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In high-quality image printing it is sometimes required to repair flaws contained in a given
image. A simple way for such repair is to paste a flaw region with white and then to move
those pixels in the neighborhood by using a tool called an copy-brush. Since it is a very fine
operation, it causes great effort to human operators. It is not easy to automate this operation
in the existing matrix representation of an image. In our geometrlc representation of an image
as a collection of contour lines for intensity levels this problem is naturally defined as one
of reconnecting those contour lines disconnected by a flaw region. An efficient algorithm for
reconnecting contour lines is presented based on perfect matching and observations on geometric
properties of interconnection paths.

1 Introduction

Recent remarkable development in the printing machine technology is toward more high quality
with low costs. In the sense the most important problem is how to automate as many of printing
processes based on human operators as possible. In this paper we present an automatic method
for one of the tasks, repairing a flaw region in an image, which has been considered to be very
hard to be automated. We also demonstrate its effectiveness by experimental results.

In commercial films even a tiny flaw must be removed. Removing electric poles is also the
case. An usual way in these cases is to specify a region to be removed as a flaw region and
copy pixels from surrounding region by using so-called a ”copy-brush” operator. As far as we
remain within a framework of matrix representation of images, it is not so easy to automate



this operation. The method we propose is based on a different representation of an image,
called "contour representation”, which represents an image by a collection of contour lines
concerning their intensity levels. This is just like a terrain map which is obtained by regarding
an intensity level at each pixel as height at the corresponding location. This representation
admits geometric (and thus global) treatment of an image. This is a fundamental idea behind
our approach.

Assuming the contour representation of an image, the above-stated flaw repairing problem
is naturally defined as the following geometric problem. That is, specified a flaw region by a
simple polygon and removed all of contour lines included in it, those contour lines intersecting
the boundary of the flaw region become disconnected. If we reconnect those disconnected
contour lines as natural as possible within the flaw region, the resulting image is expected to
look natural. In this paper, we first describe how to reconnect those disconnected contour lines
based on perfect matching and observations on geometric properties of interconnection paths.

The authors do not intend to apply the algorithm in this paper to restore texture images.
For those random-like images frequency-based based approach by Hirani and Totsuka [4] would
be more appropriate. '

2 Contour Representation of an Image

A discrete image is usually represented in a matrix form in which each element represents
an intensity level of the corresponding pixel (in three matrices for a color image). Contour
representation is a different way of representation of an image as a collection of contour lines
with intensity levels as heights. A contour line for a level ¢ is the boundary of a region consisting
of pixels whose levels are greater than or equal to 1.

Our contour representation is different from what is commonly used in computer vision in
the sense that contour lines exist between pixels in our method while they pass through the
center of pixels in the common one. More concretely, a contour line consists of horizontal and
vertical lattice edges between pixels. This difference is important especially for the applications
dealt with in this paper in the definition of regions.

3 Flaw Repairing Problem

3.1 Properties of Contour Lines

A flaw region to be removed is specified as a simple polygon F. Then, each contour line
intersecting the boundary of F is disconnected by the removal of F. Thus, the problem is how
to reconnect those disconnected contour lines "naturally.” Although it is not known what is
the best way to reconnect those disconnected contour lines so that the resulting image looks
natural. Our experience based on experiments suggests that minimization of the total length
of chords to be added to reconnect them leads to reasonable results in many cases. Therefore,
we settle our goal in this paper to propose an efficient algorithm for connecting contour lines
intersecting a flaw region so that the total length of chords to be added in the region for their
interconnection is as small as possible.

Intersections of contour lines with the boundary of a flaw region F, called ”terminals”,
are numbered in a clockwise manner along the boundary as vg,v1, ..., vp—1. Since a contour
line is directed so that pixels of higher levels lie to its right, there are two types of terminals
depending on the directions of their associated contour lines, that is, in one type they enter
the flaw region F' and in the other type they exit from F. The type of a terminal v; defined
like this is denoted by type(v;). It is defined by type(v;) = IN for those terminals at which
contour lines enter F' and by type(v;) = OUT otherwise. When the contour line associated
with a terminal v; is the one between levels k and k + 1, it is denoted by level(v;) = k (see Fig.
1).
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Figure 1: Classification of contour lines incident to a flaw region by their directions.

