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MAX SAT (the maximum satisfiability problem) is stated as follows: given a set of clauses with
weights, find a truth assignment that maximizes the sum of the weights of the satisfied clauses.
In this paper, we consider approximation algorithms for MAX SAT proposed by Goemans and
Williamson and present a new family of 3/4-approximation algorithms that generalize a previous
algorithm of Goemans and Williamson. We also show that these algorithms, combined with recent
approximation algorithms for MAX 2SAT, MAX 3SAT, and MAX SAT due to Feige and Goemans,
Karloff and Zwick, and Zwick, respectively, lead to an improved approximation algorithm for MAX
SAT. By using the MAX 2SAT and 3SAT algorithms, we obtain a performance guarantee of .7846,
and by using Zwick’s algorithm, we obtain a performance guarantee of .8331, which beats Zwick’s

“conjectured performance guarantee of .7977. The best. previous result for MAX SAT without
assuming Zwick’s conjecture is a .770-approximation algorithm of Asano.



1 Introduction

MAX SAT (the maximum satisfiability problem)
is stated as follows: given a set of clauses with
weights, find a truth assignment that maximizes the
sum of the weights of the satisfied clauses. More
precisely, an instance of MAX SAT is defined by
(C,w), where C is a set of boolean clauses such
that each clause C € C is a disjunction of liter-
als with a positive weight w(C). We sometimes
write C instead of (C,w) if the weight function w
is clear from the context. Let X = {z1,...,2,} be
the set of boolean variables in the clauses of C. A
literal is a variable z € X or its negation Z. For
simplicity we assume Zn4; = Z; (T; = Zppi). Thus,
X =1{z]| 2z € X} = {Zn11,Tns2,---,T2a} and
XUX ={z1,...,Z2,}. We assume that no literals
with the same variable appear more than once in a
clause in C. Foreach z; € X, let z; = 1 (z; =0,
resp.) if z; is true (false, resp.). Then, Tny; = %; =
1—2; and a clause C; = z;, V&;, V- -V, € Ccan

be considered to be a function on = (z1,...,T2x.)
as follows: C; = Cj(z) =1~ Hf;l (1 = z;,). Thus,
C; = Cj(z) = Oorl for any truth assignment

z € {0,1}*" with ; + Tpys = 1 (I = 1,2,...,n)
and Cj is satisfied if Cj(x) = 1. The value of
a truth assignment z is defined to be Fe(z) =
2ocjec w(C;)C;(x). That is, the value of z is the
sum of the weights of the clauses in C satisfied by
. Thus, the goal of MAX SAT is to find an opti-
mal truth assignment; that is, a truth assignment
of maximum value. We will also consider MAX
ESAT, a restricted version of the problem in which
each clause has at most k literals.

Johnson [10] gave the first approximation algo-
rithm for MAX SAT in 1974. It is a greedy algo-
rithm whose performance guarantee was shown to
be 1/2.' In the early 90s, Yannakakis [15], and
then Goemans and Williamson [6], proposed .75-
approximation algorithms. Shortly after, Goemans
and Williamson proposed a .878-approximation al-

- gorithm for MAX 2SAT based on semidefinite pro-
gramming [5]. They also showed that their .878-
approximation algorithm, combined with their .75-
approximation algorithm for MAX SAT, leads to a
.7584-approximation algorithm for MAX SAT [7].
Asano, Ono, and Hirata proposed a semidefinite
programming approach to MAX SAT (2] and ob-
tained a .765-approximation algorithm by combin-
ing it with Yannakakis’ .75-approximation algorithm
as well as the algorithm of Goemans and Williamson.
Asano [1] later presented a refinement of Yannakakis’
algorithm based on network flows, and suggested
that it might lead to- a .770-approximation algo-
rithm. Using semidefinite programming, Karloff
-and Zwick [11] gave a 7/8-approximation algorithm
for MAX 3SAT, and Halperin and Zwick [9] gave

