7 d U X A 694
(1999. 9. 2)

TIWT 7Ny MY AL XDKELEAKRD Suffix Tree (DWW T
R
HAR7A - E— - 24 (#k) HEEELBRIZER

BE: JLEKEAK (common suffix tree, CS-tree) DIERA (suffix tree) % M T 2 FIEIZEE O
HREOBERATHEET 2MEO—HILTH Y, A~ by ORMERADINS vy F v o
EILCHAY® % HBERKOY A Xk n, TVT7 7Ny bOY A X% |5 & LK, ZhIT
Breslauer ® O(nlog|Z|) BED 7L TY) XA LPHL R CWaho7ds, Thid || a5AkEwne
O(nlogn) 0% AT, EHT V7 7y Mt L O(nloglogn) D7 L T X4 %
52 %, %72, sharrow k-ary tree &) RIS L TRBEI U CERMT V7 7 Ny Moxd LSRR
TVIVALEE R D, T, KBFETIREDADPOFLETMHE SR THL L) Ry VR RE
T HDICHR 7 Bsuffix tree £\) b DERIET 2, S50, BRT VT 7Ry FOBPESIZIhE
MBI CHEE TS 7V T XA %25RT,

Constructing the Suffix Tree of a Tree with a Large Alphabet

Tetsuo SHIBUYA

IBM Tokyo Research Laboratory

Abstract: The problem of constructing the suffix tree of a common suffix tree (CS-tree) is a
generalization of the problem of constructing the suffix tree of a string. It has many applications,
such as in minimizing the size of sequential transducers and in tree pattern matching. The best-
known algorithm for this problem is Breslauer’s O(n log |2|) time algorithm where n is the size
of the CS-tree and |X| is the alphabet size, which requires O(nlogn) time if |£| is large. We
improve this bound by giving an O(nloglogn) algorithm for integer alphabets. For trees called
shallow k-ary trees, we give an optimal linear time algorithm for them. We also describe a
new data structure, the Bsuffix tree, which enables efficient query for patterns of completely
balanced k-ary trees from a k-ary tree or forest. We also propose an optimal O(n) algorithm for
constructing the Bsuffix tree for integer alphabets.

1 Introduction
The suffix tree of a string § € £" is the com-

the size of the CS-tree. Breslauer {2] improved
this bound by giving an O(nlog|X|) algorithm.

pacted trie of all the suffixes of S$ ($ ¢ £). This
is a very fundamental and useful structure in
combinatorial pattern matching. Weiner [13] in-
troduced this structure and showed that it can
be computed in O(n|X|) time, where |3| is the
alphabet size. Since then, much work has been
done on simplifying algorithms and improving
bounds (3, 11, 12], with algorithms achieving an
O(nlog |Z|) computing time (see also [8] for de-
tails). Recently, Farach [5] proposed a new algo-
rithm that achieved a linear time (independent
from the alphabet size) for integer alphabets.

A common suffix tree, or a CS-tree for short,

is a data structure that represents a set of strings.

This is also an important problem that appears
in tasks such as minimizing sequential transduc-
ers of deterministic finite automata [2] and tree
pattern matching [10]. Kosaraju [10] mentioned
that the generalized suffix tree of all the suf-
fixes of a set of strings represented by a CS-tree
can be constructed in O(n logn) time where n is

Note that both of the algorithms were based on
Weiner’s suffix tree construction algorithm [13].
But this algorithm becomes O(nlogn) when ¥
is large. In this paper, we improve their bound
by giving an O(nloglogn) algorithm for inte-
ger alphabets. Shallow trees are trees such that
their depths must be at most clogn, where n is
the size of the tree and c is some constant. We
give an optimal O(n) algorithm for trees called
shallow k-ary trees, for constant k.

