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Abstract: In this paper, we consider practical parallelizability of some P-complete problems. First we
propose a parameter of parallelizability for a convex layers problem. We prove P-completeness of the
problem and propose a cost optimal parallel algorithm according to the parameter. Second, we consider a
lexicographically first maximal 5 sums problem, and prove P-completeness of the problem by reducing a
lexicographically first maximal independent set problem. In addition, we propose a practical cost optimal
parallel algorithm for the problem and implement the algorithm on a PC cluster using PVM. The results

achieves almost ideal speedup for the problem.

1 Introduction

In parallel computation theory, one of the primary
measures of parallel complexity is the class NC.
Let n be the input size of a problem. The problem
is called to be in the class NC if there exist an
algorithm which solves the problem in 7'(n) time
-using P(n) processors where T'(n) and P(n) are
polylogarithmic and polynomial functions for n,
respectively. Many problems in the class P, which
is the class of problems solvable in a polynomial
time sequentially, are also in the class NC.

On the other hand, some problems in P seem
to have no parallel algorithm which runs in poly-
logarithmic time using a polynomial number of
processors. Such problems are usually called P-
complete. The P-complete problem is a prob-
lem to which we can reduce any problem in P
using NC-reduction. Although there are some
efficient parallel probabilistic algorithm for some
P-complete problems, it is believed that the P-
complete problem is inherently -sequential and
hard to be parallelized.

However polylogarithmic time complexity is
not so important for a real parallel computation
because the number of processors p is usually
small in comparison with the size of a problem n,
that is, p << n. Thus, cost optimality is the most
important measure for parallel algorithms in prac-
tice. The cost of parallel algorithm is defined as
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the product of the running time and the number of
processors of the algorithm. A parallel algorithm
is called cost optimal if its cost is equal to the
lower bound of a sequential time complexity for
the same problem. In other words, the cost opti-
mal parallel algorithm achieves optimal speedup,
which is equal to the number of processors.
Therefore one way to parallelize P-complete
problems is to find cost optimal parallel algo-
rithms which runs in polynomial time. Let Q(n*)
be lower bound of sequential time complexity for a
P-complete problem A. It seems that the problem
A has no parallel algorithm which runs in polylog-
arithmic time since A is P-complete. However,
The problem A may have a parallel algorithm
which runs in O(n*~¢) time using n¢ processors
where 0 < ¢ < k. Since the parallel algorithm
is cost optimal, the algorithm probably achieves
optimal speedup in practice if the number of pro-
cessors is not so large. Thus, in this paper, we aim
to propose cost optimal parallel algorithms, which
run in polynomial time, for P-complete problems.
Some convenient classifications were proposed
to define such parallelizable P-complete problems.
Vitter and Simons[11] proposed the class of prob-
lems PC*. A problem in P is called to be in the
class PC* if and only if there exist a cost opti-
mal parallel algorithm which solves the problem.
Since the speedup is not bounded in the definition
of PC*, the definition is applicable to P-complete



problems. Kruskal et al.[9] proposed six classes of
parallel algorithms. They described a class EP is
the most practically interesting among the classes.
The class EP means “efficient and polynomially
fast”, and a parallel algorithm is in EP if and
only if there exist a cost optimal algorithm whose
time complexity T'(n) = O(¢(n)€) with € < 1 and
T(n) x P(n) = O(t(n)), where t(n) is the best
time complexity of sequential algorithms which
solves the same problem. These two classes are al-

most the same for P-complete problems because-

P-complete problems seem to have no polyloga-
rithmic time parallel algorithm. In this paper, we
call P-complete problems in the above classes par-
allelizable in practice, that is, P-complete prob-
lems which are parallelizable in practice have cost
optimal parallel algorithms.

Among many P-complete problems, only some
graph problems are known to be parallelizable in
practice. In [11], Vitter and Simons showed that
the unification, path system accessibility, mono-
tone circuit value and ordered depth-first search
problems have cost optimal parallel algorithms if
their input graphs are dense %raphs, that is, the
number of edges is m = Q(n**€) for a constant
e where the number of vertices is n. For exam-
ple, they showed that the monotone circuit value
problem can be solved in O(Z + n) time using
p processors on the common CRCW PRAM. The
time complexity becomes O(%) if m = ©(n?),
then the algorithm achieves cost optimality.

