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Abstract Given a convex polyhedron P and a positive integer n, we consider the problem
of finding a location of n points in the interior of P as well as a triangulation.of the interior
of P with these n points that satisfies certain optimality criterion. In this paper we consider
the following three optimality criteria: (1) minimizing the ratio of the maximum edge length
to the minimum one, (2) minimizing the maximum edge length, and (3) minimizing the maxi-
mum perimeter of triangles. We shall develop a heuristic called incremental Voronoi partition
algorithm and show that it produces a constant approximation for problems under any of the
above optimality criteria. '

1 Introduction

Given a convex polyhedron P and a positive integer n, we consider the problem of finding a
location of n points in the interior of P as well as a triangulation for the interior of P with such
n points that satisfies certain optimality criteria. In particular, we shall consider the following
three optimality criteria:

(1) minimizing the ratio of the maximum edge length to the minimum one,
(2) minimizing the maximum edge length, and
(3) minimizing maximum triangle perimeter.

We shall develop a heuristic called incremental Voronoi partition algorithm that determines
a location of n points one by one in an incremental manner so that it places a point at the
position which is farthest from the set of points already located as well as vertex set of P. After
fixing the location of n points, it constructs a Delaunay triangulation for n points and vertex
set of P. We shall show that the obtained triangulation produces a constant approximation



for the problem under any of the above-mentioned optimality criteria. More precisely, we shall
prove that the approximation factor for the problem under the criterion (1), (2) and (3) is 2,
4/+/3, and 2+/3, respectively.

Triangulating a fixed point set in the plane is one of fundamental problems in computational
geometry, and has been extensively studied [1]. Triangulation of a point set has many ap-
plications such as finite element methods and computer graphics. In finite element methods,
it is desirable to generate triangulations that do not have too large or too small angles. It
also has an application in designing structures such as plane trusses where it is required to
determine its shape from aesthetic point of view under the constraints concerning stress and
nodal displacements. The plane truss can be viewed as a triangulation of points in the plane
by regarding truss members and nodes as edges and points, respectively. When focusing on the
shape, edge lengths should be as equal as possible from the viewpoint of design and mechanics
(see [5, 6]). In such applications, the location of points are usually not fixed, but can be viewed
as decision variables. In view of this, it is quite natural to consider the above criteria (1)-(3).
To the best knowledge of authors, problems dealt with in this paper have not been studied in
the field of computational geometry.

Finding an optimal triangulation under the above criteria seems to be difficult although
minimizing the maximum edge length is known to be solvable in quadratic time for the case
of a fixed point set [2]. Nooshin et al. [5] developed a potential-based heuristic method for
the problem under criterion (2), but did not give any theoretical guarantee for the obtained
solution.

2 Incremental Voronoi Partition

We begin with introducing several notations. Let S be a set of n points located inside or on
the boundary of a given convex polyhedron P. Let V be the set of vertices of P. Let 7(S)
denote the set of triangulations for the interior of P using S and V. For two points u and v in
the plane, let d(u,v) denote the Euclidean distance between u and v. For disjoint subsets X
and Y of R2, let d(X,Y) = min{d(z,y) | z € X and y € Y}. For an edge e of a triangulation
in the plane, let d(e) denote the length of e, i.e., Euclidean distance between two end vertices
of e.

We shall now describe the algorithm for determining the location of n points. Starting with
an empty set S, it repeatedly places a new point at the position which is farthest from the set
V US. After determining the location of n points, we output the Delaunay triangulation for
V U S. The algorithm is formally described as follows:

Algorithm INCREMENT
Input: Convex polyhedron P with vertex set V, and a positive integer n.
Output: Location of n points inside P and a triangulation of P using V' and such n points.

Step 1 Set S :=1.

Step 2 Find a Voronoi diagram Vor(V U S) for VU S. For each point v of Voronoi vertices of
Vor(V US), if v lies outside P, let v/ be the intersection of the boundary of P and the Voronoi
edge one of whose endpoints is equal to v. Among Voronoi vertices inside P and those points
' on the boundary of P, let v* be the one that is farthest from V' U S.

Step 3 Let S := S U {v*} and return to Step 2 if |S| < n.
Step 4 Output Delaunay triangulation for V.U S.

Let p, and S denote the point chosen in Step 2 (resp. the set obtained in Step 3) at k-th
iteration of the algorithm. From the way of choosing the point py in Step 2, p is the farthest



Figure 1: Illustration of Algorithm IN- Figure 2: Illustration of Algorithm IN-
CREMENT for n =1 CREMENT for n = 2

Figure 3: Illustration of Algorithm IN- Figure 4: Illustration of Algorithm IN-
CREMENT for n = 3 CREMENT for n = 4

point in P from Sp1UV. Figures 1 through 4 illustrate how the algorithm proceeds for
n=12234,.