We also deal with a new data structure called
a Bsuffix tree, which is a generalization of the
suffix tree of a string. Using the suffix tree of a
CS-tree, we can find a given path in a tree very
efficiently. The Bsuffix tree is a data structure
that enables us to query any given completely
balanced k-ary tree pattern from a k-ary tree
or forest very efficiently. Note that the concept
of a Bsuffix tree is very similar to that of an
Lsuffix tree [1, 7], which enables us to query any
square submatrix of a square matrix efficiently.
We will show that this data structure can be

built in O(n) time for integer alphabets. Bsuf-
fix trees have many useful features in common
with ordinary suffix trees. For example, using
this data structure, we can find a pattern (a
completely balanced k-ary tree) in a text k-ary
tree in O(mlogm) time, where m is the size of
the pattern. Moreover, we can enumerate com-
mon completely balanced k-ary subtrees in a lin-
ear time. Considering that general tree pattern
matching requires a O(nlog®n) time [4], these
results mean that a Bsuffix tree is a very useful
data structure.

2 Preliminaries

2.1 The Suffix Tree

The suffix tree of a string § € X" is the com-
pacted trie of all the suffixes of 5% (8 ¢ £). The
tree has n + 1 leaves and each internal node has
more than one child. Each edge is labeled with a
non-empty substring of S$ and no two edges out
of a node can have labels which start with the
same character. Each node is labeled with the
concatenated string of edge labels on the path
from the root to the node, and each leaf has a
label that is a different suffix of 5$. Because
each edge label is represented by the first and
the last indices of the corresponding substring
in §$, the data structure can be stored in O(n)
space. In this paper, we deal with only the suf-
fix trees in which the edges going out from a
node are sorted according to their labels. Notice
that this property is very convenient for query-
ing substrings.
~ For this powerful and useful data structure,
we have the following theorems:
Theorem 1 (Farach [5]) The suffiz tree of a
string S € {1,...,n}" can be constructed in O(n)
- time. ‘
Note that alphabet {1,...,n} is called an inte-
ger alphabet. In this paper, we will deal with
only integer alphabets. Farach’s suffix tree con-
struction algorithm and our algorithms to be
presented use the following theorem:
Theorem 2 (Harel and Tarjan [9]) For any
tree with n nodes, we can find the lowest common
ancestor of any two nodes in a constant time af-
ter O(n) preprocessing if the following values can
be obtained in a constant time: bitwise AND,
OR, and XOR of two binary numbers, and the
positions of the leftmost and rightmost 1-bit in
a binary number.
This theorem indicates that the longest com-
mon prefix (LCP) of any two suffixes can be ob-
tained from the suffix tree in a constant time
after linear-time preprocessing.

2.2 The Suffix Tree of a Tree

A set of strings {94, . .., Sk}, such that no string
is a suffix of another, can be represented by a
common suffix tree (CS-tree for short), which is
defined as follows:

Definition 1 (CS-tree) In the CS-tree of a set
of strings {S1,..., Sk}, each edge is labeled with
a single character, and each node is labeled with
the concatenated string of edge labels on the path
from the node to the root. In the tree, no two
edges out of a node can have the same label. Fur-
thermore, the tree has k leaves, each of which has
a different label that is one of the strings, S;.

Figure 1 shows an example of a CS-tree. The
number of nodes in the CS-tree is equal to the
number of different suffixes of strings. Thus, the
size of a CS-tree is not larger than the sum of
the lengths of the strings represented by the CS-
tree. Note that the CS-tree can be constructed
easily from strings in a time linear to the sum of
the lengths of the strings.

The generalized suffix tree of a set of strings
{S1,..., Sk} is the compacted trie of all the suf-
fixes of all the strings in the set. As mentioned
in [10], the suffix tree of a CS-tree is the same
as the generalized suffix tree of the strings rep-
resented by the CS-tree. Furthermore, the size
of the generalized suffix tree is linear to that of
the CS-tree, because the number of leaves of the
suffix tree is equal to the number of edges in the
CS-tree. Note that the edge labels of the suf-
fix tree of a CS-tree corresponds to a path in
the CS-tree, and they can be represented by the
pointers to the first edge (nearest to the leaves)
and the path length.