In this paper, we consider practical paralleliz-
ability of two P-complete problems. First we pro-
pose a parameter of parallelizability for o convex
layers problem. The convex layers is a geomet-
ric problem and closely relates to other layering
problems, such as visibility layers. Dessmark et
al.[4] proved that the problem is P-complete, and
Chazelle[1] proposed an optimal sequential algo-
rithm which runs in O(nlogn) time, where n is
the input size of the problem. First we consider
restricting positions of input points on d paral-
lel lines. (The d is a parameter of the problem.)
For the parameterized convex layers, we prove
the problem is still P-complete if d = n¢ with
0 < € <1 by reducing the original convex layers.
Next we propose a parallel algorithm which runs
in O("lo—fﬁ + épi + dlogd) time using p proces-
sors (1 < p < d) on the EREW PRAM. From the
complexity, the problem is in NC if d = (logn)*
where k is a positive constant, and has a cost op-
timal parallel algorithm if d = n® with 0 < ¢ < 5.
‘We also consider complexity of the problem in case
where all inputs are sorted and show that the com-
plexity achieves similar cost optimality.

The second P-complete problem is a lexico-
graphically first mazimal 5§ sums, which is a prob-
lem to compute lexicographically a maximal set
of 5 elements whose sum is 0 among n integers.
We prove the problem is also P-complete by re-
ducing a lexicographically first maximal indepen-
dent set, which is a graph problem known as P-

complete[10].
allel algorithm, which runs in O(% + n?) time
usinig p processors on the CREW PRAM, for
the problem. In addition, we modify the algo-
rithm for distributed memory model and imple-
ment the algorithm on a PC cluster using PVM.
Although the PVM on a cluster is a primitive par-
allel environment, the algorithm achieves almost
ideal speedup. This implies that some P-complete
problems are parallelizable in practice within the
reasonable number of processors.

We propose a cost optimal par-

2  Preliminaries

Let n be the input size of a problem. The problem
is called to be in the class P if there is a sequen-
tial algorithm which solves the problem in t(n)
where t(n) is a polynomial function for n. The P
is well known class which denotes sequential effi-
ciency. An analogous class of efficiency for parallel
computation is the class NC. A problem is called
to be in the class NC if there exist an algorithm
which solves the problem in'T'(n) time using P(n)
processors, and T(n) and P(n) are polylogarith-
mic and polynomial functions for n, respectively.

Using the above. classes, the P-completeness
is defined as follows. (For details of the P-
completeness, see [8].)

Definition 1 (P-complete problem) A prob-
lem @ is called to be P-complete if the following
two conditions are satisfied.

(1) The problem Q is-in P.

(2) For every problem S in P, S is NC-reducible
to Q. O

From the above definitions, we can prove P-
completeness of a problem if we can reduce a
known P-complete problem to the problem using
NC-reduction.

Parallel computation model used in this pa-
per is the PRAM. The PRAM employs proces-
sors which have capability to access any memory
cell in a shared memory synchronously. (For de-
tails of the PRAM, see [8].) Since the PRAM is
a theoretical model, we use the model to prove
P-completeness of problems and propose cost op-
timal parallel algorithms in this paper.

3 Parameterized convex lay-
ers

3.1 Definitions

First we give some definitions for convex layers.

Definition 2 (Convex layers) Let S be a set of
n points in the Fuclidean plane. The convez layers
is a problem to compute convez polygons obtained
by the following algorithm.



(1) Compute a convex hull of S, and remove
points contained in the convezr hull from S.

(2) Repeat (1) until S = ¢. o

Dessmark et al.[4] proved P-completeness
of the convex layers, and Chazelle[l] proposed
an optimal sequential algorithm which runs in
O(nlogn) time. The sequential algorithm is
time optimal because computation of a convex
hull, which is one hull of convex layers, requires
Q(nlogn) time[12)].

In this paper, we consider a parameter d for
the problem, and restrict its input points on d
horizontal lines.