L In 1997, Chen, Friesen, and Zheng [3] improved the anal-
ysis of the performance guarantee to 2/3.

an approximation algorithm for MAX 4SAT that
numerical evidence shows has a performance guar-
antee of .8721. Finally, Zwick [16] recently made a
conjecture about another approximation algorithm
which, if true, leads to a .7977-approximation al-
gorithm for MAX SAT; his conjecture is supported
by numerical experiments. We summarize these re-
sults in Figure 1. Hastad {8] has shown that no
approximation algorithm for MAX 3SAT (and thus
MAX SAT) can achieve performance guarantee bet-
ter than 7/8 unless P = NP; thus the Karloff and
Zwick result is tight, and the Halperin and Zwick
result is nearly so.

In this paper, we present a new family of .75-
approximation algorithms for MAX SAT which gen-
eralize an algorithm of Goemans and Williamson.
These algorithms lead to better overall approxima-
tion algorithms for MAX SAT in combination with
other recent results. In particular, by combining
our algorithm with the Feige-Goemans algorithm
for MAX 2SAT and the Karloff-Zwick algorithm
for MAX 3SAT, we obtain a performance guaran-
tee of .7846 for MAX SAT. If we use Zwick’s ap-
proximation algorithm for MAX SAT, and its per-
formance guarantee is as conjectured, we obtain a
performance guarantee of .8331.%

The significance of our result is twofold. First,
if P # NP the best performance guarantee achiev-
able for MAX SAT is . Our result takes us almost
halfway there from Zwick’s bound of .7977, assum-
ing his conjecture is correct. Second, while much of
the recent effort on MAX SAT has been invested in
algorithms and analysis for semidefinite program-
ming formulations, we show that stronger analysis
of algorithms using linear programming is useful.

2 The MAX SAT Algorithms
of Goemans and Williamson

Goemans and Williamson formulate MAX SAT as
an integer programming problem as follows [6]:

max z w(Cj)z;

c;ecC
k;
s.t. Zyji > Zj
-oa=l
VC]' =z VI, V"'V.’Ejkj eC
Yi+yapi =1  Vie{1,2,..,n}
vy €{0,1}  Vie{1,2,..,2n}
Zj G{O,l} YC; eC

2 One could also consider an intermediate algorithm that
used the Feige-Goemans, Karloff-Zwick, and Halperin-Zwick
algorithms in combination with our algorithm. However, we
found that such analgorithm produced a performance guar-
antee that was better than our .7846-approximation algo-
rithm only by a very tiny amount.
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Figure 1: Summary of performance guarantees for MAX SAT. { indicates the result is based on numerical
evidence given in [9]. 1 indicates the result is based on a conjecture in [16].

In this IP (integer programming) formulation, vari-

ables y = (y;) correspond to the literals {z1,...,%2.}

and variables z = (2;) correspond to the clauses C.
Thus, variable y; = 1 if and only if z; = 1. Simi-
larly, z; = 1 if and only if C; is satisfied. The first
set of constraints implies that one of the literals in-a
clause is true if the clause is satisfied and thus this
formulation exactly corresponds to MAX SAT. If
the variables y = (y;) and variables z = (z;) are
allowed to take on any values between 0 and 1, then
the following LP relaxation (GW) of MAX SAT is
obtained.

max

> w(C)z

Cj;eC

k;j
s.t. Zyj,.sz
i=1 '

VCj=:Ej1V$j2V"'ijkj eC

(GW)  yit+ynyi=1 Vie{l,2,..,n}
0<w<l  Vie{l,2,..,2n}
0<2;<1 _ YC; €C

Using an optimal solution (y*,z*) to this LP
relaxation of MAX SAT, Goemans and Williamson
set each variable z; to be true with probability y;.
Then they show that the probability C;(y*) of a

clause C; with k literals being satisfied is at least -

(1 ~(1- %)k) 2. Thus, the expected value F(y*)
of the random truth assignment y* obtained in this

way satisfies
1\*
dof1- (1 - -) ) wy
E>1 ( k

(1 - %) wW* =~ .632W*,

F(y")

v

v

where e is the base of natural logarithm, Cj de-
notes the set of clauses in C with k literals, W* =