Let n; be the length of 5, and let N = 5, n;.
Let n be the number of nodes in the CS-tree
of the strings. The generalized suffix tree can
be obtained in O(N) time in the case of inte-
ger alphabets (i.e., S; € {1,...,n}™) as follows.
First, we construct the suffix tree of a concate-
nated string of 51$528 - - - $5, using Farach’s suf-
fix tree construction algorithm. Then, we ob-
tain the generalized suffix tree by cutting away
the unwanted edges and nodes. But IV is some-
times much larger than the size n of the CS-
tree: for example, there exists a tree for which
N is O(n?). This means that the O(N)-time
suffix tree construction algorithm given above is
not at all a linear time algorithm. The best-
known O(nlog|Z|) algorithm [2] for this prob-
lem is based on Weiner’s suffix tree construction
algorithm [13]. We will improve it by giving a
new algorithm based on Farach’s linear-time suf-
fix tree construction algorithm.

Figure 1: CS-tree of the strings 1413%, 54138, 913$, 56213$, 3213%, 5213$, and 83%

3 New Algorithm for Construct-
ing the Suffix Tree of a CS-
Tree

3.1 Algorithm Outline

Our approach to constructing the suffix tree of
a CS-tree is based on Farach’s suffix tree con-
struction algorithm [5]. Farach’s algorithm has
three steps. First, it constructs a tree called an
odd tree recursively. Next, it constructs another
tree called an even tree by using the odd tree.
Finally it constructs the suffix tree by merging
these two trees. Note that the odd tree is a trie
of suffixes S[2¢—1]...S[n]$, and the even tree is
a trie of suffixes S[24]...S[n]$. This algorithm
achieves an O(n) computation time for integer
alphabets.]

We later also define the odd and even trees
for the suffix tree of a CS-tree, and our algorithm
also has three following similar steps. First we
build the odd tree or the even tree recursively,
then we construct the even or odd tree by using
the odd or even tree, respectively, and finally we
merge them to construct the suffix tree.

In the algorithm, we use the following theo-
rems:

Theorem 3 In any tree with n nodes, for any
node v in the tree and any integer d > 0 that
is smaller than the depth of v, we can find the
ancestor of v whose depth is d in O(loglogn)
time after O(n) preprocessing, if the following
values can be obtained in a constant time: OR,
shift of any © bits, the number of 1-bits in the
binary number, and any ith-leftmost 1-bit in the
binary number.

Theorem 4 In any shallow k-ary binary tree
with n nodes where k is constant, for any node v
in the tree and any integer d > 0 that is smaller
than the depth of v, we can find the ancestor of
v whose depth is d in a constant time after O(n)
preprocessing, if any i-bit shift of a binary num-
ber can be performed in a constant time.

Proofs of these theorems are given in the ap-
pendix. See section 1 for the definition of a ‘shal-
low tree’. Let Tjookup(n) be the time needed to
compute a node’s ancestor of depth d after O(n)
preprocessing.

Let us now define several notations. Let
{81, ..., Sk} be the strings represented by a given
CS-tree. Let n; be the length of S; and let
S; = Si[ng]...Si[1]. Note that the indices are
arranged in reverse order. Above theorems 3
and 4 indicates that, for any i and j, we can
access Si[j] in Tjookup(n) time after O(n) pre-
processing. Let S;(m) be S;’s suffix of length m,
i.e., Sgfm]... Si[1]. Let lcp(S,S") and les(8, S")
be the lengths of the longest common prefix and
suffix of strings S and &', respectively. Let
parenty(v) be the parent node of v in the CS-
tree U if v is not the root node ¢; otherwise, let
it be & i.e., parenty(vij) = Vjmax(o,j-1)- Let
label(e) be the label given to edge e in the CS-

tree. Let Ty be the suffix tree of the CS-tree
U.
3.2 Building a Half of the Suffix Tree

Recursively

All nodes in the CS-tree U = (V, E) have either
odd or even label length. Let V,gq and Viyen
be the nodes with odd label lengths and those
with even label lengths, respectively. If |V 44| >
|Vev8n|, let Viman = Veven and Vlarge = Vodd;
otherwise, let Vimau = Vogq and Vlarye = Veven-
We can obtain |Vogg| and |Veyen| in O(n) time
by the ordinary depth-first search on the CS-
tree. Therefore, we can determine in a linear
time which node set is V4. In this subsection,
we will recursively construct the compacted trie
Tsmau of all the labels of nodes in V.. Note

- that the technique for constructing Ty is very

similar to that for constructing the odd tree in
Farach’s algorithm.