Definition 3 (Convex layers for d lines)

The convez layers for d lines is a parameterized
convez layers problem whose input points are on
d horizontal lines. a

The d is at most n if there is no restrictions
for positions of input points. In the following,
CL(d) denotes the convex layers for d lines. We
can solve the problem in O(n log n) time using the
algorithm(1].

The above two convex layers problems are il-
lustrated in Figure 1.

@ )

Figure 1: Convex layers problems: (a) convex lay-
ers, and (b) CL(6).

3.2 P-completeness of CL(d)

We discuss relationship between P-completeness
and the number of lines d in this subsection. First
we prove the problem CL(d) is P-complete if d =
n® with 0 < € < 1. We prove the P-completeness
by NC-reduction from the original convex layers.

Theorem 1 The problem CL(n¢) with0 <e <1
is P-complete.

(Proof) First of all, it is obvious that CL(n¢)
is in P because the problem has an O(nlogn)
time sequential algorithm. If ¢ = 1, the CL(n¢)
is the original convex layers problem, which is
proved to be P-complete. Thus, we consider
the case that 0 < € < 1 in the following. Let
Us = {uo,u1,...,Un—1} be input points of the
convex layers in the Euclidean plain. We as-
sume that uy = (zn,yn) and ug = (zg,ys) are
points which have the largest and the smallest y-
coordinates in Up, and also assume that up =
(zg,ye) and uw = (zw,yw) are points which
have the largest and the smallest z-coordinates in
Uy, respectively.

First we add 4 points to the input. The points
are Uy = {unw,ung,usg,usw} = {(zw —
Lyn + 2)’ (mE + 1Ly~ + 1)1 (IE + 1,1/3 - 2)1
(zw—1,ys—1)}. (These 4 points forms a parallel-
ogram which contains all points in Up.) Next we
add a set of k = (n +4)¢ — (n + 4) points which
are on a line y = yy + 2, Uy = {(zb,yn + 2),
(1, yn+2), ..., (Th_1, Y~ +2)} so that zyy —1 <
Tp <2y < ... <zh_; <zw+1. (Since 0 <e <1,
k > 0 holds.) These added points are illustrated
in Figure 2.

points in U,
UNw
o SR CLLELECHE Y
? &S,

UNE
“§

original inputs

Figure 2: Points in U; and Us,.

We give a set of points Uy U Uy U U, as input
points for CL(d). The size of the input is n+4 +
(n+4)t — (n+ 4) = (n +4)¢ and the number of
horizontal lines is d = n + 4. Therefore, by letting
m = (n+4)7, the problem becomes CL(m®) with
O<e<l.

The result of CL(m¢) are convex hulls, and
the outmost convex hull consists of all points in
Uy U U,. Thus, after peering the outmost convex
hull of the results, the remaining convex hulls are
equal to the result of the original convex layers.
Since m is a polynomial function of n, all of the
above steps can be done using NC reduction. O

In the next subsection, we propose a cost op-
timal algorithm for CL(d). Using the algorithm,
we also prove that CL({logn)*) is in NC where k
is a positive constant.

3.3 Cost optimal parallel algorithm

The basic idea of the cost optimal parallel algo-
rithm for CL(d) is as follows. We assume that
input points are-on lines {lg,ly,...,l3-1} and a
line I; is above ;43 for each ¢ (0 < i < d — 2).
First we compute a set of points on each line and

-store the points in a double-ended queue in order

of x coordinates for each line. (The double-ended
queue is a queue which allows insertion and dele-
tion at both ends.) Next we compute an outmost
convex hull. The outmost convex hull consists of
the following points.

(a) Points on lines Iy and I4_1.

(b) A subset of leftmost and rightmost points on
lines I1,1s,...,14-2.



We can compute points included in (b) in par-
allel for each line because points on each line are
stored in each double-ended queue. Since ob-
tained points are sorted in order of y coordinates,
we can compute the outmost convex hull among
the points using a cost optimal parallel algorithm
which computes a convex hull for sorted points.
Finally we repeat the above computation after

_ peering the outmost convex hull until no point re-
mains. The number of convex hulls are at most
[47 because top and bottom lines are removed by
peering the outmost convex hull. Therefore the
number of repetition is also at most [%]

We summarize the overall algorithm in the fol-
lowing.

