7) d Uy X A& 70-3
(1999. 11. 8)

BINAS oH T EHAREREIZONT
BEFAT, FHB L, KARSE

T RPR R 2R b R TR o 27 b AR, 560-8531 & ikl 1-3
T RBRAFIL R AR 5 - FEA SR, 599-8531 ST REHET 1-1
§ FUERR R B R BOR T SR I, 606-8501 FUE T AR K i MAHET

HoEL FRXTIE, B/NIT Y52 7K MERST), T7bb, 526N/ 77 GO
£ T, FDLT /%/ﬁ BENCRDbOEHETHMEERMT 5. B2 b e RITHL T
X, F0NG oF S RSERNH CHETE 32 L35 T2, MERSTIXI NP RETH 5
T & AT TR, MERST (3L T, il el thosn/t =1 w3 5317 b
TY RLERETS. L, nid G OEARET, A B RKED B/ & 72 52 AROBERKET
BB, ZOEPT ALY XA, BINREEERARBEE RO T & 7 BB 5BEFD 22
DTN Y X LOMEDETH DD, £OELSLOMITIL, KOTLF »H U T ONANARHFH LN
HEIZ b E3NTN5.

MXE—T—F: BIvFLF, BNIT L F 072K, BT Y XA

On minimum edge ranking spanning trees
Kazuhisa MAKINOT, Yushi UNO® and Toshihide IBARAKI®

t Department of Systems and Human Science, Graduate School of Engineering Science,
Osaka University, Toyonaka, Osaka, 560-8531 Japan
email :makino@sys.es.osaka—-u.ac.jp

1 Department of Mathematics and Information Sciences, College of Integrated Arts and Sciences,
Osaka Prefecture University, Sakai 599-8531, Japan

email:uno@mi.cias.osakafu-u.ac.jp

§ Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan
email:ibaraki@i.kyoto-u.ac.jp

Abstract In this paper, we introduce the problem of computing a minimum edge ranking spanning
tree (MERST); i.e., find a spanning tree of a given graph G whose edge ranking is minimum. Although
the minimum edge ranking of a given tree can be computed in polynomial time, we show that problem
MERST is NP-hard. Furthermore, we present an approximation algorithm for MERST, which realizes its
worst case performance ratio ‘m"{(AI o Alff;’)/ Al A1} \where 7 is the number of vertices in G and A* is the
maximum degree of a spanning tree whose maximum degree is minimuim. Although the approximation
algorithm is a combination of two existing algorithms for the restricted spanning tree problem and for the
minimum edge ranking problem of trees, the analysis is based on novel properties of the edge ranking of
trees.

H X key words: edge ranking, minimum edge ranking spanning tree, approximation algorithm

1 Intreoduction and Preliminaries

Let G = (V,E) be an undirected graph, which is simple and connected. An edge ranking of a graph
G = (V,E) is a labeling r: E — Z*, with the property that every path between two edges with the same
label i contains an intermediate edge with label j > i. By definition, every edge ranking r has exactly one
edge with the largest rank. An edge ranking by integers 1,2,...,k is called a k-edge ranking. A graph G
is said to be k-edge rankable if it has a k-edge ranking. An edge ranking is minimum if the largest rank
k in it is the smallest among all edge rankings of G; such k is called the minimum edge rank of G and
is denoted by rank(G). The minimum edge ranking problem (MER) asks to compute a minimum edge
ranking of a given graph G and formally defined as follows:
MER (minimum edge ranking problem)
Input: A simple undirected graph G = (V, E) which is connected, and a nonnegative integer k.
Question: Is G k-edge rankable (i.e., does G satisfy rank(G) < k)?

In the affirmative case, such a rank(G)-edge ranking is also required. Fig. 1 is an input graph
G = (V,E) with E ={ej,e,,...,es}, while (b) and (c) give 5- and 4-edge rankings of G, respectively.
Note that (¢) in fact gives a minimum edge ranking of G, i.e., rank(G) = 4.