Consider a new CS-tree U’ = (Vyman, Esman),
where Egnau = {(v, parenty: =
parenty(parenty (v)))|v € Vemau, v # t} and the
edge labels are determined as follows. Radix sort

the label pairs pair(v) = (label((v, parenty (v))),
label((parenty (v), parenty (parenty(v))))) for all
v € Vymay\t and remove duplicates, where label (e)
denotes the label of an edge e in the original
CS-tree U (let label{t,t) = ¢ ¢ {%,}). Let
rank(v) be the rank of pair(v) in the sorted list,
which belongs to an integer alphabet [1,7/2] be-
cause the size of the new tree U’ is not larger
than half of that of the original CS-tree U. Let
orig_pair(i) be a label pair pair(v) such that
rank(v) = i. Let the label of an edge
(v, parentyr (v)) € Esman be rank(v). Notice
that all of these procedures can be performed in
a linear time.

We then construct the suffix tree Ty of U’
by using our algorithm recursively. After that,
we construct Tymey from Ty as follows. We can
consider a tree T’ whose edge labels of Ty are
modified to the original labels in U: for exam-
ple, if the label of an edge in Ty is 45k, the label
of the corresponding edge in T” is orig-pair(i),
orig_pair(j), orig-pair(k). Notice that this mod-
ification can be performed by making only a mi-
nor modification of the edge label representation
and that it takes only linear time.

We can construct Tsmey from 17 very easily.
T' contains all the labels of nodes in Vypqu, but
is not the compacted trie: the first characters of
labels of outgoing edges from the same node may
be the same. But the second character is differ-
ent, and the edges are sorted lexicographically.
Thus we can change 7" to Tsmen by making only
a minor adjustment: we merge such edges and
make a node, and if all the first characters of all
the labels of edges are the same, we delete the
original node.

In this way, we can construct Temey in a
T(n/2) +O(n) time, where T'(n) is the time our
algorithm takes to build the suffix tree of a GS-
tree of size n.

3.3 Building the Other Half of the Tree

In this section, we show how to construct the
compacted trie Tj4rge Of all the labels of nodes in
Viarge from Tomqp in a linear time. The technique
is a slightly modified form of the second step of
Farach’s algorithm, which constructs the even
tree from the odd tree.

If we are given an lexicographic traverse of
the leaves of the compacted trie (which is called
lex-ordering in [5]), and the length of the longest
common prefix of adjacent leaves, we can recon-
struct the trie [5, 6]. Note that it can be done in
linear time in the case of constructing the suf-
fix tree of a string. We will obtain these two
parts of Tygrge from Toman, and construct Tiarge

in the same way. But this method can obtain
only the label length from the leaf or root for
each node of the compacted trie. Recall that
each label is represented by the first node and
the label length in our case. Thus we must ob-
tain that node from its specified depth and its
some descendant leaf, which requires Tjookup(7)
time. Hence the total time required by this pro-
cedure is O(nTjookup(n))-

Any leaf in Tjgrge, €xcept for those with la-
bels of only one character, has a label consisting
of a single character followed by the label of some
corresponding leaf in Typqy. We can obtain the
lex-ordering of the labels of leaves in Tymqu by an
in-order traverse of T,,.;; Which takes ounly a lin-
ear time. Thus we can obtain the lex-ordering of
the labels of leaves (S;(m)) in Tjgrge by using the
radix sorting technique, because we have S;[m]
and the lexicographically sorted list of S;(m—1).

The longest common prefix length of adja-
cent leaves of Tjgrge can also be obtained eas-
ily by using Tymau- Let Si(m) and S;(n) be
the labels of two adjacent leaves in Tjgrge-
Si[m] # S;[n], the longest common prefix length
is 0. Otherwise, it is 1+Icp(S;(m—1), S;(n—1))
which can be obtained in a constant time from
Toman after linear-time preprocessing on Tgman
(see Theorem 2). In this way, we can construct
Tiarge from Toman in O(nTpokup(n)). According
to Theorems 3 and 4, it is O(n loglogn) for gen-
eral CS-trees, and O(n) for shallow k-ary CS-
trees (k: constant).

