivalent to the 3-vertex-connectivity augmentation problem if k = 3). In this
section, we derive two types of lower bounds a(G) and 3(G) on the optimal value opt(G) to EVAP(E,3).
Let X be a cut in G. To make G (k, 3)-connected, it is necessary to add at least max{k - cg(X),0}
edges between X 'and V — X, or at least max{3 — |['¢(X)],0} edges between X and V — X — Te(X) if
V — X =Tg(X) # 0. Given a subpartition X = {X1,---, Xy, , Xg, 41, -, Xg} of V, where V — X; —
Ig(X;) # 0 holds for ¢ = ¢; + 1,-+-, g2, We can sum up “deficiency” max{k —cg(X;),0},i=1,--+,q1,
and max{3 — [T¢(X;)|,0},i = ¢1 +1,---,¢2. Adding one edge to G contributes to the deficiency of at
most two cuts in X. Hence, to make G (k,3)-connected, we need at least [a(G)/2] new edges, where

q1 92
() zall subpgl.r?;ﬁions X {Z;(k ~ealX z‘:%&-l(3 ~Ireab | - . &1

and the maximum is taken over all subpartitions X = {X1,--, Xg1, Xg1 41, Xgo } of V with V — X; —
FG(Xi)¢m)i=QI+11‘“1q2' . .

We now consider another case in which different type of new edges become necessary. For a pair of
two vertices § = {v,v'} of G, let T4, .-+, T, denote all the components in G — 5, where r = p(G — S)
(note that S may not be a disconnecting pair in G). To make G 3-vertex-connected, a new edge set F
must be added to G so that all 7; form a single connected component in (G + F) — S. For this, it is
necessary to add

(i) at least p(G — S) — 1 edges to connect all components in G — S.
Moreover, if k > cg(u) holds for a u € S, then it is necessary to add at least k — cg(u) edges in order to
make G k-edge-connected. Since adding an edge between v and v’ contribute to the requirement of both
v and v', we require

(ii) at least max{k — cg(v),k — eg(v'),0} edges.

In the above, no edge in (i) is incident to v or v’, while all edges in (ii) are incident to v or v'; hence there
is no edge that belongs to both (i) and (ii). Therefore, it is necessary to add

(ii1) at least p(G — S) — 1 + max{k — cg(v), k — cg(v'),0} edges for § = '}

This means that the following number of new edges are necessary to make G (, 3)-connected.

B(G) = max [p(G — 8) — 1+ max{k — cg(v), k — ca(v'),0}]. - (2.2)

: all vertex pairs v ‘ ' S
S={v,v}inG o

Lemma 2.1 (Lower Bound) 7(G) < opt(G), where v(G) = max{[«(G)/2], B(G)} : ' o

Based on this, we shall prove the next result in'this paper.

Theorem 2.2 Let G be an arbitrary multigraph with n vertices and m adjacent verlez pairs. Do
(1) For any integer k > 4, v(G) < opt(G) < max{y(G),2k — 3} holds and an optimal solution of
EVAP(k,3) can be found in O((2k ~ 3)n*~3 + n?m 4 n®logn) time.
(2) If §(G) > k or v(G) > 2k — 2, then opt(G) = 7(G) holds and an optimal solution F can be found in
O(n*m + nlogn) time. - o , o e '

(3) If ¥(G) < 2k — 3, then a feasible solution F' of EVAP(k,3) such that |F'] < min{2ept(G)— 1,2k —
3,0pt(G) + (k + 1)/2}, can be found in O(n?m + n®logn) time. O

3 Algorithm for EVAP(k,3) - Lo

Given a multigraph G = (V, E), let P3(G) denote the set of unordered pairs [z, y} of vertices z,y € V
with kg(z,y) = 3. Thus P3(G) = (‘;) if £(G) > 3. For a subset F C E in G, an operation of removing a
subset F' from F followed by adding a set F” of new edges with |F”/| = |F'| to F is called a shiftingin F,
and denoted by F”/F'. In particular, a shifting F/F' in F is called a switching if it does not change the
degree cg(v) of any vertex v in G. Given an k-edge-connected multigraph G, a sequence of switchings



or shiftings of edges is called feaszble to G if the resultmg multigraph G’ remains k-edge-connected and
Ps3(G') D 'P3( ) holds.

We now present a polynomlal time algorithm EV-AUGMENT3* for solving EVAP(k,3). The proofs
of the properties and the analysis of the time complexity are omitted due to space limitation. An example
of computational process of EV-AUGMENT3* is shown in Fig. 1.

Algorithm EV-AUGMENT3*
Input: An undirected multigraph G = (V, E) (|V| > 4) and an integer k > 4.
OQutput: A set of new edges F' with |F'| = opt(G) such that G+ F is (k, 3)-connected.