No two contour lines pass through the same place in a terrain map unless they are from a
cliff. Thus, if we assume that no two contour lines touch each other, the terminals change their
associated levels continuously along the boundary of a flaw region. Thus, a terminal of level &
is adjacent to those of levels of k — 1,k or k + 1. Here note that contour lines are directed so
that higher level pixels lie to their right. This means the following constraints: That is, for a
terminal v; of level k with the type IN (OUT, respectively), its clockwise neighbor is of level
k—1 (k+1, respectively) if it is of type IN (OUT, respectively) and k otherwise (if their types
are different).

The above assumption does not hold in practice. It is rather common in a real image that
more than two contour lines of different levels pass through the same location. To treat such an
image just like a terrain map the following convention suffices: When two pixels of levels j and
k (j < k) are adjacent on the boundary of F, (k — j) contour lines pass through between them
and so we create k — j terminals associated with those levels (although their physical locations
are the same). More precisely, if they are IN-type terminals, they are arranged clockwisely
along the boundary of F' in the decreasing order of their levels, and in the increasing order
otherwise. No contradiction is caused by this convention.

We assume the ordering of those terminals along the boundary of F. For two terminals v;
and vj, a set of terminals encountered when we trace the boundary of F clockwisely from v; to
v; is denoted by Vr(vi,v;). For any terminal v; on the boundary of F there must be another
terminal v; so that v; and v; are interconnected by a contour line because any terminal is
originally created by a contour line intersecting F. Such a terminal v; is called a friend of v;.
Formally, it is defined by

vj is a friend of v; <= level(v;) = level(v;) and type(v;) # type(v;).

By the property that intensity levels change continuously along the boundary of F, for any
terminal there is a bounded interval along the boundary of F' in which its friend exists. We
assume level(v;) > level(v;) below.

1. type(v;) = IN and type(v;) = IN:

a friend of v; € Vr(vj,v;), a friend of v; € Vp(v;,v;).
2. type(v;) = OUT and type(vj) = OUT:

a friend of v; € Vp(v;,v;), a friend of v; € Vp(vi,vj).
3. type(v;) = IN and type(v;) = OUT:

a friend of v; € Vp(v;,v;), a friend of vj € Vi(v;,v;).
4. type(v;) = OUT and type(v;) = IN:

a friend of v; € Vr(v;,v;), a friend of vj € Vp(vj,v;).



Now, we turn to the problem of how to repair a flaw region by interconnecting terminals from
disconnected contour lines in a ”natural” way. Here we have to note the following constraints
(see Fig. 2). When we say that two paths cross each other, it means that one lies in the both
sides of the flaw region dissected by the other path.

Constraint 0: Every contour line must become a closed loop without self-intersection (allow-
ing touching itself).

Constraint 1: Two terminals to be interconnected must be of the same level.
Constraint 2: Two terminals to be interconnected must be of different types.
Constraint 3: Terminals must be interconnected only within the flaw region.

Constraint 4: No two contour lines cross each other.
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(b) illegal connections

Figure 2: Constraints on interconnection of disconnected contour lines.

3.2 Algorithm for Reconnecting Disconnected Contour Lines

The problem we consider in this paper is described as follows.

Problem 1 When a region in an image represented by the contour representation is specified
as a flaw region by a simple polygon, reconnect those contour lines disconnected by the flaw
region so that all of the above-stated constraints are satisfied. In addition, the total length of
paths to be added for the reconnection within the flaw region should be minimized.

The previous solution to the problem by the authors was a greedy algorithm in which dis-
connected contour lines are interconnected one by one in the decreasing order of their associated
area within the flaw region. More precisely, after ordering contour lines, based on the dynamic
programming they found shortest interconnection paths under the constraints that they do
not obstruct connectivity of remaining contour lines. ' So, it is a level-by-level optimization
algorithm and it is questionable whether it obtains globally optimal interconnections.

The algorithm to be proposed in this paper tries to find globally optimal solution to the
problem. The basic idea of the algorithm is matching.

First define a graph G = (V, E) as follows: Terminals on the boundary of a flaw region
F are vertices of the graph and when two terminals v; and v; satisfy the constraints 1 and 2,
that is, their types are different from each other but their levels are just the same, an edge is
drawn between corresponding vertices. The weight of an edge is a combination of the two keys.



