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Abstract This paper presents a new approximation algorithm for a vehicle routing problem on
a tree-shaped network with a single depot. Customers are located on vertices of the tree, and
each customer has a positive demand. Demands of customers are served by a fleet of identical
vehicles with limited capacity. It is assumed that the demand of a customer is splittable, i.e.,
it can be served by more than one vehicle. The problem we are concerned with in this paper
asks to find a set of tours of the vehicles with minimum total lengths. Each tour begins at
the depot, visits a subset of the customers and returns to the depot without violating the
capacity constraint. We propose a 1.35-approximation algorithm for the problem, which is an
improvement over the existing 1.5-approximation.

1 Imtroduction

In this paper we consider a capacitated vehicle routing problem on a tree-shaped network with
a single depot. Let T' = (V, E) be a tree, where V is a set of n vertices and E is a set of edges,
and 7 € V be a designated vertex called depot. Nonnegative weight w(e) is associated with
each edge e € E, which represents the length of e. Customers are located at vertices of the
tree, and a customer at v € V' has a positive demand D(v). Thus, when there is no customer
at v, D(v) = 0 is assumed. Demands of customers are served by a set of identical vehicles with
limited capacity. We assume throughout this paper that the capacity of every vehicle is equal
to one, and that the demand of a customer is splittable, i.e., it can be served by more than one
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vehicle. Each vehicle starts at the depot, visits a subset of customers to (partially) serve their
demands and returns to the depot without violating the capacity constraint. The problem we
deal with in this paper asks to find a set of tours of vehicles with minimum total lengths to
satisfy all the demands of customers. We call this problem TREE-CVRP.

Vehicle routing problems have long been studied by many researchers (see [2, 3, 4, 7, 8] for
a survey), and are found in various applications such as scheduling of truck routes to deliver
goods from a warehouse to retailers, material handling systems and computer communication
networks. Recently, AGVs (automated guided vehicle) and material handling robots are often
used in manufacturing systems, but also in offices and hospitals, in order to reduce the material
handling efforts. The tree-shaped network can be typically found in buildings with simple

“structures of corridors and in simple production lines of factories.

Vehicle scheduling problems on tree-shaped networks have recently been studied by several
authors [1, 5, 6, 10, 11, 12]. Most of them dealt with a single-vehicle scheduling that seeks to
find an optimal tour under certain additional constraints.

However, TREE-CVRP has not been studied in the literature until very recently. Last year
Hamaguchi and Katoh [9] proved its NP-hardness and proposed a 1.5-approximation algorithm
([12] considered the variant of TREE-CVRP where demand of each customer is not splittable
and gave 2-approximation algorithm.) :

In this paper, we shall present an improved 1.35-approximation algorithm for TREE-CVRP
by exploiting the tree structure of the network. This is an improvement of the existing 1.5-
approximation algorithm by Hamaguchi and Katoh [9]. A basic idea behind the improvement
is the use of reforming operations preserving the lower bound on the cost, which simplifies the
analysis.

2 Preliminaries

Since T is a tree, there exists a unique path between two vertices. For vertices u,v € v,
let path(u,v) be the unique path between u and v. The length of path(u,v) is denoted by
w(path(u,v)). We often view T as a directed tree rooted at r. For a vertex v € V — {r}, let
parent(v) denote the parent of v, and C(v) the set of children of v. We assume throughout this
paper that when we write an edge e = (u,v), u is a parent of v unless otherwise stated. For any
v € V, let T, denote the subtree rooted at v, and w(T,) and D(T,) denote the sum of weights
of edges in Ty, and the sum of demands of customers in Ty, respectively. Since customers are
located on vertices, customers are often identified with vertices.

Suppose that we are given a set S C V — {r} with 3°,c5 D(v) < 1. Then one vehicle is
enough to serve all the demands of customers in .S, and an optimal tour for S can be trivially
obtained by first computing a minimal subtree 7" that spans S U {r} and by performing a
depth-first search with r as the starting vertex. Thus, when we speak of a tour in this paper,
we do not need explicitly give a sequence of vertices that a vehicle visits, but it is enough to
specify a set of customers that the vehicle visits. Since the demand of a customer is splittable,
in order to define a tour of a vehicle, we need to specify the amount of demand of each customer
served by the vehicle.

