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This paper studies efficient algorithms for identifying Boolean networks of bounded indegree
and related problems, where identification of a Boolean network is formalized as a problem of
identifying many Boolean functions simultaneously. For the identification of a Boolean network,
an O(mnP*1) time naive algorithm and a simple O(mnP) time algorithm are known, where n
denotes the number of nodes, m denotes the number of examples, and D denotes the maximum
indegree. This paper presents an improved O(m“~2nP + mnP+9=3) time Monte-Carlo type ran-
domized algorithm, where w is the exponent of matrix multiplication (currently, w < 2.376). The
algorithm is obtained by combining fast matrix multiplication with the randomized fingerprint
function for string matching.



1 Introduction

Deriving Boolean relations or other functional relations is important in computational molecular
biology [3, 7, 13] and relational database systems [16, 17]. In molecular biology, inference
of a genetic network architecture from time series of gene expression patterns becomes very
important, due to recent progress of the DNA microarray technology. In relational database
systems, inference of functional dependencies from data is useful for analyzing data and reducing
disk space [16, 17].

Some studies have been done on the inference of genetic networks from state transition
data using the Boolean network model {3, 13]. Liang, Fuhrman and Somogyi [13] proposed a
heuristic algorithm for inference of Boolean networks of bounded indegree. Although they did
not analyze the time complexity, it seems that the worst case complexity is O(mnP+1), where
m is the number of examples, n is the number of nodes, and D is the maximum indegree. We
also proposed a simple O(mnP*1) time algorithm in order to analyze the sample complexity [3].
Then, we developed an improved O(mnP) time algorithm [4]. On the other hand, we can prove
that identification of a Boolean network is NP-hard if D is not a constant (i.e., D is included in an
input). Therefore, it seems very difficult to design an algorithm for which the exponent is much
smaller than D. In this paper, we present an improved O(m""‘2nD + mnP +w=3) time Monte-
Carlo type randomized algorithm, where w is the exponent of matrix multiplication (currently,
w < 2.376 [6]). Although it is a slight improvement and the algorithm and its analysis are simple,
the result is non-trivial. The algorithm is obtained by reducing the identification problem to
matrix multiplication, using the randomized fingerprint function [11]. The technique is also
applied to the identification of functional dependencies in a fixed domain and the identification of
qualitative relations, where application to the latter one is omitted in this paper. Therefore, this
paper shows new applications of matrix multiplication and the randomized fingerprint function.

Since a Boolean network can be considered as a set of Boolean functions, previous algo-
rithms developed for inferring a Boolean function [12, 15] might be applied to the identification
of Boolean networks. In particular, the WINNOW algorithm [14] is simple and practical for
inferring Boolean functions with a few variables. However, in order to apply the WINNOW
algorithm to the identification of Boolean networks of bounded indegree, some post-processing
would be required. It seems that post-processing will take O(mnP+1) time in the worst case,
using a simple algorithm ( Note that we are interested in the worst case time complexity in this
paper). Of course, the algorithms proposed in this paper can also be used for post-processing.

Some algorithms were developed for inferring functional dependencies [16, 17]. Although the
developed algorithms are general ones, the worst case time complexities seem to be O(mnP*1)
if they are modified for inferring functional dependencies with at most D input attributes.

2 Problems and Results

In this paper, we consider three types of problems:

CONSISTENCY: Decide whether or not there exists a Boolean network (resp. function)
consistent with the given examples, and output one if it exists,

COUNTING: Count the number of Boolean networks (resp. functions) consistent with the
given examples,

IDENTIFICATION: Decide whether or not there exists a unigue Boolean network (resp.
function) consistent with the given examples, and output it if it exists.



Although we present algorithms for the counting problem, they can be converted for the
consistency problem and the identification problem without increasing the order of the time
complexity. We formally define the counting problem for Boolean networks (resp. functions) as
follows.

INPUT: y;(k) (j=1...L, k=1...m), zi(k) (i=1...n, k= 1...m), and integer D, where
z;(k) and y;(k) take Boolean values (i.e., 0 or 1) respectively,

OUTPUT: for each j, the number of Boolean functions fj(zi,...,%i,)’s such that y;(k) =
fj(.’l?il (k), <oy Lip (k')) holds forall k=1...m.

We call a tuple (y1(k),...,y(k),z1(k),...,zn(k)) for each k as an ezample.

