7 T U X A 68-4
(1999. 5. 10)

k BEEIEIREIZOWT

EHRIE SHE
RERFHE R FREREL 2B K

REDLEDPOREZT LI GE, REERVKBII L5710, HHOF—7— FEEE
LTRERRERDHENL oD, BCHVONDIFETHE, ¥—7— FOMELZHEL
TRV, REGRIILELEEROZWLDONREINTLE . RIETIE, 22l F0
FoU = FEECRBEN TR XEERDZ TV T X8k 2 0RET 5. 1 DR PHER
WWHEDICHET, b9 1 23 ERBICEITHETHY, E550F—7— FOBE n 1=
LT O(nlogn) BMTHD. TNLEEEL html 77 4 Vi o THRAMERIET 2.

On k-word Proximity Search

Kunihiko Sadakane, Hiroshi Imai
Department of Information Science, University of Tokyo
{sada,imai}@is.s.u-tokyo.ac.jp ’

When we search from a huge amount of documents, we often specify several keywords
to narrow the result of the search. Though the searched documents contain all keywords,
positions of the keywords are usually not considered. As the result, the search result
contains some meaningless documents. In this paper, we propose two algorithms for
finding documents in which all given keywords appear in neighboring places. One is
based on plane-sweep algorithm and the other is based on divide-and-conquer approach.
Both algorithms run in O(nlogn) time where n is the number of occurrences of given
keywords. We implement above algorithms and verify their effectiveness.

1 Introduction

Now we have many documents such as Web texts, electronic dictionaries, newspapers,
etc. and we can use full-text search engines for finding documents which include spec-
ified keywords. However, it becomes difficult to obtain documents which contain useful
information because there are many documents in the result of a query and we have to ex-
amine whether each document is actually necessary or not. To settle this problem, finding
documents containing all specified keywords is usually used. However, such documents
sometimes may be useless because the keywords appear in the same document by chance
and each keyword has no relation to what we want to find.

Though some algorithms were proposed for the problem, they find regions of documents
which contain all specified keywords and whose size is less than a constant. Moreover,
the result of the query contains meaningless regions, for example a region which contains
another region containing all keywords.

In this paper, we propose k-word proximity search for ranking documents. It is an
extension of the method to find regions of documents containing all specified keywords
and is based on an idea of considering documents in which all keywords appear in the
neighborhood as useful ones. Such regions are assumed as summaries of documents. Our

algorithms find intervals in documents which contain all specified keywords in ascending
order of their size. We introduce the concept of minimality of intervals. An interval is
called minimal if it does not contain other intervals which have all keywords. By ignoring
non-minimal intervals we can reduce the number of answers of a query to less than n,
the number of occurrences of the specified keywords in the documents. We propose two
algorithms for finding minimal intervals containing all given keywords in order of their size.
One is based on plane-sweep algorithm and the other is based on a divide-and-conquer
approach. Both algorithms run in O(nlogn) time. The divide-and-conquer algorithm
becomes fast if the number of occurrences of one keyword is small.

The rest of this paper is organized as follows. In section 2 we describe previous works
and define k-word proximity search. In section 3 we show two algorithms for k-word
proximity search. In section 4 we show experimental results of k-word proximity search
for html files. Section 5 describes concluding remarks.

2 k-word proximity search

2.1 Previous works

Finding parts containing some keywords is called prozimity search. Baeza-Yates et al. [2]
proposed an algorithm for finding pairs of two keywords P and P, whose distance is less
than a given constant d in O((m; + m2)logm,) time, where m; < my are the numbers
of occurrences of the keywords. This algorithm first sort positions of a keyword P; which
appear m, times. Then for each occurrence of P, it finds all occurrences of P, whose
distance to P, is less than d. ‘

Manber and Baeza-Yates [4] has proposed an algorithm for finding the number of pairs
of two keywords whose distance are less than d in O(logn) time for n occurrences of
keywords. However, this algorithm uses O(dn) space. It is not practical for large d, and
moreover it cannot be used for unspecified values of d.