"Step I (Addition of vertex s and associated edges): Add a new vertex s together with a set Fj of
new edges between 5 and V such that the resulting G; = (V U {s}, E U F}) satisfies

e (X)>k forallcuts X CV, : ) (3.1)
Te(X)|+Te,(s)NX|>8 forallcuts X CV with V — X — Fg(X) #0

and |[Tg(X)|+|X] >3, (3.2)

[Te(z)|+ ca,(s,2) > 3 forallz €V, : . (3.3)

and |Fy| is minimum shbject to (3.1).— (3.3). We describe in Section 4 how to find such Fy.
Property 3.1 |Fi| = a(G). : o oo : o

If ¢g, (s) is odd, then we add to F a new edge é = (s w) for an arbitrary vertex w € V' so that cg,(s)
becomes even. Call thls edge é = (s,w) extra.

Step I (Edge-sphttmg) Here. we show the following property which. is stronger than Theorem 2.1.

Property 3.2 Thereisa complete splzttmg alsinGy such that the resultmg multzgmph Gy = (V, E‘UFZ)
is (k,2)-connected. . , ; o

Now if £(G32) > 3 holds, then we are done, because |F3] = |F1]/2 = [a(G)/2] attains the lower bound
of Lemma 2.1. Otherwise (x(G2) = 2), we can observe from (3.2) and (3.3) that thé following holds for
the family of minimal tight sets in G, denoted by 7 (G2).

TAV[Fy] # 0 for all T € T(Ga), ' v :
[Eg,(z) N F3| > 2 for all T = {z} € T(G>) with |[Tg(z)| = 1, (3.4)
\Ec.(z) N Fa| > 3 for all T = {z} € T(G4) with [Ta(e)| = 0.

Step III (Switching edges): Now the current G = (V, E U F3) is (k, 2)-connected, and satisfies (3.4).
During this step, we try to make G 3-vertex-connected by switching some edges in F, while preserving
the k-edge-connectivity. In [8, Property 3.2], some sufficient conditions for two edges ei, ez € Fp that are
disconnected by some disconnecting palr and satisfies k(G2 — {e1, e2}) > 2, are given to admit a feasible
switching such that at least one new pair of vertices in '3 becomes 3-vertex-connected. However, if an
input multigraph G is not 2-vertex-connected (a situation not assumed in [8]), there may be an edge
e € Fy such that Ga — ¢ is not 2-vertex-connected. Let F*(G3) C Fy denotes the set of edges in Fy.such
that the removal of any edge e € F*(Gs) violates 2-vertex-connectivity of Ga.

Property 3.3 For each tight set T in Ga, G3[T U T¢,(T)] contains at least one edje e€ Fy—~ F;‘(Gg)
with TN\ V[e] # 0. o

Property 3.4 Let S be a disconnecting pairin Gy. Iftwo edges e, e5 € Fo—F*(Gy) satisfy T;:nVie;] # 0,
i=1,2, for two distinct S-components Ty and T3 in Ga, then G2 —{e1, ez} is 2-vertez-connected. (n]

- From these properties, every tight set contains an edge in Fy — F*(G3) and the two edges e;,es €
Fy — F*(G3) satisfying one of the conditions in‘[8, Property 3.2] always satisfy k(G2 = {e1,e2}) > 2.
Therefore we can repeat executing a feasible switching of pairs of edges in Fy — F*(G>) until none of the
conditions in [8, Property 3.2] holds in G3. Then it is not difficult to see that all dlsconnect‘.mg pau's m
G5 contain one common vertex, say v*

—13—



In [8, Property 3.3], another case in which a feasible switching can be performed is given. In this paper,
we show a generalization of [8, Property 3.3] as it is now proved including the case of k(G2 —{e1, e3,e3}) <
1.

If none of the conditions in [8, Properties 3.2, 3.3] for a feasible switching holds any longer, let
G3 = (V,E U F3) denote the resulting multigraph, where F3 = Fy. If k(G3) > 3, we are done since
|F3| = [a(G)/2] attains the lower bound 7(G). Otherwise go to Step IV.

Step IV (Shifting edges):

Property 3.5 Let S; = {v*,v;}, i = 1,---,q, denote all disconnecting pairs in G3. Then every e €
F*(G3) satisfies e = (vi,v;) for some i £ j, or e = (t,v;) with I'g,(t) = {v*,v;} for some i. O

In [8, Property 3.4], some conditions are given to admit a feasible shifting of an edge e; € F3— F*(G3)
incident to the common vertex v* (and another edge e; € F5 — F*(G3) such that x(G3 — {e1,e2}) > 2
holds and e; and ey are disconnected by some disconnecting pair in Gj, if necessary) that decreases
the degree of v* by one. From Property 3.5, Fg,(v*) N F3 C F3 — F*(Gs) follows. Furthermore, from
Property 3.4, every two edges e;,e; € F3 — F*(G3) that are disconnected by some disconnecting pair
satisfy ©(Gs—{e1,ea}) > 2. Therefore we can apply [8, Property 3.4] to G, and repeat a feasible shifting
and switching edges in F3 — F*(G3) until |[F3 N Eg,(v*)| = 0 or ¢g,(v*) = k holds.