Algorithm for computing CL(d)
Input: A set of points {ug,u,..
lines {lo, 1, la—1}-

Step 1: Set variables TOP = 0 and BOT = d—1.
(Irop and lgor denote top and bottom lines
respectively.) Compute a set of points on
each line [; (TOP <1 < BOT). Points on [;
are stored a double-ended queue @; in order
of z coordinates.

Step 2: For each line l; (TOP < i < BOT), com-
pute a leftmost point uj,, and a rightmost

i i
point Up;ps-

3 Up—1} On

Step 3: Let Uepr and Upgn: denote sets of

; TOP , TOP+1 BOT
points  {uL 3 s Uperi v Yieft and
TOP , TOP+1 BOT ;
{Urighes Yright -+ Uright respectively.

Compute a left hull of U s and a right hull
of Urignt, and store points on each hull in
CHjegt and CHyight, respectively. (The left
hull of Upy: consists of points from ugg"‘

to ul,9F in clockwise order among points
on a convex hull of Ujes;. The right hull of

Uright is defined similarly.)

Step 4: Remove points in Qrop, @eoT, CHieft
and C'Hyigne as the outmost convex hull.

Step 5 Compute top and bottom lines on which
there is at least one point. Set TOP and
BOT to the number of the top and bottom
lines respectively.

Step 6: Repeat Step 2, 3, 4 and 5 until no point
remains.

We discuss complexities of the above parallel
algorithm on the EREW PRAM. We use at most
p processor (1 < p < d) in the algorithm except
for Step 1.

Step 1 takes O(QLC’I;E—E + logn) using Cole’s
merge sort[3] and primitive operations, and Step
2 takes O(%) time obviously. We can compute the
left hull and right hull in Step 3 usinga known par-
allel algorithm[2] for computing a convex hull for

sorted points. The algorithm runs in O( % +log d)
time for each hull. Step 4 takes O(%) time to re-
move the points. (Points in Qrop, @ poT are au-
tomatically removed by changing TOP and BOT
in Step 5.) We can compute the top and bottom
lines in Step 5 in O(% + log d) time using a basic
parallel algorithm computing the maximum and
minimum. As we described above, the number of
the repetition of Step 6 is [£]. Therefore We can

compute CL(d) in O(ﬁ%M +logn+ (% +logd) x
[4]) = O(ﬂ;’;gﬁ + d—; + dlogd), and obtain the
following theorem.

Theorem 2 We can solve CL(d)in O(%E +

d—: + dlogd) time using p processors (1 < p <
d) on the EREW PRAM. ]

We show that the class of the problem changes
according to the number of lines d.  First
we consider the case of d = (logn)® where
k is a positive constant. The complexity is
O(-’ﬂ%g—"— + lognloglogn) in the case. If we use
n processors in Step 1, the complexity becomes
O(lognloglogn). Consequently, we obtain the
following corollary.

Corollary 1 We can solve CL((logn)*), where
k is a positive constant, in O(lognloglogn) time
using n processors on the EREW PRAM, that is,
CL((logn)*) is in NC. m

Next we consider the time complexity in case

of d = n® where 0 < ¢ < 1. The complexity is
2e

0(7—3—1%5E + 2~ + nflogn) in the case. In addition

this, we assume that ¢ < % and p < d = n.

Under the assumption, Z‘—L;’:&ﬁ > "Tz“ holds because
nlogn > n > n®, and %ﬂ > nflogn holds
because %—'1 > nl~¢logn > nflogn. Therefore
we can obtain a cost optimal parallel algorithm
for CL(n®).

Corollary 2 We can solve CL(n€) with 0 < ¢ <
% in O(El—;gﬂ) time using p processors (1 < p <
n¢) on the EREW PRAM. (]

Finally we notice that the above algorithm
2

runs in O(PI; + ép- +dlogd) time except for Step 1.
This implies that we can solve CL(d) efficiently if
given input points on each line are sorted in order
of x coordinates. We call the problem CLS(d)
(convez layers for sorted points on d horizontal
lines). From the above complexity, we can solve
the CLS(d) sequentially and in parallel with the
following complexities. (Both complexities are op-
timal.)
Corollary 3 We can solve CLS(n) with0 < ¢ <
% in O(n) time sequentially, and in O(%) time
using p processors (1 < p < n¢) on the EREW
PRAM. ]



4 Lexicographically first

maximal 5 sums

4.1 Definitions

We first define the maximal 5 sums problem as
follows.