Yoc;ecw(Ci)zy and Wi = 3 c o, w(Cj)z; (note
that W* = 370 ccw(Cj)z; 2 W = 30 o w(C)Z;
for an optimal solution (g, 2) to the IP formulation
of MAX SAT). Thus, this algorithm leads to .632
approximation algorithm for MAX SAT. If this is
combined with Johnson’s algorithm, it leads to a 2-
approximation algorithm. Note that Johnson’s aﬁ-
gorithm uses the random truth assignment in which
each variable z; is set to be true with probability
1 and the probability of a clause C; with k literals
being satisfied is 1 — 5. Thus, if we choose the
better of these two random truth assignments then
the expected value is at least 3, ; B W} where (s
is defined as follows: -

1 1 n*
To give an improved approximation algorithm
for MAX SAT, we will sharpen the analysis of Goe-
mans and Williamson to provide a more precise

statement of the expected weight of satisfied clauses
in Cy, for each k. We first give a theorem showing

* the behavior of the algorithm using a parametrized

function f{ defined as follows:

ay+l-a fO0<y<l-4
TW) =1 3 Cif 1-4 <y<g (2
ay if L<y<,
for $<a<1.

Theorem 1 The probability of C; = z;, V3, V
eV, € C being satisfied by the random truth

.assignment =¥ = f{(y*) = (fF 1), ..., f1(¥3.)) is

k;

Cifr) =1-[[A - W) 27,2, 3)

=1



for 3 < a <1, where f{ is the function defined in
Eq. (2) and

a f k _ 1
7" :{ glin{%‘:(l),v,‘:(m} :‘f k>2, @
where
a 1 bt 1 - _21_a k-1
%) = 1-3za (1—“ ﬁ) » (5)
k
7@ = 1-a* (1_ %) , ©

Thus, the ezpected value F(f{(y*)) of the random
truth assignment ¥ = f2(y*) satisfies

F(fey™) > S viws.
k>1

A corollary of this theorem is that we obtain a
new family of 3/4-approximation algorithms.

Corollary 1 Let o = /2 — % = .9142. Then, for

]

F(ff(y") 2

> Wi
k

To prove the main theorem, we use the following
lemma.

Lemma 1 For a fized a with % <a<l,let 2—1‘; <
y < 1. Then for k> 2,

Furthermore, let € be a positive integer and 0 <

k-1

b < z < 1. Then, for a positive constant p with

p+p<l,

’ Ny
z—b 1-b

— ~220) > 1 —— )

1/1,(1 Z)"( u(l E))Z
(8)
Proof of Theorem 1: Now we are ready to
prove (3). We assume k; = k and z; = z; for
each i = 1,2,...,k by symmetry since fi*(z) =1 —
f#(Z) and we can set z := T if necessary. Thus,
we consider clause Cj = 21 V23 V --- V z, which

corresponds to the LP constraint

yi s+ oy > 2, ©)
and we will show that

k
Ci(f) =1 - [T - @) > 27

i=1

If k=1, then C;(f{{y*)) = f{ (1) 2 ayi > az] =
vi2; by (9). Thus, we assume k > 2 and y7 <
y5 < -+ £ yi by symmetry and consider three
cases as follows. Case 1: y; < 1-— 51;;; Case 2:
Vi  <1—2% <yp;Cased: 1- L <y | <up.