3.4 Merging the Trees

Now we have two compacted tries Tpgq and Teyen-
In this subsection, we merge Tog¢ and Teven to
construct the target suffix tree Tyy. We call the
compacted trie of odd/even-length suffixes of
strings the generalized odd/even tree of the
strings. The odd/even tree of a CS-tree is also
the generalized odd/even tree of the strings rep-
resented by the CS-tree. Farach’s algorithm
merges the odd and even trees in a time linear
to the sum of the sizes of odd and even trees.
1t can be directly applied also to our problem of
merging generalized odd and even trees. Note
that the merging can be done a linear time in
Farach’s algorithm, but requires O(nTjookup(n))
time in our case. The outline of the algorithm is
as follows.

First, we merge the even and odd trees as fol-
lowing by considering that one of two edge labels
is a prefix of the other label if the first characters
of labels of two edges are the same. Let edges
e1 = (v,v1) and ez = (v,v2) be the edges which
starts from the same node v and the same first

character. Let [; and Iy be the label lengths of
e; and ey, respectively. Without loss of general-
ity, we let Iy > l5. Then we construct a internal
node v} between v and vy if I; > Iy, otherwise
let v] be v;. In case that I; > Iy, let the label
of edge (v,v]) be the first I characters of the
label of original edge (v,v:) and let the label of
edge (v}, v;) be the last [; — I3 characters of the
label of original edge (v, v1). Then we merge two
edge (v,v]) and e;. Note that this merging re-
quires Tiooryup(n) time because we must find the
node which corresponds to the first character of
new edge (v},v1). We merge recursively all over
the two trees by the normal coupled depth first
search. Thus the total computing time required
for the merging is O(nTjookup(n)).

Next, we unmerge the edges with different
labels because we have merged edges too far.
In this unmerging stage, we first compute the
longest common prefix length of any merged pair
of node labels in the suffix tree. Farach [5] showed

that all the required longest common prefix lengths

for all the merged pairs can be obtained in O(n)
time by using a data gtructure called d-links; for
details of d-links and the algorithm, see [5]. Us-
ing the common prefix length of merged nodes,

we can easily determine how far to unmerge edges.

For each unmerged edge, we must find the node
of the CS-tree that corresponds to the first char-
acter of its label, which requires Thookup(n) time.
Thus the total computing time for unmerging is
also O(nTlookup(n))'

Hence the step of our algorithm for merg-
ing trees takes a total of O(nTigorup(n)) time.
Thus we obtain an equation T'(n) = T(n/2) +
O(nTiookup(n)), where T'(n) is the time needed
to construct the suffix tree of a CS-tree of size
n. Therefore, our algorithm achieves a T'(n) =
O(nloglogn) computing time for general CS-
trees, and an optimal T'(n) = O(n) computing
time for shallow k-ary CS-trees.

4 The BSuffix Tree

In this section, we propose a new data structure,
the Bsuffix tree, which enables efficient queries
of completely balanced binary trees from any bi-
nary forest (including a single tree). It can also
be used for querying completely balanced k-ary
subtrees from any k-ary forest (k need not be
constant in this case), but we will deal with bi-
nary trees at first. The Bsuffix tree is a data
structure for matching of nodes, but it can be
also used for matching of edges (see subsection
4.3).

4.1 Definition of the BSuffix Tree

Consider a completely balanced binary tree P
of height h. Let p1,p2,...,pon_; be the nodes of
P in breadth-first order, and let ¢; € {1,...,n}
be the alphabet given for node p;. Note that
Plij2) is the parent of p; in this order. We call
cicy -+ ¢yn_y the label of P. We call substring
Coi +* ~ Cgi+1_1 Of this label a Bcharacter. Further-
more, we call a string of Bcharacters a Bstring.
For Bstring biby...b,, we call biby...by(m <
n) a DBprefix of the Bstring. Note that
€1C2 -+ Cor_q is a Bstring of length h. For two
Bcharacters by and by, we let by > by if by is
lexicographically larger than by in the normal
string representation. Note that Bcharacter b =
Cgi ++- 29i+1_1 can be represented by node p,: €
P and integer i.