This problem is NP-hard for general D (i.e., D is included in INPUT), which can be proved
as in [2, 15, 17). Therefore, we are interested in the case where D is a constant. Particularly,
we are interested in the case of D = 2 since we can reduce higher-dimensional problems to
two-dimensional problems by using a simple method described in Section 3.2. Moreover, we are
interested in the case of | = 1 and the case of [ = n. For the case of | = 1, it is the identification
problem of a Boolean function. For the case of I = n, it is the identification problem of a Boolean
network. For a general case of the problem, there is a trivial algorithm: for each y;, for all type
of 22° Boolean functions f, for all combinations of D variables z;,, ..., Z;,, examine whether
or not y;(k) = f(zi (K),...,zip(k)) holds for k =1...m. This algorithm takes O(ImnP) time
for a constant D. Note that, although we should carefully count the number of functions so that
the same function is not counted more than once, it can be done without affecting the orders of
the time complezities in all algorithms presented in this paper.

Recently, we developed an improved O(mn® +Im) time algorithm (3], by using a trie, which
is a well-known data structure in string matching [1]. In this paper, we further improve the time
complexity and we show the following algorithms:

o An O(nPm¥~? + nP*“~3m) time deterministic algorithm for the case of I = 1,

e An O(nPm¥®~2 4 nP+“=3m) time Monte-Carlo type randomized algorithm for the case of
l=mn,

where w denotes the exponent of matrix multiplication (i.e., matrix multiplication of n x n
matrices can be done in O(n*) time) [6]. Note that, for m X n matrices X and Y, matrix
product X - Y* can be computed in O(mn/ —1) time if m > n, otherwise it can be computed
in O(m“~%n?) time, by partitioning each matrix into small square matrices. Note also that,
in this paper, Y* denotes the transposed matrix of Y. Recently, some improvement on matrix
multiplication was done for the case of m # n [9]. That result might be useful for improving the
time complexities of the algorithms in this paper for the case of m < n.

Algorithms robust for noises and an approximation algorithm for general D are shown too.
Although Boolean functions are considered in the above, the algorithm for the case of | =n can
be extended for finding functional relations (or, functional dependencies) in a fixed domain.

3 Algorithms

In this section, we describe algorithms for the counting problem for Boolean functions and
Boolean networks. Before describing the algorithms, we note that Boolean functions f(z,y)
with two input variables are classified into the following categories:



CONSTANT: 0,1, UNARY:z,7,y,7, XOR:z0y, 10y,
AND: zAy, s AT, TAyYy,TAY, OR:zVy zVy,ITVyY IVT.

In this paper, different types of Boolean functions are counted separately. Since the countings
of CONSTANT and UNARY functions are easier, we only consider AND, OR, XOR functions.

3.1 An Algorithm for Boolean Functions

In this subsection, we consider the case of / = 1. First we show an algorithm for counting the
number of Boolean functions of the form z A 7. The other types of functions in AND and OR
categories can be counted in a similar way.

Counting of z A 7 functions
The algorithm consists of two steps. The first step is similar to the PAC learning algorithm
for monotone Boolean functions [12, 19]. Tt begins with the conjunction of all literals

TIAZIA ... ATy ATTATZA ... ATy,

and processes examples one by one (from k = 1 to k = m). If y;(k) = 0, nothing is done. If
y1(k) = 1, all z;’s such that z;(k) = 0 and all Z7’s such that z;(k) = 0 (i.e., z;(k) = 1) are deleted
from the conjunction respectively. Let z;,,...,%;,,%j;,. .., Zj,, be the variables remained in the
conjunction after testing all examples. Let ki, ko, ..., kpy be the indices such that y;(k;) = 0.
In the second step, we make two matrices X and Y, where X is the m’ x h integer matrix
defined by Xs; = x;,(ks), and Y is the m’ x I/ integer matrix defined by Y = xjt(ks) We
compute the matrix product Z = X -Y*. Then, we count the number of elements Z; ; such that
Z;; = 0. Since (Vk)(y1(k) = z4, (k) A zj,(k)) holds iff. Z, = 0, the correct number is output.
Now we analyze the time complex1ty Clearly, the first step takes O(mn) time. The second
step takes O(m“~?n? + mn“~1) time since m’ < m, h < n and A’ < n. Therefore, the total time

complexity is O(m¥~2n? + mn~1).