Case I: yy < 1— 5. Sinceall yf < 1-— 4
(i =1,2,...,k), we have ff(y}) = ay! +1 —a and
1— f#(y}) = a(1 — y}). Thus, we have

k
1-JJa- @)

i=1

k
= 1-a*JJa-v
. i=1

AN
ok 24i=m Y
1 .a (1 % )
x\ k
—at (1%
1 a(l k:)
k
> (1-ak(1——%>)z;

= %@z 2%,

G (ff (")

v

v

‘where the first inequality follows by the arithmetic/

geometric mean inequality, the second by (9), the
third by (8) with 4 = a*, and b= 0.

Case 2: y5_; < 1—3= <y} Since 1— f2(y}) =
a(l —y¥) (i =1,2,...,k — 1), we have

Ci(ff (™)
k
= 1-J[- @)
i=1

il

k-1
1- (1= ffE)) e [T -v)

=1
E—1 . k~1
> 1- (- ) (1 - Zm W y)
k-1
* _ t k-1
> 1-0-fae (1-328)

by the zirithmetic/ geometric mean inequality and
inequality (9). We now assume® that y; < z}. If
Yi < 55, then 1~ ff(y}) = 5 and

Ci(fi(y*)

> 1- %a’“"l (1 —

) x\ k—1
Z; —Yg
k-1
3In an optimal solution to the LP (GW), zj. =
min{1, 1.‘__ yi} and y¥ < 1, so that yi < 2%. In later
1 i=1 Y% i = k Jj
sections, we will be able to make this assumption by adding

it as an explicit constraint to the linear program or semidef-
inite program. ‘ '




v

k-1

1 a1 1-y; "
k—1\

1 k-1 '1_5171- *

(1 2a <1 P— z;

= %)z > ez

v

by inequality (8) (1 = %ak“l and b = y;) and since

(1- },-c-——_gf“:)k"l is increasing with yj.
If y; > &, then 1— f2(y;) = 1 —ay;. We show
that

* %\ k—1
* . Z; —~ Yy
1—-(1——ayk)ak 1(1—"%’—:-1‘)

1 y* k—1
* - T 9k *
> (1—(1—~ayk)ak 1(1—?;—1—) )Zj.

Let
F(25,yk)

2%yt -1
1-(1—ay;)ak™? (1— ————;C_y’“)

- (1 —(1—ay})aF? (1 -k
* 1y k—1
* *\y _k—1 zj ~ Yk
l—zj~(1—a,yk)a ((1*“’;—:—1—')

k-1
1-y; .
To prove F(z;,y,’;) > 0, we have only to show
that F(1,yf) > 0 and F(y;,y;) > 0O, since 1 —

._gr k-1
(1 —ay})ak? (1 - -zlk—:—%"—) is a concave func-
tion on z} with y; < 2f < 1. Clearly F(1,y47) =0

holds and so we show F(yg,y;) > 0. Let

1 AR
Glyi) = 1-yi-pa*~! (1- (1-324%) y,:)

Then we have F(y;,y:) > G(y;), since 1 —ayj, < &
with 3= < y; < 1. On the other hand, the deriva-
tive G'(y;) of G(y;) satisfies

G'(yr)
- (1 1k y’“) 2yZ
(1* - yZ)k 1)
k-1
< —1+%ak“1(1+1)=~1+ak"1§0.

Thus, G(y;) is decreasing with y;, and we have
G(yz) = 0 since G(1) = 0. Thus, F(y},y}) >
G(y;) 2 0 and F(z},y;) 2 0.

By the above argument and inequality (7),
Ci(ff(y*)

* sy k—1
- 2i — Yk
> — (1 — au*)aF? g Tk
2 1-(1-ayi)a (1 k_,1>

_.1_:-_@ . 2
k-1 7

\%
TN
[y
|
~—~~
—

1
£

<
*
[
S
=
1
-
N
e

k-1
Lot 1- 51; *
= (1“5“ (1“7:‘1‘ %
= 7Dz =%z
Case 3: 1 - 513 < Yi_y1 < yi- Proof can be done
similarly. |

In the following lemma, we give conditions on
when (1) dominates g (2), which will be used to
obtain improved approximation algorithms in the
next section.