The first key of an edge is the length of a shortest path interconnecting the two corresponding
terminals within the flaw region, and is denoted by d;;. Note that the distance is measured by
the Ly metric. The second key is the square root of their index difference (modulo n, the number
of terminals). Although two different index differences can be considered for two terminals v;
and vj, i.e., forward (or clockwise) and backward (or counter-clockwise) differences, we take
their minimum as their index difference. Formally, the index difference &;; between v; and v;
is defined by &;; = min{(t — j + n) mod n, (j — 7 + n) mod n}.

By using these two keys, we define a weight of an edge (v;,v;) by (dij, /&ij).

When we compare the weights of two edges, we first compare their first keys and then
the second keys if the first keys are the same. The reason will become clear in the following
discussions why the first keys are not sufficient.

The graph defined above is bipartite and it is obvious that it has perfect matching since
all the terminals can be interconnected by their original contour lines. It is also evident that
any matching satisfies all of the above constraints 0 through 3. Thus, the problem of how to
prevent crossing between different contour lines and to minimize the total length of contour
lines at the same time is left. Here, we show that a perfect matching with minimum weight is
a solution to this optimization problem.

Theorem 1 Interconnecting terminals according to a perfect matching with minimum weight,
no two contour lines cross each other.

Proof: Let vg,vs, v, and vg be terminals on the boundary of a flaw region, and assume that
a path interconnecting v, and vy and that between v, and vg cross each other. Then, we want
to show that both of the edges (v,,vs) and (ve,v4) cannot be included in a perfect matching
with minimum weight. For this purpose, for any perfect matching M including both of the
edges there exists a perfect matching with less weight.

By the definition, we have type(v,) # type(vs), type(ve) # type(vg), and level(vy) =
level(vp), level(v.) = level(vg).

Before continuing the proof of the theorem, we need some basic observations.

Observation 2 A shortest path interconnecting two terminals on the boundary of a flaw region
F -does not intersect itself.

The observation follows from the fact that any path with self-intersection can be shortcut.

Observation 3 A shortest path between two terminals on the boundary of a flaw region does
not cross another shortest path between another pairs of terminals more than once.

If they cross each other more than once, a closed region is formed between the first and
second intersections p and ¢g. Then, both of the clockwise and counter-clockwise paths between
p and q along the boundary of the closed region are shortest paths. It contradicts to the
uniqueness of a shortest path in a simple polygon.

Case 1: The four terminals are all of the same level:

By the definition, the shortest path between v, and vy crosses the shortest path between
ve and vg. Let the intersection be p. Then, the arrangement of the four terminals must be
either (vg,ve, Up,vq) OF (Va,vd,vp,v:) clockwisely along the boundary of F'. Otherwise, the two
shortest paths must cross even number of times, which is impossible.

First consider the case of the arrangement (v,,vc,vp,vq4). Then, the above shortest paths
can be decomposed into four parts: the path P(v,,p) from v, to p, the path P(p, vs) from p to v,
the path P(v.,p) from v, to p, and the path P(p, vy) from p to vy. Changing their combinations
to P(va,p) + P(p,vq) and P(v.,p) + P(p, vs), the resulting interconnection pattern has different
pairs of terminals to be interconnected without increasing the total length of paths. If v, is of
a different type from that of v., we should change the combination to P(ve,p) + P(p, vc) and
P(p,va) + P(p, 'Ub)

Since P(p,vq) + P(p, v4) is a path from v, to vy, its Iength is no shorter than a shortest
path between them, that is, it is no shorter than d,q. In other words, we have



dap + dea = [P(va,p)| + |P(p, vb)| + [P(ve, p)| + |P(p,v4)| > daa + det
if type(vq) = type(v.), and
da.b + dcd > dac + dbd

if type(v,) # type(v.). :
It is possible that equalities hold in the above inequalities. An example is shown in Fig. 3.
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Figure 3: The case in which the sum of the shortest path lengths cannot be decreased.

On the other hand, taking the arrangement of terminals into accounts, we have the following
equalities concerning the index difference. When the index difference between v, and vy, is given
by their backward difference and that between v, and vg is given by their forward difference,
we have

Eap = €ag + Eap and £ = €+ Epa-

Thus, based on a simple observation that when 0 < p < ¢ < r < sand p+ s < g+ r, we have
VP + /3 < /g + /T, the following inequalities follow.