(a) A graph G (b) Anedgerankingof G (c) A minimum edge ranking of G
Figure 1: Edge rankings of a graph.

MER has applications in the context of assembling a multi-part product from its components in the
smallest number of paralle] processing (integration) stages [1, 7, 12]. It is known that MER is in general
NP-hard [9], but it can be solved in polynomial time when the graph is a tree [2, 8, 12].

In this paper, we newly consider the following problem, which resembles MER but is essentially
different. Given a simple undirected graph G = (V,E) which is connected, we repeat contraction steps
until all the vertices are contracted into a single vertex. Here one contraction step consists of many
simultaneous contractions of edges which do not share any of their end vertices. In this process, all self-
loops created are simply ignored. Under this setting, we like to minimize the number of steps required
before contracting all vertices into one.

It is easy to see that this problem is equivalent to finding a spanning tree of G whose edge ranking is
minimum. To see this, first assume that a spanning tree of G as well as its edge ranking is given. Then
no two edges with the same rank share their end vertices, and in the i-th step all edges with rank i can
be contracted simultaneously. Thus the required number of steps is equal to the largest rank in this edge
ranking. Conversely, given a series of steps that contracts G into a single vertex, we assign rank i to all
the edges contracted in the i-th step. Then it can be seen that G contains a spanning tree whose edge
ranking is defined by the above ranks.

Now we call this problem the minimum edge ranking spanning tree problem (MERST).

MERST (minimum edge ranking spanning tree problem)

Input: A simple undirected graph G = (V, E) which is connected, and a nonnegative integer k.
Question: Does G have a k-edge rankable spanning tree (i.e., does there exist a spanning tree T = (V, E7)
of G with rank(7") < k)?

Similarly to MER, in the affirmative case, such a spanning tree 7" as well as its k-edge ranking is
also required. We say that T' is a minimum edge ranking spanning tree of a graph G if T is a spanning
tree of G having the minimum rank(7') among all spanning trees of G. Fig. 2 (a) gives an example of a

minimum edge ranking spanning tree of the graph G in Fig. 1 (a), together with its edge ranking. Fig. 2
(b) demonstrates the contraction steps defined by the T'.

3 = 3 = A
2

Figure 2: (a) A minimum edge ranking spanning tree 7' of the graph G in Fig. 1 (a), and (b) its edge
contraction according to the minimum edge ranking spanning tree.

Problem MERST can be found in many practical applications. Among them, we pick up here one
example found in relational database theory.

Let us consider the “query graph (join graph)” [6, 11], where its vertex set corresponds to the set of
relations and its edge set represents the pairs of relations which are joined. In this context, join opera-
tions which are represented by non-adjacent edges can be joined in parallel, but no two join operations
corresponding to adjacent edges can be performed simultaneously, since a relation can participate only
in one join operation at a time. The join operations are then performed until all the relations are merged
into a single relational table. The whole process can be formulated as MERST.

In this paper, we show that MERST is NP-hard, and present an approximation algorithm for MERST,
with its worst case performance ratio min{(A* — 1) logn/A*,A* — 1}/(log(A* + 1) — 1), where 7 is the
number of vertices in G and A* is the maximum degree of a spanning tree whose maximum degree is
minimum. This algorithm is a combination of two existing algorithms for the minimum degree spanning
tree problem (MDST) and for the minimum edge ranking problem for trees (MERT), respectively.

2 NP-hardness of MERST

In this section, we show that MERST is intractable after showing several lemmas on the edge ranking.
The idea of our proof is based on the NP-hardness proof of the connected size-k-partition problem for
planar bipartite graphs [3]. We assume that a graph G = (V, E) is simple, undirected and connected. For
a vertex set W C V, G[W] denotes the subgraph of G induced by W.

Lemma 1 Any connected graph G with rank(G) = k has at most 2* vertices.