A solution of TREE-CVRP consists of a set of tours. From the above discussion, we
represent the tour of the j-th vehicle by

{Dj(v) | v € S}, )
where S; is the set of customers for which some positive demands are served in the j-th tour,

and D;(v)(> 0) for v € S; is the amount of demand that the j-th vehicle serves at v. The total
tour length of an optimal solution for TREE-CVRP is often referred to as the optimal cost.



For an edge e = (u,v), let
LB(e) = 2u(e) - [D(T3)]. (2)

LB(e) represents a lower bound of the cost required for traversing edge e in an optimal solution
because, due to the unit capacity of a vehicle, the number of vehicles required for any solution
to serve the demands in T;, is at least [D(7},)] and each such vehicle passes e at least twice
(one is in a forward direction and the other is in a backward direction). Thus, we have the
foliowing lemma.

Lemma 1 }° . LB(e) gives a lower bound of the optimal cost of TREE-CVRP.

3 Reforming Operations

Our approximation algorithm repeats the following two steps until all the demands are served.
In the reforming step we reshape a given tree following six different operations all of which are
"safe” in the sense that they do not increase the lower bound on the cost. The second step is
a selection step in which we choose an appropriate subtree and choose among a few possible
strategies depending on the cases the best one to serve the demands in the subtree.

The first reforming operation R; is applicable when some nodes have demands greater than
or equal to 1. Suppose that a node v has a demand D(v) > 1. Then, we allocate k = | D(v)|
vehicles to v to serve k units of its demand (integral part of the demand). This operation results
in demand at v less than one. Note that this operation is apparently safe by the argument
based on the lower bound on the tour cost. Thus, it is reasonable to assume that each demand
is less than one.

The second operation R is to remove positive demand from each internal node. If there is
any internal node v with positive demand, we create a new node connected with v by an edge
of weight zero and descend the weight of v to the new node. It is easy to see that any tour
on an original tree can be transformed into another tour on the tree reshaped as above with
just the same cost. It implies that this reform is safe, in other words it does not affect the
lower bound. Therefore, we can assume that positive demand is placed only at leaves, that is,
demand at any internal node is zero.

The third reform Rg is applied to a pair of nodes (u, v) such that a leaf v is a unique child of
u. The node u has no other children. In this case we contract the edge (u,v), i.e., delete (u,v)
and the node v, after replacing the demand D(u) at u by D(u)+ D(v) and then increasing the
cost of the edge to u by the cost w(u,v) of the edge between u and v. If the resulting node u
has demand > 1, then we can apply the operation R; to u to reduce the integral part of its
demand.

To define more essential reformation for approximation algorithm, we need some more
assumptions and definitions.

A node v of a tree T is called a p-node if
(i) v is an internal node, and
(ii) all of the children of v are leaves, and
(iii) the sum of the demands at those children are less than 2.

A node u is called a q-node if
(i) the sum of the demands in the subtree T, rooted at u, denoted by D(Ty), is at least 2, and
(ii) no child of u has the property (i).

The fourth reforming operation R4 is to merge leaves of p-nodes and g-nodes. Let u be a
p-node or g-node and {v,vy,...,vx} be a set of its children (leaves by definition). By w; we
denote the weight of the edge between u and v;. We examine every pair of leaves. For the pair
(vi,v;) we check whether the sum of their weights exceeds 1. If D(v;) + D(v;) < 1, then we
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Figure 1: The merging operation.
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Case (a): g-node has more than one p-node.
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Case (c¢): g-node has no p-node.

Case :g-node has one p-node.

Figure 2: The three cases for a g-node.

merge them. Exactly speaking, we remove the leaf v; together with its associated edge (u,v;)
after replacing the demand of v; with D(v;) + D(v;) and the weight w; with w; + w;. Then,
we proceed to the next unexamined pair of leaves. We repeat this process while there is any
mergeable pair of leaves. Figure 1 illustrates how this merging process proceed.

An important property of the resulting tree is that any p-node has at most three children
(leaves) after the reforming operation since otherwise the sum of the demands of those children
exceeds 2, which causes a contradiction to the definition of a p-node. Thus, we can assume
that any p-node has at most three children. It may happen that all the leaves of a p-node are
merged into one leaf. In this case, we apply the contraction operation Rs.

Now, after applying the reform R4 to each p-node, a subtree rooted at a g-node may
include more than one p-node. But, in that case those p-nodes must be children of the g-node.
Otherwise, an internal node having more than one p-node in its descendants must have demand
exceeding 2 in its descendants, which contradicts to the fact that the internal node is not a
g-node.