V&ab + V& > VEad + V/Ec, and

VEab + VEed = VEaa + & + Ve + &a > VEad G F oc + VEbe 2 VEac + VEia-

The proof for the case in which the index difference between v, and vy is given by their
backward difference and that between v, and vy is given by the forward one is similar to that
for the above case.

Difficulty arises when both of the indices are given in the same direction. For example, let
us suppose that both of them are given by the backward indices. In this case, we have

éb=(a—b+n)modn, fyg=(c—d+n)modn
and thus we have

€ab = €ad + Eap and Eeg = Eea + Eaa-

Therefore, if the type of v, is different from that of v, interconnecting v, with v, and vy with
vg results in smaller sum of their index differences and the sum of the square roots of the index
differences also decreases.

On the other hand, if v, and v, are of the same type, it is not so obvious. In this case we
are going to interconnect v, with vz and v with v.. Then, concerning their index differences,
we have the equality

fab + Ecd < £ad + gbc'

However, the equality implies

€ad < min{€sp, Eea}-

By the simple observation above we have

VEab + VEea > VEai + vEbe
Based on the observations above, it is seen that the combination (v,,v4) and (vp, v.) has smaller
weight in the case of type(v,) = type(v.), and that of (v4,v.) and (vp,v4) has smaller weight
than that for (vg, vs) and (vc,vg) if type(ve) # type(ve).

If the terminals are arranged in the order v,,vc, vy, and vg, we have similar discussion by
reversing the directions of index differences.




The proof proceeds similarly for the remaining cases.
O

Based on the theorem, we can find an optimal interconnection pattern by the following
algorithm. First, for each intensity level we enumerate all the crossings between contour lines
of that level and the boundary of a flaw region, and after classifying those crossings into IN-
type and OUT-type, for each pair of crossings of different types we calculate the length of a
shortest path interconnecting them within the flaw region and their index difference. These
informations are summarized as a bipartite graph. Since a flaw region is specified as a simple
polygon, if we partition its inside into triangles, for each terminal we can compute the shortest
path tree from the terminal (and the geodesic distances from the terminal to other terminals)
in time proportional to the number of vertices of the polygon [3]. Thus, if we have n crossings
and the flaw region is specified as an m-gon, we can build such a bipartite graph in time
O(n? + mn). Then, we find a minimum-weight matching for this bipartite graph. Some known
algorithms are available for this purpose [2]. The best known algorithm runs in O(n?®) time,
which leads to the following theorem:

Theorem 4 Let n be the number of contour lines which cross a flaw region. Then, we can
find an optimal interconnection pattern for contour lines disconnected by a flaw region in time
O(n%5 + nm), where m is the number of vertices of a polygon which forms a flaw region.

4 Experimental Results

We have implemented our algorithm against several image data. Examples we have tested
are to remove electric poles from a street, to remove claw’s feet around eyes, and removing
characters in a wine bottle without eliminating highlight part, and so on. The results were
satisfactory in all those cases. One of the examples is shown in Fig. 4 in which the flaw
region depicted by a white region is restored in the resulting image below. A similar result
could be achieved by manual operations using so-called ”copy-brush” which copy pixels in the
surrounding region. A manual operation, however, takes time and cost, and the quality of the
resulting picture depends heavily on experience of human operators. This is why automatic
processing is required.

Figure 4: An experimental result. A picture with a flaw region above and the restored picture
image below.



5 Conclusions

In this paper we have presented an algorithm for removing flaws in a picture and described
experimental results. The key idea to the success is the use of perfect matching for global
optimum. One important contribution of this paper is that the new algorithm can guarantee
global optimal solutions in less time than the previous one. That is, our previous algorithm
found an optimal solution for each level, but it does not guarantee an optimal solution for all
levels.

The contour representation of an image as a collection of contour lines is a new represen-
tation proposed by the authors. It allows geometric treatment of an image, which is especially
important for getting global view. This is another key to the success. One drawback of the
representation is that it takes much storage. In fact, the total length of the contour lines may
be much larger than the total number of pixels (or image size). In our application, however, we
do not need to convert the whole image into its corresponding contour line representation. We
are just required to have contour representation for the region specified as a flaw region. Thus,
the overhead due to the representation is not so much. Conversion from contour representation
to the conventional matrix form is straightforward.
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