Though Aref et al. [1] proposed an algorithm for finding tuples of k keywords in which
all keywords are within d, it requires O(n?) time. Their algorithm first enumerates all
tuples which contain first and second keywords and whose size is less than d. Then it
converts the tuples to contain third keywords. This continues until k-keyword tuples are
found. They suggested an algorithm using the plane-sweep algorithm of Preparata and
Shamos [6] at the end of their paper, but any detail was not given.

Above three algorithms assume that the maximum distance d of keywords is a fixed
constant and they do not consider minimality of answers defined in the next subsection.

As a related problem to the proximity search, Kasai et al. [3] proposed algorithms for
finding a pattern of k keywords which appear in a fixed order and distance between each
pair of the keywords is within d and which maximizes accuracy of text classification.

2.2 Definition of the problem

In this subsection we define k-word proximity search for ranking documents.
e T =T[1..N]: a text of length N
e P,...,P: given keywords

® p;;: position of a keyword P, in the text T
(Tlpij-pis + |P| = 1] = B)

Problem 1 (naive k-word proximity search) When k keywords P,,. .., P, and their
positions p;j in a text T = T[1..N] are given, prozimity search is to find intervals [l,r] in
[1, N] which contain positions of all k keywords in order of size of intervals r — I, where
order of the keywords in a interval is arbitrary.

The reason why the order of keywords is arbitrary is that we do not know the order
in documents and intervals in which keywords appear in a fixed order are subset of the
answer of the problem. When total number of k keywords is n, the number of intervals is
n(n —1)/2. However, most of the intervals are useless and we only find minimal intervals
containing all keywords.

Definition 1 An interval is minimal if it does not contain any other interval which con-
tains all k keywords.

Now we introduce k-word proximity search.

Problem 2 (k-word proximity search) prozimity search is to find intervals [l,r] in
[1, N] which contain positions of all k keywords in order of size of intervals v — I, where
order of the keywords in a interval is arbitrary.

3 Algorithms

In this section we propose two algorithms for k-word proximity search. One is based on
plane-sweep algorithm and the other is based on divide-and-conquer approach.

3.1 A Plane-sweep algorithm

This algorithm scans the text from left to right and finds intervals [li,r;] containing all
keywords. The scanning is done by merging lists of positions of & keywords.

1. Sort lists of positions p;; (j = 1,...,n;) of each keyword P, (t=1,...,k).

2. Pop top elements p;; (i = 1,...,k) of each list, sort k elements by their positions,
-and find leftmost and rightmost keyword and their positions Iy and 1. Let ¢ = 1.

3. Find the position p of the next element of a list of the leftmost keyword P. If the
list is empty, go to 6. if p > r;, then the interval (liy7;] is minimal and we insert it
into a heap according to its size r; — [;.

4. Remove the leftmost keyword P in the interval, and pop the same keyword from a
list.

5. If [l;,;] is minimal, let r;1; = p and l;;; be the position ¢ of second keyword of

the interval. Otherwise let /;;; = min{p, ¢}. Then update the interval and order of
keywords in the interval, let ¢ =4 + 1, and go to 3.

6. Sort intervals in the heap and output them.

Lemma 1 Above algorithm can enumerate all minimal intervals containing all k key-
words.

Proof: FEach minimal interval containing all & keywords is uniquely determined by
fixing its left position. Above algorithm enumerates all left positions of intervals and they
include all minimal intervals. O

Judgment whether an interval [[;, r;] is minimal or not is done by position of a keyword
which is examined in step 3 of the algorithm.

Lemma 2 The interval [I;, ;] is minimal if and only if position p of new keyword added
in the interval is greater than the right boundary r; of the interval, i.e., p > 7.