Now we have a limited number of situations for q-nodes listed as follows:

Case (a): A g-node u has more than one p-nodes in its descendants.

In this case, children of the g-node are either p-nodes or leaves (see Figure 2-Case (a)).
Case (b): A g-node u has exactly one p-node v in its descendants.

In this case we may have arbitrary number of internal nodes on the unique path from u to
v each of which has only one edge connected to a leaf (see Figure 2-Case (b)).

Case (c): A g-node u has no p-node v in its descendants.

In this case, all of the children of the g-node are leaves (see Figure 2-Case (c)). This is just

like a p-node except that the sum of weights exceeds 2



There are only two types of p-nodes since they have two or three children (leaves). The fifth
reforming operation Rs removes p-nodes having only two children. This is done by connecting
those children directly by the parent of the p-node by edges of weights increased by the weight
between the p-node and its parent. Formally, suppose a p-node v is connected to its parent u by
an edge of weight a and to two children v; and vy by edges of weights w; and ws, respectively.
Then, v; is connected directly to u by an edge of weight w; + a. Note that the reforming
operation does not change the lower bound since the demand of D(T,) is greater than 1 by
definition of a p-node.

Yet another reforming operation Rg is required in Case (b) above. In this case a g-node u
has a single p-node v and on the way to v there are some branches to leaves. Then, those leaves
are placed as the children of the p-node by edges of weights equal to those for the branches.
This operation also preserves the lower bound. :

After all, we can assume that if a g-node has any p-node as its child then the p-node must
have three children. Again, it is obvious that the reformations described above do not increase
the lower bound although they certainly increase the upper bound since we restrict possible
tours.

4 Approximation Algorithm

‘The approximation algorithm to be presented in this paper is based on the reformations pre-
serving the lower bound 'and combining two or more different strategies. The main difference
from the previous approximation algorithm given by Hamaguchi and Katoh [9] is the definition
of a minimal subtree to which algorithmic strategies are applied. They introduced the notion
of D-minimality and D-feasibility. That is, a vertex v € V is called D-feasible if D(T,) > 1 and
is called D-minimal if it is D-feasible but none of its children is. Their algorithm first finds a
D-minimal vertex, and determines a routing of one or two vehicles that partially serve demands
of vertices in Ty, by applying one of the two strategies depending on their merits.

Our algorithm pays attention to subtrees of demands exceeding 2 instead of 1. Usually this
causes explosion of the possible cases, but the point here is the reforming operations described
above that extremely simplify the possible cases. This is the main contribution of this paper.

Now, let us describe our algorithm. It first applies the safe reforming operations R; and
Ry to an input tree. Then, the four reforming operations Rs, R4, R5 and Rg are repeatedly
applied until reforming operations cannot be applied any more. Then, as stated in the previous
section, if there are any q-nodes then all of those g-nodes are directly connected to leaves.

We first describe the algorithm for treating those q-nodes and then consider the case where
no g-node is contained in the tree, in other words, the total sum of the demands in the tree is
less than 2. '

So, suppose that we have a g-node u. We prepare four different procedures to serve demands
in the subtree rooted at the g-node. The first procedure is applied whenever u has more than
one p-node as its children. In this case we choose any two such p-nodes and serve their demands.
Note that the sum of demands of two p-nodes exceeds 2. Repeating the above procedure, we
come up with the two cases, depending on whether one p-node is left. If no p-node is left, the
g-node u may have leaves directly connected to u. Here notice that we have already applied
the merging operations and so the sum of demands of any two leaves exceeds 1.

The second procedure is applied when there are three leaves with total demands exceeding
2. When there are no such three leaves we need four leaves for their total demand to exceed 2.
The third procedure is to treat this case.

The last procedure is prepared to treat the last case where one p-node is left in addition to
leaves after the applications of the first procedures. '



The basic idea is to prepare two or more strategies to serve the demands for each case
described above to choose one of them giving the best ratio between the cost of strategy and
the decreased lower bound by the application of strategy. ,

Due to the space limit we are concentrated on the analysis of the ratio for the procedure
to treat a g-node u having four leaves. The analysis for the other procedures will be included
in a full versicn.. , o ,

Let vy, v2,v3 and vgbe those four leaves. We denote the demand at v; by D;, and the
weigh of the edge (u,v;) by w; as before. Now, by assumption, 0 < D; <1, 1 =1,2,3,4, 1 <
D1+Dy <2,and 1 < D1+ Do+ D3 < 2; and further 1 < Dy +Dy+ D3+ Dy > 2. Moreover, we
assume that 1 < .D;+Ds+ Dy < 2. Otherwise, we can apply the strategy for Case 1 against the
three leaves vy, vg, and vy. Here, without loss of generality we assume that wy > we > w3 > wy.