Definition 4 (Maximal 5 sums) Let [ be a set
of n integers. The mazimal 5 sums is a prob-
lem to compute the mazimal set of 5 integers
MSSI = {(a(): bOy Co, d07 60), (ala bl: C1, dl) el): sy
(@m, bms Cm, dm, em)} obtained by the following al-
gorithm.

(1) Set MS5I = ¢.

(2) Repeat the following substeps until no 5 sum
is found in (2-1).

(2-1) Find a sequence of 5 integers (a,b,c,d,e)
which satisfies the following two conditions.

(a) a,b,c,d, e are distinct elements in I.
(b) a+b+c+d+e=0.

(2-2) Add (a,b,c,d,e) to MS5I and remove
a,b,c,d,e from I. O

Note that result of the maximal 5 sums is not
unique. For example, let
I = {-6,3,7,1,-9,3,1,6,-2,-5,~1} be
an input for the maximal 5 sum. Then
both of {(-6,-5,1,3,7),(~9,~1,1,3,6)} and
{(-9,-5,1,6,7),(—6,-1,1,3,3)} are results for
the problem. (There are a lot of other results.)

The lexicographically first maximal 5 sums
problem is a modified maximal 5 sums so as to
have the unique result. Let A = (ao,a1,...amn)
and B = (bg,b1,...,bm) be two sequence of m
numbers. We call that A is lezicographically less
than B if ap < bp, or there exists an integer 4
(1 £i<m),suchthat a; = b;forall j (0 <5 <1)
and a; < b;. We call that a sequence A is the lex-
icographically first among a set of sequences if A
is less than all of the other sequences in the set.

Definition 5 (Lexicographically first maxi-
mal 5 sums (LFMS5S)) The lericographically
first mazimal 5 sums (LEM5S) is a problem to
compute the unigque result of the mazimal 5 sums
by adding. the following condition to (2-1) of the
algorithm in Definition 4.-

(¢) (a,b,¢,d,e) is the lexicographically first se-
quence among all of the other sequences
which satisfy (a) and (b). 0

In case of the above example,
{(-9,-5,1,6,7),(—6,-1,1,3,3)} is the unique
result of LFM5S for I.

We can propose a sequential algorithm which
solves LFM5S in O(n*) by modifying an algo-
rithm computing the 3 sum problem(7]. (The 3
sum is a decision problem which decides whether

there exists a,b,c € I satisfying a +b+c = 0.)
The algorithm is the known fastest sequential al-
gorithm for LFM5S. Note that the lower bound
of LFM5S is not known. However 1 guess that
there exist no efficient sequential algorithm for
LFMS5S from the following facts.

e The 3 sum has no o(n?) algorithm and has
an (n?) lower bound on a weak model of
computation[5].

e The subset sum, which is generalization of
the 3 sum or LFM5S, is a well known N P-
complete problem.

In the next subsection, we prove LFMS5S is
P-complete.

4.2 P-completeness of LFM5S

We show a reduction from the lezicographically
first mazimal independent set (LFMIS) problem
to LEM5S. The LFMIS is a well known P-
complete problem and defined as follows.

Definition 6 (Lexicographically first maxi-
mal independent set) Let G = (V,E) be an
input graph with V = {vg,v1,...,vp—1}. The lez-
icographically first marimal independent set is a
problem to compute the mazimal independent set
of G obtained by the following algorithm.

(1) Set LFMIS = ¢.

(2) Repeat the following substep from i = 0 to
i=n-—1.

(2-1) Ifa vertex v; 18 not connected to any verter
in LEMIS then add v; to LFMIS. m}

In [10], Miyano proved the following lemma. for
LFMIS.

Lemma 1 The LFMIS restricted to bipartite
graphs with degree at most 3 is P-complete. ]

Using the above lemma, we prove the following
theorem.

Theorem 3 The
complete.

problem LFM5S is P-

(Proof) It is obvious that LFM5S is in P.