Proof: When position p of new keyword P is less than r;, an interval created by removing
the leftmost keyword contains all k keywords and therefore the interval [Z;,7;] is not
minimal. When p is greater than r;, the keyword P does not exist between /; and p.
Therefore the interval [I;, r;] is minimal. 0

Though the number of intervals is n(n—1) /2, the number of minimal intervals is smaller
than it.

Lemma 3 The number of minimal intervals is less than n.

Proof: Minimal intervals are not contained by other intervals and therefore positions of
right boundary of the intervals are different, which are positions of keyword. O

Theorem 1 When n positions of k keywords are given, the k-word prozimily search
(Problem 2) can be done in O(nlogn) time.

Proof: Sorting positions of keywords takes O(nlogn) time. Updating an interval and
order of keywords takes O(logd) time and finding all minimal intervals takes O(nlogd)
time. Inserting minimal intervals into a heap takes O(nlogn) time. Because d < n, total
O(nlogn) time. |

If we find smallest m minimal intervals, a heap of size m is used. The root of the heap
has the largest interval. When we insert an interval into the heap, if the interval is larger
than the root element, we do nothing. If the interval is smaller than the root element, we
delete the root element and reconstruct the heap. We can also accelerate practical speed
by specifying an upper-bound d of the size of interval and inserting intervals whose size
is less than d into heap.

3.2 A divide-and-conquer approach

The algorithm based on the plane-sweep uses sorting all positions of keywords. However,
if the number of occurrences of one keyword is small, some of positions of other keywords
can be discarded without sorting. Therefore we consider an algorithm without sorting.

We find minimal intervals without sorting positions. We divide each list of positions
into two lists L and R, and find minimal intervals which is in L and in R, and minimal
intervals which lie on both L and R.

1. Find median v of n positions of keywords.

2. Scan lists of positions and divide them into two lists L and R, where L contains
positions smaller than v and R larger than v. In the process, the largest positions
of each keyword in L and the smallest positions of each keyword in R are kept.

3. Find minimal intervals which lie on both L and R. These intervals are represented
by positions kept in the last step.

4. If L (R) contains all k keywords, then recursively find minimal intervals in I (R).

Theorem 2 k-word prozimity search algorithm based on divide-and conquer can be done
in O(nlogn) time. Furthermore, if the number of occurrences of the fewest keyword is [,
finding m minimal intervals can be done in O(nlogl + lklog k + mlog m) time.

Proof: The number of lists divided by the algorithm and which contain all keywords
is less than n/k. Therefore divide part of the algorithm takes O(n log #) time. Finding
minimal intervals which lie on two lists takes O(klog k) time. The number of such pair
of lists is at most n/k. Therefore conquer part takes O(klogk - n/k) = O(nlogk) time.
Inserting n smallest minimal intervals into heap takes O(nlogn) time. Therefore total is
O(nlog ¥ +nlogk+mnlogn) = O(nlogn) time. If a keyword appears [times, the number
of minimal intervals is at most I. Then the divide part takes O(nlogl) time and the
conquer part takes O(klogk - 1) = O(lklogk) time. Inserting rn minimal intervals into a
heap takes O(mlogm) time. Note that m < [. In the worst case, [k = O(n) and total
time is O(nlogn). i

4 Experimental results

We implemented the first algorithm based on plane-sweep and experimented on html files.
The number of files is 51783 and the size of them is 185M bytes. We use suffix array [5] for
finding positions of keywords. The suffix array is a data structure for full-text searches.
The suffix array of a text T is an array of lexicographically sorted indexes i of all suffixes.
Number of occurrences of a pattern P in a text T can be found in O(|P|logn) time.
After that, all positions of P can be enumerated in time proportional to the number of
occurrences.

We use a SUN Ultra60 workstation (CPU UltraSPARC-II 360MHz) with 2GB memory
and 18GB disk. We use radix sort whose radix is 2'® for sorting positions of keywords.
The maximum number of intervals is not limited and the maximum size of intervals is
limited to 1000.