Lemma 2 Let a = /2 — } ~ 914213 and let 3

be the number satisfying 23 = e (B ~ .881611).
Then, for <a<p,
k—1
a — 1 k 1 1- 571'
W) = 1-gat (1o

IA

#E@=1-a* (1--1,;)k

for all k > 2 and thus, v = v2(1). Even for B <
a <o, vp(1) <y2(2) for all k < 7. On the other
hand, v¢(1) 2 v¢(2) for all k > 8. Thus, for <
a <o _-'yk(l) fork<7and’y > Y2 (2) >

1E2)=1-a (1—-) for k > 8.

3 The Improved Approximation
Algorithms

In this section, we give our improved appproxi-
mation algorithms for MAX SAT based on: a hy-
brid approach. We use a semidefinite program-
ming relaxation of MAX SAT .which is a combi-
nation of ones given by Goemans and Williamson
[7], Feige and Goemans [4], Karloff and Zwick [11],
and Zwick [16]. To describe the formulation pre-
cisely, we first need some notation. We will then use
a combination of the MAX SAT algorithm in the

previous section which uses the function f3/ * the
Feige-Goemans MAX 2SAT algorithm, the Karloff-
Zwick MAX 3SAT algorithm to obtain our .7846-
approximation algorithm for MAX SAT. Finally, if
we use the MAX SAT algorithm of the previous



section f{* for a = V2 - —;— and combine it with
Zwick’s algorithm, we obtain a performance guar-
antee of .8331, assuming the correctness of Zwick’s
conjecture.

For a clause Cj = zj; V zj, V -+ V g, with
k; > 3, let P; be the set of all possible clauses C
with two literals in C; (e.g., if C; =z VyV z then
P; ={zVy,zVzyVz}). Similarly, for k; > 4, let
Q; be the set of all possible clauses C' with three
literals in C; {e.g.,if C; =z VyVzVuthen Q; =
{rVyVz,zVyVuzVzVuyVzVu}). For
simplicity, we use P; = C; if C; is a clause with
one or two literals and @; = C; if C; is a clause of
three literals.

To give the semidefinite programming relaxation,
we follow Goemans-Williamson [7] by introducing
variables ¥ = (Yo, 1, - - -, Yan) corresponding to

Yolyi = 2z; — 1 with Iyol = |y,] =1 and Ynti = ~Yi-

Thus, z; becomes X% and a clause C; = gz V
zj, € Cy can be considered to be a function on
Yy = (Yo0,¥Y1,--->Y2n) as follows:
1 — yoyj, 1 — yoy;
Ci=Cily) = 1- —3"&——2"—]—2‘
3+ YoYj: + Yo¥Yiz — Yir Yiz

1 .

We also introduce variables z for clauses correspond-
ing to z; = C;(y). We relax this formulation to
a “vector programming” problem using (2n + 1)-
dimensional vectors v; with norm |jvi]| = 1 (i.e.,
v; € S?*) and v,y; = —w; corresponding to y;
with |y;] = 1 and yp4s = —y;. We replace each
Yi, Yip, with an inner vector product v;, v;, and-set
Yiyip = Uiy Uiy

We need to use constraints on the products v;v;
.and the variables z; as given in {7, 4, 11, 16]. While
we can give these explicitly for the cases of [7, 4,
11], the number of constraints in [16] becomes too
large to give explicitly (although still polynomially
sized). Thus we will write the latter constraints
as Canon(v,z) > b. For the other constraints, let
C =z; V---Vz; be a clause with k < 3 literals.
Define

s k=1
4-(-1)0+’Ui2)(—’00+’0i2) k=2
relaz(C) = min{4_('”°+v‘3)("*2+”ia),
4-(=Vo+Vi, ) (Vig+Vig)
4 H
4-("'00""”{2)('051-!"0;2)} k=3

as Karloff and Zwick did [11]. They show that for
a clause Cj, relaz(C;) > z; is a valid constraint.
Finally, define

Vi Viy + Ui Vi + Uiy Vi,
Vi Vip + Vi Vig — Vi, Vi,
Uiy Vip — U4y Uiy + Vi Vig,
ViyVip — Vi Vi3 — Vi, Uiy

fg(il, ’iz‘,i3) = min

Feige and Goemans [4] show that fg(i1,42,13) > —1
is a valid constraint for all 1 <43 < i3 < i3 < n.