Let G = (V,E) with V = {vg,v1,...,0n_1}
be an input bipartite graph with degree at most
3. First we define a vertez value V'V (v;) for each
vertex ;. The vertex value is a negative inte-
ger and defined as VV(v;) = ¢ — n. Thus ver-
tices vo,v1,. .., Un_1 have vertex values —n, —(n—
1), ..., =1 respectively.

The main idea of our reduction is to create
inputs of LFM5S so that the sum of vertex
values among a vertex and its adjacent vertices
becomes 0. We consider a bipartite graph G
illustrated in Figure 3 for example. We create
three kinds of inputs of LFM5S for each vertex



v;.  Let v;, vx and v be adjacent vertices of
v;. The inputs of LEM5S for v; is (1) V'V (vy),
(2) |[VV(w) + VV(vy;) + VV(u) + VV(v)
and (3) three “0”. (If adjacent vertices are
less than 3, the vertex value for non-existing
vertex in the expression (2) is 0.) For example,
we create input of LFM5S from a graph G
in Figure 3 as {-4,-3,-2,-1,0,0,...,0,5(=
| —4—1)),6(=|-4-2]),7,(=|-4-3]),10(=
| ~4—3—2—1])}. The result of LFM5S is
{(—4, -3, -2, -1,10), (0,0,0,0,0),(0,0,0,0,0)}.

(Since LFM5S compute results lexicographically,
a result (a,b,c,d,e) of LFMBES means that
a<b<c<d<e) Weignore all (0,0,0,0,0)
in the result and find the smallest value in each
sequence of the result (-4) as a vertex value
of a vertex in the independent set of LFMIS

(VV(vg)). (ALl (0,0,0,0,0) in the result are
ignored in the following.)
v VV(vg) =-4
Vo V(v =-3
vy VV(vy)=-2
VV(vg)=-1
V2

Figure 3: An example of a graph and vertex values

However the above simple reduction has two
problems. The first problem is that there may
be 5 integers o’,b',c’,d’,e¢’ in the input which
satisfy ' + b +c¢ +d +¢ = 0 and at most
three of the integers are vertex values, or four
vertices, whose vertex values are a’,b’,¢/,d’, are
not connected. The second problem is that a
vertex value cannot be in the result of LFM5S
if a vertex value of its adjacent vertex is in the
result. We explain the two problems using Fig-
ure 4. From the above reduction, the result of
LFMSS is {(—7,—6,-5,0,18), (—4, ~1,0,0,5)}.
(Since LFMIS of the graph is {vg,v2,v3,v4},
the first elements of sequences in the result
must be —7,-5,—4,-3.) In the wrong re-
sult, (-7, —6,—5,0,18) denotes the first problem,
which is a wrong set of vertex values. In-addition
a vertex value -3 (=VV(v4)) and is not the first
element of the sequences because of the second
problem, that is, a vertex value -1 (=VV (vs)) is
in the previous sequence (—4, —1,0,0, 5).

VV(vg) =<7, VV(vp) =6, VV(vy) = -5, VV(vg) = 4
VV(vg) = -3, VV(vg) = -2, VV(vg) = -1

Input of LFMSS

Y1

Figure 4: Another example of a graph and vertex
values

To resolve the above problems, we propose
the following reduction.  Since the input is

=(-7,-6,-5,4,-3,-2,-1,0,0....,0,4,5,13, 14, 14, 15, 18}

a bipartite graph, we assume that V can be
partitioned into two sets Vi and V, such that
(w,v) € E implies either v € Vi and v € V2 or
u € Vo and v € Vi. First we create a 7-tuple
t16 = [VV(’Ui),VV('U@),VV(T)i)2,VV(’U1;)3,0,O,O]
for each v € Vi oor & =
[VV(Ui),0,0,0, VV(W),VV(W)Z,VV(WP,]

for each v; € V5 as an input.

~ Next we create the following 7 kinds of 7-tuples
tt, (1 £ m < 7) for each vertex v;, where v;,
ve and v (7 < k < ) be adjacent vertices of
v;. In the following, t§ + tg = lag, a1, .., 0] +
[Bos Bty s Bs] = [ao + Bo,ar + B, . .-, 6 + B
and ¥§ = [op, a1, ..., 0] = |00, —Q1, . . ., —C)-

(1) &8 =t + ) +th+ 1)
(2) th=ty+th+t)
(3) th =1t +¢) +1t}
(4) th =t} + ) +t§
(5) ti=t5+1]

(6) th=t5+1§

(7) th = t5 +1h

We call that v; is o parent verter of tuples t?,
(0<m<7).