Let us introduce some additional notions related to minimum edge ranking spanning trees. For a
graph G = (V,E) and a positive integer k, a size-k-partition (this notion is referred to as k-partition in
BD of Visa ([V|/k)-tuple (V1,V2,...,Vjv|x) and V = Vi UVaU---UVjy i, ViNV; = 0 for all i # j such
that |V;| = k for i = 1,2,...,|V|/k. Each V; is called an element of the partition. A size-k-partition of V
is connected if the graphs G[V;] are connected for all i. Let G = (V,E) be a graph with |V| = 2%, where
k > 0. We say that G has a nested partition if it recursively satisfies one of the following conditions:

(i) k=0, or (ii) G has a connected size-2*~!-partition (V},V,) such that both G[Vi] and G[V,] have
nested partitions.

Lemma 2 Let G = (V,E) be a graph with |V| = 2k (k > 0). Then G has a k-edge rankable spanning tree
if and only if it has a nested partition.

This lemma provides the essential idea of NP-completeness proof of MERST, i.e., to find a k-edge
rankable spanning tree of G is equivalent to find a nested partition of G.

Theorem 1 MERST is NP-complete.

Given a spanning tree T = (V, Er), we can check whether T is k-edge rankable in polynomial time [8].
Hence, MERST belongs to NP. To prove the completeness, we reduced 3-dimensional mathching, which
is known to be NP-complete [5] to MERST. However, the detail of the proof is omitted here due to space
reasons.

3 An Approximation Algorithm for MERST

Since MERST is NP-hard, we propose in this section an approximation algorithm, which is a combina-
tion of two existing algorithms for the minimum degree spanning tree problem (MDST, defined below)
and for the minimum edge ranking problem of trees (MERT, which is MER whose input graphs are re-
stricted to be trees). We also state its approximation ratio here, but detailed analysis of the algorithm will
be given in Sect. 4.
MDST
Input: A graph G = (V,E).
Output: A minimum degree spanning tree T = (V, E7) of G; i.e., a spanning tree T of G whose maximum
degree is minimum.
We denote the maximum degree of vertices in a graph G by Ag, and the maximum degree of the minimum
degree spanning tree T of G by A* (= Ar). Although MDST is known to be NP-hard [5], Firer and
Raghavachari {4] developed a polynomial time approximation algorithm which computes a spanning
tree T satisfying

A <Ar < A1 (S Ag). 6

Our approximation algorithm for MERST first computes a spanning tree Tapprox Of G satisfying (1)
(by using the algorithm in [4]), and then computes its minimum edge ranking. Recall that MERT is
polynomially solvable (e.g., [8]). Thus, our algorithm described below can be executed in polynomial
time.

Algorithm APPROX_MERST
Input: A graph G = (V,E).
Output: A spanning tree T of G and its edge ranking r.
Step 1: Compute a spanning tree Tapprox Of G satisfying (1).
Step 2: Compute a minimum edge ranking r of Tapprox.
Step 3: Output T = Tapprox and its edge ranking r. O

Theorem 2 For a graph G = (V,E) with |V| = n, let Ty, denote a minimum edge ranking spanning tree
of G, and let Typprox denote a spanning tree of G computed by algorithm APPROX_MERST for the input
G. Then, the approximation ratio of algorithm APPROX_MERST can be bounded from above by

rank (Tapprox) < min{(A* — 1) logn/A* A* — 1}
rank(Thn) ~ log(A*+1) -1 ’

where A* is the maximum degree of the minimum degree spanning tree of G. a

4 Analysis of Edge Ranking of Trees

In this section, we discuss some properties of the minimum edge ranking of trees in order to prove the
approximation ratio of algorithm APPROX_MERST. In particular, we derive upper and lower bounds on
rank(T) of a tree T = (V, E7) in terms of the number of vertices » = |V| and its maximum degree Ar.

4.1 Lower and Upper Bounds on the Edge Rank of Trees

Lemma 3 For any tree T = (V,Er), rank(T) > max{Ar,[logn|} holds, where Ay is the maximum
degree of vertices in T and n = |V|.

Both lower bounds A7 and [logn] are tight, that is, there exist trees 77 and 75 such that rank(T}) = Ar,
and rank(7;) = [logn], respectively.