Now we are ready to formulate MAX SAT as
the following vector programming problem. The
formulation (AW) is shown in a separate figure.
It can be considered to be the semidefinite pro-
gramming problem in the standard way. Let V =
(v0,v1,--.,02,) and Y = VTV so that y;; = v,v;.
Then, the matrix Y = (y;,,) is symmetric and pos-
itive semidefinite and y;; = 1 (¢ =0, 1,...,2n). Note
that Yntizndiz = Yirig A0 Untiniy = Yirntip =
~Yii (1 < 43,73 < n). From now on we will
not distinguish semidefinite programming and vec-
tor programming.

Let V* = (v§,v%,...,v5,). Then an optimal
solution (V*,2*) to this program is used in four
ways as follows.

Algorithm (1) Use a random truth assign-
ment o? = (2f) with z¥ = f¢(2F%%) cor-
responding to the LP relaxation of Goemans-
Williamson [6], where f{* is the function de-
fined in Eq. (2) for a specified value of a.

Algorithm (2) Use a random truth assign-
ment corresponding to MAX 2SAT algorithm
given by Feige and Goemans [4] as follows.

Let U* = (u},u},...,u},) be obtained from
V* = (v§,v7,...,v3,) by slightly rotating
V* = (v§,v5,...,v3,). More specifically, let

ug = v and let «] be the vector, coplanar
with v, on the same side of v as v} is, and
which forms an angle with v} equal to f(6;)
for some function f, where 8; is the angle be-
tween vg and v;. Feige and Goemans use the
function

£(6) = 6 + .806765 [-725(1 — cosf) — 9].

Note that f(x — 6) = 7 — f(f) and thus,
uy,; = —uj for each 4, 1 < i < n. Then,
take a random (2n + 1)-dimensional unit. vec-
tor = and set z; to be true if and only if
sgn(uf - r)=sgn(uf - ).

Algorithm (3) Use a random truth assign-
ment obtained by using f(6) = ¢ in Algo-
rithm (2). This random truth assignment was:
originally proposed by Goemans-Williamson
[5] and it corresponds to MAX 3SAT algo-
rithm given by Karloff and Zwick [11].

Algorithm (4) Use a random truth assign-
ment corresponding to MAX SAT algorithm
given by Zwick [16]. Let V = (v§,v3,...,v3%,)
and Y = VTV. Then set Y' = (cos? )Y +
(sin® B)I for B = .4555, and let Y' = UTU,
for U = (ug,ul;...,u3,). Obtain the ran-
dom truth assignment from the u as in Al-
gorithm (2).



max Z w(C;)z;
C;ecC
S 1+ vov;
s.t. z~—-—22-—13‘22_7 VCj=$le$j2V"'V$jkj eC (10)
=1 .
-1—4—-%(-)—?—]—‘—5% VISiSkj,VCj=:Ej1sz2V~"szkjEC (11)
"k’“l’I S relas(C) > 2 VC; €Ci, V> 2 (12)
-14 ,
(AW) Zk—f-l)- > relaz(C) > zYC; € G, V>3 (13)
2 ) CceQ; '
relaz(C) > 2z; VC;€C 14
J
fg(ia,iz,i3) > 1 Vig,ig, i3 with 0 <4 <dg <izg<m (15)
Canon(v,z) > b (16)
v;€S" 0<Vi<on ar)
Unpi=-v; 1<Vi<n (18)
0<z; <1 VC;eC. (19)