For this case we prepare two strategies and choose one giving a better ratio.  The first
strategy allocates two vehicles. The first one serves the full demand at v; and partial demand
at v to fill the capacity, and the second one serves the full at vy and the remaining demand at
vs and moreover partial demand at v4. The remaining demand at vy is left for the next round.
Then, the ratio r; is defined by

= 4 + 2wy + 2wg + 4wz + 2wy 4da+ 8wz + 2wy _ 2a + 4dws + wyq 3)
4a + 2un + 2wq + 2w3 4a + 6ws3 2a + 3wz
The second one uses three vehicles, (1) to serve the full demand at v; and partial demand
at vg to fill the capacity, (2) to serve the full demand at v4 and the remaining demand at vy,
and (3) to serve the full demand at v3. Then, the ratio 3 is defined by

_ 6a+2un + 2wy + 2wg + 4wy 6a + 6ws + 4wy 3a + 3wz + 2wy
da + 2wy + 2wq + 2wz + 2ws  4a + 6wz + 2wy T 204 3wz 4wy
When w4 = 0, the ratio r; is bounded by 4/3 since :

T2

(4)

2a + 4dws . 2a 4ws 4
< — — =} = 5
"< 5w, < MG 0 T 3 ®)
When wy > 0, we set ¢ = a/wy and y = a/ws. Then, z > 0 and y > 1 since w3 > wa. Now,
the ratios above are expressed as follows:

o= 2z + 4y +1
LT op 43y
= 3z +3y+2
27 2c43y+1°

For a constant A > 1, the inequalities 7\ and 75 < A both correspond to half planes. What
we are looking for is the largest possible value of A for which the union of those half planes
completely covers the region defined by the intersection of ¢ > 0 and y > 1. These half planes
are depicted in Figure3, from which it is easily observed that the union covers the region if the
y-coordinate y. of the intersection of the two lines is less than or equal to 1, which is given by

2A—2 A=2 1 20—3., 2 -2 2i-3

ve = (Gmaomtioms /T 3o
= 2/\2+A—5§0<=>,\51%@21.3507&

The z-coordinate z. of the intersection is given by A

That is, the first strategy is better for z > A ~ 1.35078 while the second one is better
otherwise. In any case, the minimum of rjand 73 is bounded by A ~ 1.35078.

We can summarize the results as the next theorem.



Figure 3: The region covered by the half planes associated with the two inequalities.

Theorem 1 The approzimation of our algorithm for TREE-CVRP is 1.35.

The theorem can be proved by induction on the number of rounds. Whenever the sum of
the demands in the tree exceeds two, we perform the reforming operations to have g-nodes
and design how to serve the demands in the subtree rooted at each g-node. Then, we apply
the reforming operations again to the resulting tree and repeat this process until there is no
g-node. This is the base case.

Let P denote the problem instance of TREE-CVRP for which our algorithm requires k 4 1
rounds. Each time we find a g-node and apply an appropriate strategy based on the ratios
defined above. Let P’ be the problem instance of TREE-CVRP obtained from P after the first
round by decreasing demands served in this round from original D(-). Let LB (P') be the lower
bound for the problem P’ and LB; be the decreased lower bound at this round. Let cost(P),
costy and cost(P') denote the total cost required for the original problem P by our algorithm,
the cost required by the first round and the cost for the remaining problem P’ to be required
by our algorithm, respectively, (i.e., cost(P) = cost; + cost(P')). Then, we have

cost(P) costy + cost(P')
LB(P) = LB +LB(P)’

| ©)
Since cost(P')/LB(P') < 1.35 holds from the induction hypothesis, it suffices to prove

costy
LB,

< 1.35. (7)

As we already saw, the above inequalities hold in every case. Thus, we have the theorem.

5 Conclusions

We have presented a new approximation algorithm for finding an optimal tours to serve de-
mands located at nodes of a tree-shaped network. Our new algorithm establishes the approx-
imation ration 1.35 (exactly, (v/41 — 1)/4). This ratio seems to be almost best possible since
there is an instance of TREE-CVRP for which the cost of an optimal solution is asymptotically
4/3 times larger than the lower bound of the cost. To have better ratio we have to improve
the lower bound.
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