Finally, we add 2n
[0,0,0,0,0,0,0] to the input.
tuples zero tuples.)

As an example, we consider the input of a bi-
partite graph in Figure 3. The inputs of tuples are
in Table 1. (All zero-tuples are omitted.)

We compute LFM5S for the input. In
case of the above example, we obtain a result
{29, 3,42, 3,49} which satisfies ¢3 +t§ +t3 + 1§ +
t9 = 0. (The results consists of zero tuples are
omitted.) Let 77 be the first 7-tuples of each re-
sult of LFM5S, and Ty be a set of t§ (0 <4< n)
which is not contained in the result of LFM5S.
Then all of the first elements of tuples in T3 U T,
denotes vertex values of the results obtained by
LFMIS.

We describe the correctness of the above reduc-
tion. First, a tuple in 7% denotes a vertex value
such that the vertex has no neighbor. Next we
consider tuples included in T3. Let vp be the first
vertex in V. Then vp is always in the result of
LFMIS. Let vj,vx, v be adjacent vertices of vg.
(We can also prove the theorem similarly if the
number of adjacent vertices is less than 3.)

In this case, tJ is a corresponding tuple to vy,
and it is sufficient that we can prove that & se-
quence (3,1, &, t4,7) is in the result of LFM5S.
Since 13 + ) + & +t4 + 13 = 0 from the above re-
duction, the sequence is in the result of LFM5S
if there is no sequence which is lexicographically
less than the sequence.

7-tuples z =
(We call the



Table 1: Input tuples for Figure 3

10, t,

2, tm

[=4, -4, 16, —64,0,0, 0]

[-3,0,0,0, 3,9, —27]

[=2,0,0,0,-2,4,-8] | [=1,0,0,0, 1,1, =1]

10,4, —16, 64,6, — 14, 36]

[7,4,-16,64,3, 9,27

[6,4,-16,64,2,—4,8] | [5,4,-16,64,1,-1,1]

[7,4,—16,64,3,—5,9] -

8,4, 16,64, 4, —10,28 -

9,4,—16,64,5,—13,35 "

- [7,4,-16,64,3,-9,27] -

6,4, —16,64,2, —4,8 -

~Nlojaielwlioi-| ol 3

5,4,-16,64,1, -1, 1 -

We assume that vg € Vi. (We can prove in
case of vy € V3 similarly.) The tuple tJ is necessar-
ily in the sequence because the sequence must be
lexicographically less than (t3,t J t,5,¢9). Then
there exist at least one tuple tm, Wthh satisfies
1<mg< 7 in the sequence because the first ele-
ment of £ is a negative integer, and then there
exist at least one tuple t§ whose parent vertex
vy € Vi because the ﬁfth sixth and seventh el-
ements of t7 are not zero.

Next we use a simple fact for integers and prove
that (t3,3,&,¢4,19) is the lexicographically first
sequence which contain tJ.

Fact 1 Let a,b,c (a < b < c) be three integers,
and- Sy, Sy, S3 be constants. If the following equa-
tions are satisfied, then a,b,c are uniquely deter-
mined.

a+b+c = S5
aA2+02+2 = 5,
G+ +d = 8

(Proof is omitted.)

Since the tuple tJ is in the sequence, we
can prove that one of (1 < m < 7)is
also in the seguence as follows We assume
t) = [o, @, 0%, &
fourth elements of to is equal to S1, S3 and S3 in
Fact 1, respectively. From the above discussion,
there exist at least one tuple whose parent ver-
tex is in V5. Since the second, third and fourth
elemetns of the tuple are zero, there are at most
three tuples whose second, third and fourth ele-
ments are not zero except for ¢J. Since 51 = q,
Sy = o? and S3 = o, only one of t, (1 < m < 7)
satisfies Fact 1.