Consider a binary forest U of size n whose
nodes are labeled with a character of an inte-
ger alphabet {1,...,n}. Let vi,vq,...,v, be
the concatenated list of the breadth-first-ordered
node lists of all the binary trees in forest U, and
let a; € {1,...,n} be the label of node v;. Let
L; be the the label of the largest completely bal-
anced binary subtree of U whose root is node v;.
We call L; followed by $; ¢ {1,...,n} ($; #$;)
the label of node v;. If the roots of two com-
pletely balanced binary subtrees P; and P, of U
are the same node and P; includes P, the la-
bel of P is a Bprefix of the label of P;. The
Bsuffix tree of U is the compacted trie T of the
labels of all the nodes in U in the Bstring sense,
i.e., the outgoing edges from some node in the
suffix tree have a label of different Bcharacter.
Figure 2 shows an example of a Bsuffix tree. By
using T, we can very easily query any completely
balanced binary subtree of U.

Edge labels of T' can be represented by the
first node in 7' and the depths of the first and
the last nodes in the pattern. Therefore T' can
be stored in O(n) space. Note that we can access
any member of the edge label of T' in a constant
time if we have both the breadth-first list and
the depth-first list of the nodes of each tree in
forest U.

4.2 Construction of the BSuffix Tree

In this subsection, we describe the O(n) algo-
rithm for constructing the Bsuffix tree T of U.
If forest U consists of only nodes with less
than two children, it is obvious that we can con-
struct the Bsuffix tree of U in O(n) time. Oth-
erwise, we first construct a new binary forest U’
as follows: For every node v; with two children
vj, Uj+1, construct a node of U’ (let it be w;). If
v;j and/or vj1; have two children, let w; be the

V1 5

13 V14

v,

(1) Binary tree U

(2) Bsuffix tree for U

Figure 2: An example of the Bsuffix tree.

Figure 3: Recursive construction of new binary trees in computing Bsuffix tree

parent of w; and/or w;y; in forest U’. Radix
sort the label pairs (a;,a;41) and remove du-
plicates. Let the label a of w; be the rank of
the label pair (a;,a;+1) in the sorted list. No-
tice that the number of nodes in U’ is not larger
than n/2. We construct the Bsuffix tree 7" of
U’ by using our algorithm recursively. Figure 3
shows an example of this recursive construction
of new binary forests (trees in this case). Next,
we construct T from 1.

If we are given the lexicographically sorted
list of all the node labels of U and the length
(i.e., number of Bcharacters) of the longest com-
mon Bprefix of adjacent Bstring labels in this
list, we can construct Bsuffix tree T' in a linear
time. We obtain these two pieces of information
from T".

Notice that the in-order traverse of leaves of
T’ is also a lexicographically sorted list of all
the first-character-deleted labels of nodes that
have two children in T. Thus we can obtain the
lexicographically sorted list of all the node labels
of U by radix sorting the concatenated list of the
in-order traverse of leaves of 7" and the labels of
nodes with no or only one child.

The longest common Bprefix length [of ad-
jacent labels can also be obtained from 7”. If the
first characters of two adjacent labels are differ-

ent, { = 0. Otherwise, if one of the adjacent
labels consists of only one character, the depth
is [= 1. Otherwise, we compute the depth as
follows. Let v; and v; be the adjacent nodes.
Notice that we can obtain the longest common
Bprefix length I’ of labels of w; and w; in U’ ina
constant time (see Theorem 2). Then it is clear
that I =1+ 1.

In this way we can construct 7' from 7" in a
linear time. We obtain T'(n) = T(n/2) + O(n),
where T'(n) denotes the time taken to compute
the Bsuffix tree of a binary tree of size n. There-
fore we conclude that our algorithm runs in O(n)
time.

4.3 Discussions on the Bsuffix Tree

Bsuffix trees are very similar to normal suffix
trees. It enables O(mlogm) query for a com-
pletely balanced binary tree pattern of size m.
It can also be used for finding (largest) common
completely balanced binary subtrees of two bi-
nary trees in linear time. We can also enumerate
frequent patters of completely balanced binary
trees in linear time by using this data structure.

The data structure and our algorithm as-
sume that the labels are given to nodes, but they
can very easily be modified to deal with edge-
matching problems as follows: Let the label of

any node except for the root be the label of the
incoming edge from its parent. Then 7" in the
above algorithm can be used as the compacted
trie for edge matching.