Counting of z @ y functions

This case is easier than the above case and we do not require matrix multiplication. First
note that z®y = z iff. 2@ 2z = y. Let str(z;) be the sequence of Boolean values of z;(k)
(ie., str(z;) = (z;(1),2:(2),...,zi(m))). Let str(z;) be the sequence of Boolean values of
zi(k) ® y1(k) (ie., str'(z;) = (z:(1) ® y1(1), 2:(2) ® v1(2), ..., zi(m) ® y1(m))). Then, we count
the number of pairs (z;, z;) such that str(z;) = str'(z;). Of course, it would take O(mn?) time
if we used a naive algorithm. But, we can reduce the time complexity to O(mn) by constructing
a trie for str(z;)’s and str'(z;)’s, as in [4]. It is easy to modify the algorithm for counting of
z @ y functions. ‘

Theorem 1. The counting problem for Boolean functions of two inputs can be solved in

O(m¥2n? + mn¥~1) time.

Extension to D > 2
Using the above mentioned algorithm, we can develop an O(m“~2n” + mnP+9-3) time
algorithm for any fixed D > 2. Here, we briefly describe the method for D = 3. Note that

f(x,y,z) = (Z/\.f( z,Y, ))\/('z"/\f(z,y,O))

holds for any Boolean function f(,y,2). Thus, we can count the number of Boolean func-
tions f(z;,z;,zp) for fixed z; by multiplying the number of fi(z;,2;)’s such that yi(k) =



fi(zi(k),z;(k)) holds for examples with z,(k) = 1 and the number of f(x;,z;)’s such that
y1(k) = fo(zi(k), z;(k)) holds examples with z(k) = 0.

Corollary 1. The counting problem for Boolean functions of D inputs can be solved in O(m®~?nP
+mnPte=3) time.

3.2 An Algorithm for Boolean Networks

In this subsection, we consider the case of | = n where the technique can be applied to any I.

In addition to matrix multiplication, we use the randomized fingerprint function developed
by Karp and Rabin [11, 18]. Here we briefly review the function. Let s = (s1,52,...,5y,) and
t = (t1,t2,...,tm) be strings of length m over {0, 1}, respectively. Let p be a prime number.
We define the fingerprint function Fy(s) by

Fo({s1,82,...,8m)) = 51204502V 4+ .. 45,2 mod p.

It was shown that, by choosing a prime number less than 7 = ©(cmlog(cm)) uniformly at
random, Prob(F,(s) = Fp(t)) < L holds for any s # ¢.

For simplicity, we describe the counting algorithm for Boolean functions of the form z; A Zj,
where it can be easily modified for the other functions in AND and OR categories. For each y;,
we compute Fp((yi(1), 4i(2), - .., vi(m))). We make two matrices X and Y, where X is the mxn
integer matrix defined by X ; = z;(k) - 2¥~! mod p, and Y is the m x n integer matrix defined
by Y% ; = z;(k). Next, we compute the matrix product Z = X - Y"* under modulo p (i.e., under
GF(p)). Then, we partition Z;;’s into groups so that each group consists of elements having
the same value. For each yp, we output the number of elements in the group that has the same
value as Fp(yn).

It is easy to see that

Zij = (z:(1) Azj(1) - 2° + (2i(2) Az (2) - 28 + ...+ (mi(m) Azi(m)) - 2™ mod p .
Therefore, for any triplet (yp, «;, «;) satisfying (Vk)(yn(k) = zi(k) /\W), Fy(yn) = Z;; always
holds, whereas F,(yy) # Z;,; holds with high probability for the other triplets (yp, z;, zj). By
letting 7 = ©(mn3t®log(mn3*+®)), the failure probability (i.e., the probability that a false
number is output for some y3,) can be made less than ;Ll;

In order to treat XOR functions, we can use the following fact: z; @ x; = (2; Vz;) - (z: Axj),
where we omit details here.

Now we consider the time complexity. Since we assume the standard RAM model in this
paper, each arithmetic operation for O(log(nm)) bit integers can be done in constant time.
Therefore, we can assume that each operation in GF(p) can be done in constant time. Generation
of a random prime number can be done in O(poly(log(7))) time using a Monte-Carlo type
randomized algorithm [18]. Since all known matrix multiplication algorithms are available in
any ring [18], Z = X - Y? can be computed in O(m“~2n? + mn“~1) time. Since the other parts
take O(n?logn + mn) time, we have:

Theorem 2. The counting problem for Boolean networks of D = 2 can be solved in O(m“~2n?+
mn®~1) time with high probability.

Using the same technique as in Corollary 1, we can extend the algorithm for any fixed D.

Corollary 2. The counting problem for Boolean networks of fized D can be solved in O(m®~?nP 4
mnP+9=3) time with high probability.