For each pair of (£3,t9), (¢3,3), ..., (t3,t9), the
other three tuples are also uniquely determined
from fifth, sixth and seventh elements of tuples
and Fact 1. Among the determined sequences of
tuples, the sequence of tuple (3,3, 1%, t5,£9) is the
lexicographically first sequence.

It is easy to see that the above reduction is in
NC. Although we define that inputs of LFM5S
is integers, we can easily reduce each 7-tuple to an
integer. ]

,0,0,0] and the second, third and.

4.3 Cost optimal PRAM algorithm

The parallel algorithm for computing LFM5S on
the CREW PRAM is simple as follows. (The al-
gorithm is also a sequential algorithm which runs
in O(n?) if we use one processor. )

Algorithm for computing LFM5S
Input: A set of n integers I.

Step 1: Sort all elements in I. Let § =
(S0,81,--+,8n-1) be the sorted input.

Step 2: Repeat the following substeps from 7 = 0
toi=mn-—35.

(2-1) For each pair of b,c € S with s; < b < ¢,
compute two elements d, e with d < e which
satisfy d + e = —(s; + b+ ¢) in parallel as
follows.

(2-1-1) Compute BOT which satisfies spor—1 =
¢, and set TOP =n — 1.

(2-1-2) Compare sgor +stop and —(s;+b+c),
and execute one of the followings according
to the comparison until BOT > TOP.

e Qutput d = sgoT,€ = sTop and quit
(2-1). (If spor+srop = —(si+b+c).)

e Set BOT = BOT+1 and repeat (2-1-2).
(If spor + srop < —(8i +b+c¢).)

e Set TOP = TOP-1 and repeat (2-1-2).
(If spor + sTop > —(si +b+¢).)

(2-2) Compute the lexicographically first 5 sum
(ssyb,c,d,€) among sequences obtained in

(2-3) Output the lexicographically first sequence
of 5 elements (a,b,c,d, e) if they exist, as a
result of LFM5S, and delete all elements
a,b,c,d,e from S.

We can sort n elements in O(ﬁ + logn)
time using Cole’s merge sort{3] in Step 1. In step
2, there are at most n? pairs and substeps (2-1-1)
and (2-1-2) can be computed in O(n) time. Thus
(2-1) ~ (2-3) takes in O(%- +n) time. Since the
number of repetitions in Step 2 is n,'we obtain the
following theorem.



Theorem 4 We can solve LFM5S in O(%)

time using p processors (1 < p < n?) on the
CREW PRAM. ]

4.4 Experimental results

We modify our PRAM algorithm for computing
LFM5S and implement on a cluster of PC using
PVM (Parallel Virtual Machine)[6]. (Although
PRAM is a shared memory model and a PC clus-
ter is a distributed memory environment, we can
implement the algorithm easily since the algo-
rithm enough simple.) We used at most 16 PCs
(Pentium II 233, 64MB, Solaris 2.6), which are
connected by Ethernet (10BASE-T). The program
is written in C and compiled using GNU C.
Inputs of the experiments are integers and gen-
erated randomly. (The size of the input is 1,000.)
Since n is enough small in this problem, we pre-
pare whole input data for each processor, that is,
every processor stores the same n inputs. (This
assumption is also made as a simulation of con-

currnet read ability on the CREW PRAM.)

- T —ideal speedup
¢ actual speedup

T3 33587312 3141516

Figure 5: Speedup of our algorithm for LFMS5S.

Figure 5 describes an experimental results of
our algorithm. The PVM on a cluster is a
primitive environment for parallel computing. In
addition, our network, which is connected with
10BASE-T, is slow. Nevertheless the algorithm
achieves almost ideal speedup. This implies that
some P-complete problems are easy to parallelize
within the reasonable number of processors.

5 Conclusions

In this paper, we proved two problems are P-
complete, and proposed cost optimal algorithms
for the problems. We implemented the second al-
gorithm on a PC cluster using PVM, and obtained
almost ideal speedup. The fact implies that some
P-complete problems are parallelizable within the
reasonable number of processors.

In the future research, we investigate other
parallelizable P-complete problems. The result

may imply new classification of problems in P.
Another future topic is proposition of fast par-
allel .algorithms which runs in O(n¢) time where
0 < ¢ < k for P-complete problems. Only a
few P-complete problems are known to have such
algorithms(11].
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