Bsuffix trees can also be used for querying
completely balanced k-ary trees from any k-ary
forest U. First, if a node has less than k chil-
dren, remove the edges between it and its chil-
dren. Otherwise, we reconstruct each node that
has k children as a completely balanced binary
tree of depth [log, k] and move each child to its
leaf. For each inside node and leaf to which no
node was mapped, give as its label a new char-
acter that is not in use. Notice that the size of
the reconstructed forest is at most twice as that
of the original one. Then construct the Bsuf-
fix tree for this reconstructed binary tree. It can
obviously used for querying completely balanced
k-ary trees.

5 Concluding Remarks

We have described an O(nloglogn) algorithm
for constructing the suffix tree of a common suf-
fix tree (CS-tree). For trees called shallow k-
ary trees, we also described an O(n) algorithm.
In addition, we proposed a new data structure
called a Bsuflix tree, that enables efficient query
for completely balanced subtrees.

The existence of a linear time algorithm for
constructing the suffix tree of any trees for large
alphabets remains as an open question, as does
the existence of more useful suffix trees that al-
low querying more general and flexible patterns
than paths or completely balanced trees.

References

[1] A. Apostolico and Z. Galil, eds., “Pattern
Matching Algorithms,” Ozford University
Press, New York, 1997.

[2] D. Breslauer, “The Suffix Tree of a Tree
and Minimizing Sequential Transducers,”
J. Theoretical Computer Science, Vol. 191,
1998, pp. 131-144.

[3] M. T. Chen and J. Seiferas, “Efficient and
Elegant Subword Tree Construction,” A.
Apostolico and Z. Galil, eds., Combina-
torial Algorithms on Words, Chapter 12,
NATO ASI Series F: Computer and System
Sciences, 1985, pp. 97-107.

R. Cole, R. Hariharan and P. Indyk, “Tree
Pattern Matching and Subset Matching
in Deterministic O(nlog®n)-time,” Proc.
4th Symposium on Discrete Mathematics
(SODA 99), 1999, pp. 245-254.

[4

[ane’

[5] M. Farach, “Optimal Suffix Tree Construc-
tion with Large Alphabets,” Proc. 38th
IEEE Symp. Foundations of Computer Sci-
ence (FOCS ’97), 1997, pp. 137-143.

[6] M. Farach and S. Muthukrishnan, “Op-
timal Logarithmic Time Randomized Suf-
fix Tree Construction,” Proc. 23rd Interna-
tional Colloquium on Automate Languages
and Programming (ICALP °96), 1996, pp.
550-561.

[7] R. Giancarlo, “The Suffix Tree of a Square
Matrix, with Applications,” Proc. 4th Sym-
posium on Discrete Mathematics (SODA
’93), 1993, pp. 402-411.

[8] D. Gusfield, “Algorithms on Strings, Trees,
and Sequences: Computer Science and
Computational Biology,” Cambridge Uni-
versity Press, 1997.

[9] D. Harel and R. R. Tarjan, “Fast Algo-
rithms for Finding Nearest Common Ances-
tors,” SIAM J. Computing, Vol. 13, 1984,
pp. 338-355.

[10] S. R. Kosaraju, “Efficient Tree Pattern
Matching,” Proc. 30th IEEE Symp. Foun-
dations of Computer Science (FOCS ’89),
1989, pp. 178-183.

[11] E. M. McCreight, “A Space-Economical
Suffix Tree Construction Algorithm,” J.
ACM, Vol. 23, 1976, pp. 262-272.

[12] E. Ukkonen, “On-Line Construction of
Suffix-Trees,” Algorithmica, Vol. 14, 1995,
pp. 249-60.

[13] P. Weiner, “Linear Pattern Matching Algo-
rithms,” Proc. 14th Symposium on Switch-
ing and Automata Theory, 1973, pp. 1-11.

Appendix: Proofs of Theorems
3 and 4

Proof of Theorem 3

We achieve an O(loglogn) computing time by

means of the following algorithm.