Suppose we pick the best solution returned by
the four algorithms. The behavior of this algorithm
is at least as good as the expected behavior of an
algorithm that uses Algorithm (7) with probability
Di, where p; +pa+p3+ps = 1. From the arguments
in Section 2, the probability that a clause C; € Cy is
satisfied by algorithm (1) is at least vfz;, where ¢
is defined in Eq. (4). Similarly, from the arguments
in [5, 7, 4], the probability that a clause C; € Cy is
satisfied by algorithm (2) is at least

93109 = 3 relaz(C)

k
(2) cer,
> 93109 21 > relaz(C)
= kk—-1
CeP;
> .93109- -Zz; for k > 2,

and at least .97653z27 for k = 1. By an analysis ob-
tained by Karloff and Zwick [11] and an argument
similar to one in [5, 7], we have that the probability
that a clause C; € C; is satisfied by algorithm (3)
is at least
7 1
== Z relaz(C)

(:) CeQ;

! % kil Z relaz(C)
( 2 )CGQj

%z’f for k > 3,

7

|

e oo

2

and at least .87856z] for k = 1,2. Zwick [16, 17]
conjectures that the probability that a clause C; €

Ci is satisfied by algorithm (4) is at least az],
where ap > .7977; we list his values of oy for
k=1,...,39 in the Appendix. Importantly, a3 =
ags = .7977 and o4 is increasing for k > 35.

We now analyze what happens if we choose the
best random truth assignment among those given
by the algorithms (1)-(4). The expected behav-
ior of this algorithm is at least (Y{p; + .97653p; +
-87856p3 + .7977ps)w;z; on clauses C; € Cy. Simi-
larly, the behavior of the algorithm is at least (v$p1+
-93109p2+.87856p3+.87995p,)w; 2 on clauses C; €
Cz, (¥3P1 +.931092p; + Ips + Epa)w;z} on clauses
Cj; € C3, and (v¢p1 +.93109%p2+-§~-%p3+akp4)w,~z;
on clauses C; € Cy for k > 4. If we can show that
this quantity is-at least Bw;z; for all clauses Cj;
then we obtain an approximation algorithm with
performance guarantee  since then the expected
value of th? solution is at least 83 ¢ ¢ w(Cj)2} >
BW* > fW.

Suppose first we consider the case in which we
do not use algorithm (4), and we set a = 3/4 (that
is, we use the function ff M in algorithm (1)). If
we set p; = .7846081, pp = .1316834, and p; =
1 - (p1 + p2) = 0837085, then we have

3
yig! +0.97653p, 4 0.87856p;3

3

ot 0.93109p, + 0.87856p3
> p1>0.7846 fork=1,2,
and for k > 3,

2% .93109 37
Wip+ T+ TgPe 2P 2 T846.

NN



This can be proved by the following observation.
Since, for k > 3,

a3 0 (- set) )

takes the maximum value on &k = 4, we have
(2 x .93109)ps + Zpy (2 x .93109)p2 + Lp;
k=7 41—

Z pi-

This implies the inequality above, and thus the al-
gorithm has performance guarantee .7846.

Now suppose we use all four algorithms, and
we set @ = V2 — % We attempt to determine the
best weighting of the-algorithms by using a linear
program, in which the probabilities p; and the per-
formance guarantee ( are variables, and there is a
constraint for every clause size from 1 to 39 (e.g., for
clause size 1, the constraint is .91421p; +.97653p2 +
.87856p3 + .79778ps > (). We attempt to maxi-
mize 3 subject to these constraints, and obtain the
solution p; = .303636, py = .696364, § = .8331,
p2 = p3 = 0. To verify the answer, one need only
check that p1yf + pso > .8331 for k ranging from
1 to 35, since both a; and 7{ are increasing for
k> 35.

Since the algorithms in [9, 16] are parametrized,
we expect that small improvements to our bounds
can be made by altering some of these parameters.
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