Property 3.6 IfF*(Gs) # 0 holds, we can ezecute a feasible switching or shifting of edges in F3—F* (Ga)
by applying [8, Properties 3.2, 3,3, and 3.4].

Let G4 = (V, EUF,) denote the resulting multigraph G3 = (V, EUF3) obtained by repeating a feasible
switching or shifting of edges in F3 until none of conditions in [8, Properties 3.2, 3,3, and 3.4] holds in
Gs. Tt holds F*(G4) = 0 from Property 3.6. In this case, we observe that we can apply the latter part
of Step IV and Step V of EV-AUGMENTS [8] to G4 (while maintaining condition F*(G4) = ). Then
as observed in [8, Property 3.8], we see that an input multigraph G becomes (k, 3)-connected by adding
min{[a(G)/2],8(G)} new edges or by adding at most 2k — 3 new edges. This establishes Theorem 2.2.
m]

4 Algorithm for Step I

We consider how to find a set Fy such that Gy = (V U s, E U Fy) satisfies (3.1) — (3.3), and has a
subpartition X = {Xy,-+-, X,,, Xg, 41, -, X g, } of V, satisfying
g, (5, Xi)=k—ce(Xi)fori=1,.---,q, :
cG, (8, X;) =3 —|Ta(X;)| and V—-X;—Te(X;) #0 for i = g1+, - - ,qa, S
Tg,(8) CUxex X. .

Note that such an edge set Fy attains |Fi| = a(G).

Algorithm ADD-EDGE*

1. After adding a sufficiently large number (say, k) of edges between s and each vertex v € V, discard
them one by one as long as (3.1), (3.2) or (3.3) is not violated. Let G} = (V Us, EU FY) be the resulting
multigraph where F| = Eg: (s, V). Unless this G} has a subpartition of V satisfying (4.1), we continue
shifting or removing edges in Eg: (s, V), while preserving (3.1) - (3.3).

Property 4.1 For each edge e = (s,t) € Eg: (s, V) such that G} — e violates (3.2) or (3. 3) G has e
cut TCV witht€T and V —-T —T(T) # (b satisfying

(@) IT(T)| = 2 and Eg;(s5,T) = {(s,1)}, or
(I) ITe(T)I =1 and cg:(s,t) = cgi(s,u) = 1 hold fort # u € T if T} > 2,
or Tg(t)] =1 and cgy(s,t) =2 if T = {t}. O

If T C V satisfies (I) or (II) in Property 4.1, T is called k-critical. Let Ty (resp., T2) denote the family
of all k-critical cuts T of type (I) (resp., (II)) such that no 7" C T is of type (I) (resp., (II)). For each
edge € = (s, u) € F} such that G} — e violates (3.1), there is a unique cut X, C 'V, called A-critical, such
that u € Xy, cg;(Xy) = k and cg;(Y) > k holds for all cuts Y with u € Y C Xy. Let Xl denotes. the
family all A- critical cuts Xu.



Property 4.2 Let T/ := T, — {T;,T; € T | T; and Tj cross each other in G} } = {T; € Ty { T; C Tj for
some Tj € Tp}. Then Xy UT{ UT, covers Tg;(s), and every two cuts in T UTy are parrwise disjoint. O

From this property, if G} does not have a subpartition of V satisfying (4.1), then there are two cuts
X € X1 and T € T{ U T; satisfying the following:

(1) CGQ(S,T) =1ifTe ']‘1" and ngl(S,T) =2ifTeT,. ‘ (4 2)
({) TNX #0and (T~ Fy,ex, Xi) T (s) # 0. ’

2. Let H denote an arbitrary 2-vertex-connected multigraph. Let us regard 77 as the family 7(H) of all
minimal tight sets in H, since every two cuts in 7/ are pairwise disjoint and every cut T € T} satisfies
[Ce(T)| =2and V =T ~Tg(T) # 0. It was shown in the algorithm ADD-EDGE in [8] that the number
of two cuts X € Xy and T E T(H ) satisfying (4.2) in H can be decreased to 0. Hence, by applying the
same algorithm, the number of pairs of cuts X € X; and T € 7y satisfying (4.2) can be decreased to 0.
Moreover, we can see that the resulting multigraph G{ has a subpartition of V satisfying (4.1) and hence
let Gy :=GY. o

5 Algorithm for Step II

Algorithm SPLIT

1. Let F} C F; be a set of edges such that G} = (V U s, E U F}) satisfies (3.1) and the following (5.1),
but no (V Us, E U F') with F’ C F| satisfies them.