Let m be the number of leaves in the target
tree I'. We call a path from some node to some
leaf a ‘run’. We first divide all nodes in the tree
into m runs. as follows:

1. Index the leaves by in-order traversing of T,
and let them be Iy,ls,..., 1.

2. Consider a completely balanced binary tree
B of height [logy(m+1)]. Let vy,v3, ...,y
be the nodes of B in the breadth-first order,
where m < m/ = 2Mog2(m+1)] _ 1 « om Map
the leaves I1,l3,...,ln to the in-order tra-
verse of the nodes in B. Let I, be the leaf of
T to be mapped to v; in B.

\ Vs Ve vy
(b=1) (by=3) (b=5) (b,=T)

(2) B

run, (r,=001)

run,

(r,=011) run

s rung rung
(rg=101)
(r,=101)

run,

(ry=011)

run, (rg=101)
(r,=111)

3) R

Figure 4: Example of T, B, and R.

3. For i = 1,2,...,m, construct runs runi,
rung, ..., runyy (note that m' —m of these
are empty runs) as follows:

o If I, does not exist, let run; = ¢ (an
empty run) and continue.

¢ Find the maximum run run; that does
not contain any node of runs {run;|j <
i} and ends at leaf ;.. Note that un-
less run; starts from the root of T', the
parent node of the first node (nearest to
the root) of run; must belongs to some
run rung,. We call run,, the parent run
of run;. Note that we can construct a

tree R of runs by using this parent-child -

relationship.

o Let 7y = 1. If 7 > 1, compute the fol-
lowing r;: Let r be a binary number
with only one 1-bit that is at the same
position as the leftmost 1-bit of 4, i.e.,
let 7 = 2U%82% Then let r; = rp, V 7,
where V denotes bitwise OR. Note that
the depth of v; in B is 1 + |logy 73] =
1+logyr =1+ [logyi].

Figure 4 shows an example of T', B, and R. Note
that r; is displayed in a binary number in Fig-
ure 4 (3).

Note that the parent of node v; in B is v|;/z).
Thus for any node of depth d in B and some
integer d' such that 0 < d’ < d, we can access
the node’s ancestor of depth d in a constant time
by simply right-shifting its index by d — d' bits.
For any run and some integer d, it is clear that
the node of depth d in the run can be accessed in
a constant time if each run manages its nodes.
Thus, once we find the run that contains the
target ancestor, we can find it in a constant time.
We now discuss how to find the run.

Consider node w in T and let run; be the run
that contains w. It is obvious that any ancestor
of w in T is contained by one of the ancestor runs
of run; in R. Furthermore, if run; is an ancestor

of run; in R, then v; is also an ancestor of v;
in B. Let rumng,,Tung,,...,Tung, (a1 = 1 <
as < -+ < ap = 1) be the ancestor runs of run;
(including itself). Note that the binary number
r; contains k 1-bits.

For any 7 such that 0 < j < k, we can access
TUnG, in a constant time by using the value of
r; as follows: Let 7’ be a binary number that
has only one 1-bit whose position is the same as
the jth-rightmost 1-bit of binary number r;. Let
7" be a binary number that has only one 1-bit
whose position is the same as the leftmost 1-bit
of binary number r;. Then a; = {i - (r'/r")]
(right-shift by log, 7" — logy ' bits). Using this
constant-time access to the ancestor runs, we
can search the target run in Oflogk) time by
checking the depths of the first nodes of ances-
tor runs. Hence we conclude that the time for
finding the target node is O(loglogn), because
k <= 1+logym' < 2+log, m. Note that it is ob-
vious that all of the data structures used above
can be constructed in a total of O(n) time.

Proof of Theorem 4

This case is far simpler than that of Theorem 3.
For a completely balanced binary tree, we can
find the ancestor of depth d in a constant time by
indexing nodes in breadth-first order and shift-
ing the bits of indices. The case of shallow bi-
nary trees is also obvious: We can consider a
minimum complete balanced binary tree that
contains a shallow binary tree of size n as its
subgraph. Its size is O(n), and it can be built in
O(n) time. We can find the target ancestor in
the new tree in a constant time.

In a general shallow k-ary tree where k is
some constant, every node can be mapped to
an O(n) binary shallow tree in such way that
the depth of a mapped node is a constant times
as the depth of the original node in the origi-
nal tree. In this way, we conclude that such an
ancestor can be found in a constant time after
linear-time preprocessing.