3.3 Allowing Errors

In practice, input data may contain noises. In such a case, Boolean functions f(z;,...,%;,)
whose errors (i.e., |[{k|y;(k) # f(Zi,...,%iy)}|) are less than some threshold should be output. A
trivial algorithm takes O(mn”*!) time for the case of [ = n. Matrix multiplication is also useful
in order to count the error. Using matrix multiplication, we can reduce the time complexity to
O(mw—ZnD-l—l + mnD-{—w—Z)'

A simple and well-known random sampling technique can also be used. Randomly choosing
Q(log m) samples from m, we can develop an O((logm)nP*1) time randomized algorithm which
outputs all Boolean functions with errors less than the threshold with high probability, although
Boolean functions with errors slightly more than the threshold are also output. But, both
algorithms are almost trivial and are not practical because each algorithm takes more than
O(n3) time even for D = 2.

3.4 An Approximation Algorithm

As mentioned in Section 2, the identification problem is NP-hard if D is not a constant. However,
we can develop a polynomial time approximation algorithm, using the technique developed
for an approximation algorithm for the minimum key problem [2]. As in [2], we reduce the
problem to the SET COVER problem. Recall that SET COVER is, given a collection of sets
8§ ={S1,...,8u} over a set U (S; C U), to find a minimum cardinality set C' C S such that
Us,ec Si = U. For each of y;’s, we compute a set of variables {z; ,...,z; } as follows. From
given examples, we construct U and S;’s by

U = {(kK)| k<K and y;(k) # y;(K)},
Si {(k, k)] z:(k) # zi(K)} N U.

Then, we apply an approximation algorithm for SET COVER [10] to S;’s and U. Since SET
COVER can be approximated within a factor of In|U| + 1, we have:

Theorem 3. Assume that fj(zi (k),...,zi, (k) = y;(k) holds for all k. Then a set of variables
{xill’.."mi;z} such that b < (2lnm + 1)D and there ezists a Boolean function f] satisfying
fi(zi (), .-, :cth(k)) = y;(k) for all k can be found in polynomial time.

Although a set of variables can be found in polynomial time, it seems difficult to determine f;

in polynomial time because there exist 22’ Boolean functions with d input variables. It should
be noted that description of a function needs £(2%) space unless types of Boolean functions are
restricted.

3.5 An Algorithm for Finding Functional Relations

Although the domain of values is restricted to {0,1} in Boolean networks, the algorithm in
Section 3.2 can be extended for other fixed size domains. As in Section 3.2, we explain the
algorithm for the case of D = 2. Extension to other D’s can be done as in Section 3.1.

Let X be the domain (i.e., z;(k), yn (k) € ¥), where we let b = |3|. In this case, we use the
fingerprint function on base b:

Fpp({s1,82,---,8m)) = 5100 + 89 B+ ..+ sy - B mod p,

where it is known that a property similar to that of Fj, holds for this function [18]. For each
function f in ¥ x ¥ — X, we examine whether or not there exists a triplet (yy, z;, ;) such that



Yn(k) = f(zi(k), z;(k)) holds for all k. For each a € £, let X* be the m x n matrix defined by

xeo 1, if z;(k) = q,
ki ™1 0, otherwise.

For each a € X, let Y be the m x n matrix defined by Y = fla,z;(k)), where we en-
code each element in ¥ by using an element in {0,1,...,b — 1}. Let Z = ZX"‘-(Y"‘)t.

[+
Then, Fpp((yn(1),...,yn(m))) = Z;; holds if yu(k) = f(zi(k),z;(k)) holds for all k, and
Fop((yn(1),--.,yn(m))) # Z;; holds with high probability if y,(k) # f(zi(k),z;(k)) holds for
some k.

Theorem 4. For a fized domain, the number of functional relations y; = f(z;,,...,7;,) can be
computed for all y; in O(m“~2nL + mnP+9=3) time for fired D with high probability.

4 Concluding Remarks

In this paper, we presented improved algorithms for the identification of the Boolean networks
and related problems. Note that if an ultimate matrix multiplication algorithm (w = 2?) were
developed, the time complexity of the identification algorithm for a Boolean network of D = 2
would be O(n?logn + mn), which is nearly optimal in the case of m > n. However, it is still
far from optimal when m <« n. Therefore, development of faster algorithms, in particular,
development of an algorithm for which the exponent of n is less than 2 (for D = 2) is an open
problem. In the identification of functional relations, we assumed a fixed domain. Development
of an o(mn?) time algorithm for any domain is an open problem.

Although we developed improved algorithms, they are not practical because of the following
reasons: fast matrix multiplication algorithms are not practical; most of the proposed algorithms
are not robust for noises; too simplified models are assumed. Development of practical algorithms
is important future work.
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