ITe(X)|+ g (s) N X|>2  forall cuts X C V with V — X — Tg(X) # 0
and [Fg(X)[+|X]| > 2, (5.1)
cgi(s,2)>2  for all X = {z} with T'e(X) =

If cg: (s) is odd, then we choose one edge ¢* € F1 — FY, and update G} := G} +¢* and Fy := F] +e".
Then it is shown in [7] that by a complete splitting at s in G}, which does not create a self-loop, we can
obtain a multigraph G4 = (V U {s}, E U (Fy — F{) U F}) satisfying one of the following conditions, where
F3 is the set of edges obtained from splitting edges in Fj.

(1) G4[V] is (k, 2)-connected.

(ii) G4[V] is (k,1)-connected and has exactly one disconnecting vertex v. At
most one edge in F} is incident to v, and each edge ¢ € F which is not
incident to v satisfies p(G4[V] — v) = p((G5[V] —€) —v) — 1.

If G, satisfies (11), go to step 2; otherwise go to step 3.

2. LetTj,i=1,---,7, denote all v-components in G4[V]. If G4[V] has the edge e = (v,%;) € Fj incident
to v, then assume t; € T} without loss of generality. Here we can prove from the above property of edges
in F and properties (3.2) and (3.3) in Gi that cg;(s,71) > 1 and cg;(s,T3) > 2 hold for i = 2,.--, 7'
Let Gf = (VU {s}, EU(F — F{ — F{'YUF,UFY') be the multigraph resulting from a sequence of splitting
pairs of edges (s, ;) and (s, b;41) to (a;,b;41),1=1,- ,r '—1, where a; € T} ﬂI‘Gr (8), ai,b; € T; ﬂl"G: (s)
fori=2,---,7', F' = {{(s,a:),(s,bi41)} | i = 1,--+, 7" — 1}, and F} = {(a;, ,+1) |[i=1,---,r — 1}
This G4[V] is now (k, 2)-connected. Let G4 := GY, F{ := F{ U F{, and F}:= FJUF{, and go to 3.

3. Now G4[V] is (k, 2)-connected and cg: (s) is even. Here it is not difficult to see that G has a complete
splitting at s which creates no self-loop (if necessary, the extra edge é chosen in Step I will be rechosen).
Let Gy == GY — 5, where GY denotes the multigraph resulting from such a complete splitting in G3. O

6 Concludmg Remarks

In this paper, we cornbmed the algorithms EV AUGMENT (7] and EV-AUGMENT3 [8] and gave an
algorithm for augmenting a given arbitrary graph G to an k-edge-connected and 3-vertex-connected graph
by adding the smallest number of new edges. However, our lower bound on the optimal value does not
always give the exact optimal value. So it is desired to find a new and stronger lower bound on the
optimal value.



Figure 1: Computational process of algorithm EV-AUGMENT3* for k = 8. (1) An input multigraph
G = (V,E) with A(G) = £(G) = 1, where the number beside each edge is the mult1phc1ty of the edge (the
numbers for multiplicity 1 are omitted). The two lower bounds in Section 2 are [ 1= 18 = 9 and
B(G) = 3. (2) G1 = (VU {s}, EU F}) obtained by Step 1. Edges in F are drawn as broken lmes Now
G satisfies (3.1) for k = 8, (3.2) and (3.3), and the edge é = (s, w) is extra. (2-1) G’ =(Vu{s},EUF)
with F/ C F in Step II, satisfying (3.1) and (5.1). (2-2) G4 = (V U{s}, EU(Fi — F}) U F3) it Step II,
where Fj is a set of edges obtained from splitting edges in F1 Now G4[V] is (8, 2)-connected and every
edge in Eg; (s, V) — € is s-critical. (2- 3) GY = (VU {s}, E U F3) in Step II obtained from splitting edges
‘in F; — F} in GY, which creates no self-loop. (3) G2 = (V, E U F3) obtained by Step II. The G satisfies
A(G2) > 8 but has a disconnecting pair S = {v*,v}. (4) G(l) (V,EU F(l)) obtained from G by
a feasible sw1tch1ng {(u1, uz), (w1, w2)}/{(u1, w1), (uz, w2)} in Step III. Moreover, any switching is no
longer feasible in G 1 (5) G4 = (V, EU F,) obtained by shifting {(ul,ua)}/{(v ;u3)} in Step IV. This
G4 is (8,3) connected ‘ . o
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