3 Approximation Results
In this section we shall prove approximation results concerning the Delaunay triangulation

obtained by Algorithm INCREMENT with respect to three criteria introduced in Section 1.
Let us consider the following problem: :

Maximin : Maximize mind(p,q) 1)
subject to p,g € VUS, and S is a set of n points (2)
inside or on the boundary of P (3)

We call the problem extreme packing problem, and an optimal solution of this problem is called
extreme packing for P. Let S} denote the optimal solution and let d,, denote the optimal
objective value. The following theorem gives a basis for this purpose. Its proof is a simple
adaptation of known results by Feder and Greene [3] and Gonzalez [4].



Figure 5: Illustration of circles that cover the whole area of P

Theorem 1 The solution S, obtained by Algorithm INCREMENT is a 2-approzimation for
Problem Maximin.

The proof of the theorem is done by showing the following two lemmas.

Lemma 1 For any location of n — 1 points, Sy_1, in P, there ezists a point q in P such that
min {d(p,q) | p € Sp_1 UV} > dn/2. 4)

PROOF. Suppose that the lemma is not true. Then there exists a location of n — 1 points,
denoted by S;,_;, in P such that

maxmin{d(p,q) | p € S,y UV} < dn/2. (5)
qeP

Let 7 be the value of left-hand side of (5). For each point p € S},_,; UV, draw a circle centered
at p with radius r + ¢, where e is a sufficiently small positive number that satisfies 7 +€ < dn/2.
Then, the union of n — 1 such circles must cover P (see Figure 5). Since there are n points
in the set S¥, there exists a circle centered at some point in S;,_; UV with radius r + € which
contains two points of S¥%. Since the distance between these points is less than or equal to
2(r + €), which is less than dy, this contradicts the definition of d,. :

Lemma 2 Let w(pn) = d(pn, Sn—1). Then we have

w(pn) > dn/2. (6)

ProOOF. Applying Lemma 1 with S;,_; = S,—1, it follows that there exists a point ¢ such that
d(q,8,_1) > dy,/2. Since Algorithm INCREMENT finds the farthest point in P from Sp_1UV,
the lemma immediately follows.

Now we shall complete the proof of Theorem 1. Note that

min{d(p,q) | p,q € Sn-1 UV} > w(pn) )
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Figure 6: Illustration of edge emayx and the corresponding Voronoi vertex v

holds since otherwise it contradicts that the algorithm always finds at every iteration k the
point which is farthest from Sk_; UV. Therefore, it follows from Lemma 2 that

min{d(p, Q) 1 P,qE gn U V} > dn/27 (8)

proving the assertion of Theorem 1. :

Now we shall prove several nice properties of the triangulation obtained by Algorithm IN-
CREMENT. We first consider the problem with optimality criterion (1) which is described as
follows.

Problem 1: min  min w, 9)
ScP,|5|=nTET minger d(e)
where 7 denotes the set of all triangulations for SUV. Let DT denote the Dalaunay triangula-
tion output by the algorithm, and let eyay and e, denote the maximum and minimum length
edges in DT. Let d(emax) and d(emin) denote the lengths of edges emax and epin, respectively.
The following theorem proves that DT gives a 2-approximation for Problem 1.

Theorem 2 o )
€max

< 2. 10

d(emin) - ( )

PRroor. From (7) and (8), we have

w(pn) = min{d(p,q) | p,q € S, UV} and d(emin) > w(p,)

follows. Let p’ and p” be two endpoints of emay. Then p’ and p” share a Voronoi edge in
Vor (S, UV) (see Figure 6).
Let v be a Voronoi vertex on that Voronoi edge. Then we have

d(v,p") < w(p,) and d(v,p") < w(pn).

Thus,
d(pl>pll) = d(ema.x) S 2 * w(pn) S 2 ‘ w(emin)- (11)
This proves the theorem.

Now let us consider the optimality criterion (2). The problem dealt with here is described
as follows.

Probl cdr. = i i .
roblem 2:  dyinimas scPin_ minmax d(e) (12)

We first prove the following lemma.