First we experimented on time for finding all occurrences of a keyword and sorting
their positions (see Table 1 and Figure 4). The time does not include time for displaying
results. The time is proportional to the number of occurrences because radix sort is used.
If the number of occurrences of a keyword is less than one million, its sorting time is
small. Even if the number of occurrences is large, its sorting time is not too large.

Next we experimented on time for k-word proximity searches (Table 2). Searching time
is a summation of time for searching keywords, time for sorting positions, and time for
finding minimal intervals. The third column of the table shows searching time and the

Table 1: one-keyword query

| keyword | #occurrences | time(s)
http 283719 0.698
WWW 214524 0.505
ip 319914 0.778
h 3747125 2.333
t 7304053 4.721
p 2610014 1.820
e 6939739 4.410
n 4371063 2.752

fourth column shows time for only finding minimal intervals. Time for finding intervals
_is about half of total time. Though searching for keywords ‘e,’ ‘t,” ‘h,’ and ‘n’ takes much
time, it is no problem because such extreme queries are rarely performed.

Table 2: Time for k-word proximity searches

keywords || #occurrences | total time (s) | finding intervals (s) |
http www Jp 377405 9.414 0.443
htp 3180532 16.351 7.487
ethn 4400220 26.811 12.595

Figure 4 shows relation between the number of occurrences of keywords and time for
sorting positions of keywords (sorting) and relation between the number of minimal in-
tervals and time for finding them (proximity search). Time for finding minimal intervals
is not proportional to the number of intervals because inserting m intervals into a heap
takes O(mlogm) time. Note that the time is roughly proportional to the number of oc-
currences of the keywords. When we find all minimal intervals, it is better to use an array
of size n instead of a heap. We insert minimal intervals to the array and then sort them
by using radix sort. On the other hand, if we want to find only the smallest m intervals
where m is a small constant, we should use a heap.

5 Concluding remarks

In this paper we have extended the proximity search, which is used for narrowing search
results from many documents, to a method for ranking documents. We have introduced
k-word proximity search and proposed two algorithms for the problem. By using our
algorithms we can obtain only useful information from huge amount of documents. One
algorithm uses the plane-sweep technique and the other uses a divide-and-conquer ap-
proach. We have implemented the former algorithm and have experimented on html files.
We found that its speed is enough for usual queries.

time
time (s}

13 + sorting

#keywords (n) x 106

Figure 1: Searching and sorting time

If we have sorted indexes of keywords, we need only finding minimal intervals. In
such cases our plane-sweep algorithm works well. On the other hand, if we do not have
sorted indexes, for example, if we use the suffix array, the algorithm based on divide-

and-conquer will be suitable. As future works, we implement it and compare with the
plane-sweep algorithm.

Acknowledgment
The authors would like to Prof. Jifi Matousek, who suggested a divide-and-conquer

approach, and also thank Mr. Masanori Harada, who gave us HTML files of the ODIN.

References

(1] W. G. Aref, D. Barbara, S. Johnson, and S. Mehrotra. Efficient Processing of Proxim-

ity Queries for Large Databases. In Proceedings of 11th IEEE International Conference
on Data Engineering, pages 147-154, 1995.

[2] G.H. Gonnet, R. Baeza-Yates, and T. Snider. New Indices for Text: PAT trees and
PAT arrays. In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Algo-
rithms and Data Structures, chapter 5, pages 66-82. Prentice-Hall, 1992.

[3] T. Kasai, H. Arimura, R. Fujino, and S. Arikawa. Text data mining based on optimal
pattern discovery — towards a scalable data mining system for large text databases
~. In Summer DB Workshop, SIGDBS-116-20, pages 151-156. IPSJ, July 1998. (in
Japanese).

[4] U. Manber and R. Baeza-Yates. An Algorithm for String Matching with a Sequence
of Don’t Cares. Information Processing Letters, 37:133-136, February 1991.

[5] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms, pages
319-327, 1990.

[6] F. Preparata and M. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