Figure 7: Illustration of circles centered at points of S and V and convex hull Q used for the
proof of Lemma 3

Lemma 3

. V3
minimazr = Tdn

PROOF. Let point set S and triangulation T for S be the optimal solution of problem (12).
Suppose the lemma is not true. Then

; V3

minimaz < 9

dn

Let

¢ denote the set of such circles and let @ be the convex hull of all such circles. From the
definition of the radius, for each triangle ¢ of triangulation T, the whole area of ¢ is covered by
three such circles centered at three vertices of t (see Figure 7 for the illustration of circles and
convex hull Q).

Now for each point ¢ in S UV draw a circle centered at g with radius -\}-—Bd;*mnimaz, where S},

holds. For each point p in S UV, draw a circle centered at p with radius —\%d;*n

inimaz®

is an optimal solution to Problem Maximin. Let C* denote the set of such circles. Circles in
C* do not either overlap or touch each other since %dfm-m-maz < dy /2 holds from assumption.
Let A* be the area of P covered by circles of C*. Then A* < area(P) holds, where area(P)
denotes the area of P.

Now let us consider the region of @ — P, and focus on a particular edge e of P and let v
and v’ be two end vertices of e. Let [ be the length of e. | > dy, holds from definition of d,.
Therefore, from the assumption of 2d%, . /\/3 < dn < I, there must have some points of
S on e such that the distance between consecutive points in S UV on e is less than or equal
t0 dfinimaz- NOW let us consider the edge ¢ on the boundary of @ which is parallel to e.
We choose the endpoints of €’ so that the convex hull of e and € becomes a rectangle. Let
R be such rectangular region. The number of circles of C whose centers are on e is at least
[1/d% imimaz | + 1, and hence the area of R covered by C, denoted by R, satisfies

D m d:m. i ? %
fo> Mnmas) (/g ) +1). (13)

On the other hand, we claim that the number of circles of C* that overlap e is at most
[1/d* iman] + 1. Let C' be the set of such circles and let p1,pa,...,pn ( h = |C']) be the

projection of centers of circles in ¢’ onto the edge e such that p1(=p),p2,...,pn(=p') appear



on e in this order. It is then easy to see that d(pi, piy1) > d¥yinimaz- Therefore the above claim
follows. Since circles of C* do not overlap each other, the area in R covered by C, denoted by

R*, satisfies
Rt < Whiimas) (e, 74 0) (9

The strict inequality holds since the contribution of each circle of ¢’ to R* is less than
T(Erinimaz) /6 Thus, from (13) and (14), R* < R follows.

From the above argument, it follows that the area in @ covered by C* is less than that by
C, which is a contradiction because |C| = |C*| and circles of C* do not overlap each other. &

Theorem 3

dci(emaX) <4/V3.

minimaxr
PROOF. Since dp,/2 < w(pp) < d,, holds from Theorem 1, we have
d(emax) <2 w(pn) <2-d,.

The first inequality was shown in the proof of Lemma 2. From Lemma 3, we have

d(emax) 2-d,
< = .
dax 3.y 43
2 n

minimaz

Now let us consider the third optimality criterion. For a triangle ¢, let length(t) denote the
perimeter of ¢. For a triangulation T', we abuse the notation T to denote the set of triangles in
T. The problem with optimality criterion (3) is described as follows.

Problem 3: I*= min minmaxlength(t). (15)
SCP,|S|=nT€eT teT

Let ~
{ = max length(t).
teDT gth(t)

Theorem 4
II* = 2V3.

ProOF. It follows from Lemma 3 that for any S with |S| = n and any triangulation T for
S UV, the length of longest edge of T is at least %—g - dy,, we have

* > V3d,. (16)

For any edge € of DT,
le) > w(pn) > dn/2

holds from Lemma 2, and for epax in DT, we have
d(emax) < 2w(py) < 2d,.

Therefore we have
I < 3w(py) < 6dy. (17)



So, from (16) and (17),
6dy,

7L, 2V

follows.

I <

Finally we show that DT obtained by Algorithm INCREMENT is a 2-approximation of
minimum weight triangulation for the same set of points.
Theorem 5 Let £(T) denote the total edge length of triangulation T, and let MWT(S) denote
the minimum weight triangulation for point set S. Then

L(DT) < 2L(MWT(S UV))

holds.
PROOF. Let 3 be the number of edges of DT, and let epax and emin be those as defined above.
From definition of Delaunay triangulation, the shortest line segment connecting two points in
S UV must be in DT, we know that d(e) > d(emin) holds for any edge e € MWT(SUV). From
Theorem 2, we have

LMWT(SUV)) 2 B d(emin)

and
L(DT) S /8 : d(emax)-

From these two inequalities, the theorem follows.

18]
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