Lemma 4 Let T = (V,E7) be a tree with |V| = n. Then it holds that

rank(7") = [logn] if Ar=0,1,2)
rank(T) < AT =2)108n o4 3)
— logAr—1 r=>

This lemma, together with Lemma 3, proves Theorem 2, since the algorithm of Fiirer and Raghavachari
[4] can find a spanning tree T of G such that A* < Ay < A* +1 in the first step of APPROX_-MERST.

4.1.1 Edge Ranking of a Tree by Top-down Approach

For the purpose of proving (3), we present an algorithm which gives a consistent (but not always mini-
mum) edge ranking of trees.

All the existing exact algorithms for MERT [2, 8, 12] are based on the bottom-up approach: Choose
an arbitrary vertex as a root (which is placed at the top) and assign ranks from leaf edges to top edges in
the resulting rooted tree. However, we describe here a top-down edge ranking algorithm, which may not
give exact minimum solution but is easy to analyze.

It starts from the given tree 7', and in each step, removes one edge from a generated subtree of T' to
split it into two, until all the generated subtrees become singletons. This process can be visualized by the
partition tree as illustrated in Fig. 3.

Figure 3: Partition tree constructed by top-down approach.

Algorithm EDGE_RANKING_OF_TREES (ERT)
Input: A tree T = (V,Er).
Output: An edge ranking of 7.

Step 1: Start with the partition tree consisting of exactly one component 7.

Step 2: If there is a subtree T’, which has more than one vertex and is located in a leaf position of the
current partition tree, choose an edge e in 7’ according to the criterion to be described later and remove
it after giving it temporal ranking r'(e) = i, where i is the depth of the chosen subtree in the partition tree.
The two subtrees resulting from the removal of e become the children of 77 in the partition tree. Return
to Step 2. On the other hand, if there is no subtree satisfying the above condition, then go to Step 3.

Step 3: Let & be the height of the resulting partition tree, and rank all edges e by r(e) = h—7'(e). O

It is easy to see that this algorithm in fact gives an edge ranking. The main point of this algorithm is how
to determine an edge e to be removed from 7” in Step 2. Our criterion selects an edge, which makes the
resulting two subtrees “most balanced” in the sense that the difference of their sizes is smallest. Formally,
such an edge is defined as follows.

Definition For a tree T = (V, E7), a partition (V,V,) of V is called connected if the induced subgraphs
T{v1] and T'[V,] are both connected (i.e., subtrees of 7). A connected partition (V,V5) is called optimal
if the difference of their sizes | |Vy| — [V,|] is minimum. An edge is called optimal if its removal produces
an optimal connected partition. Furthermore, the weight w(v) of a vertex v € V is the size of the subtree,
which has the maximum number of vertices among all subtrees in T[V \ {v}], where T[V \ {v}] denotes
the subgraph of 7 induced by V \ {v}. The centroid of a tree T is the set of all the vertices having the
minimum weight. A vertex in the centroid is called a centroid vertex.

Now, take a vertex vo € V of atree T = (V, E7), and consider that T is rooted at vo. Assume that vy has
b = deg(vg) children vy,vy,...,v,. If we remove vy from 7, then there remain b subtrees 71,72, . .., Tp,
where each T} is rooted at v;. We index these T} in the nonincreasing order of their sizes (i.e., the number
of vertices). By definition, |T| > |T3| > -++ > |T3|, and hence w(vg) = |71] holds.

Lemma5 Let T = (V,E) be a tree withn = |V|. Then vy is a centroid vertex of T if and only if w(vy) <
n/2 holds. Furthermore, any tree T has either one centroid vertex vg or two centroid vertices vy and vy
which are adjacent to each other. In the latter case, w(vo) = w(v1) = n/2 holds.

In the subsequent discussion, we choose vg and vy so that vy is the centroid vertex if there is only one
centroid vertex (in this case, vy is the root of subtree 71), and vg and v; are both centroid vertices if there
are two centroid vertices.

Now we present the following criterion.

Criterion in Step 2 of ERT: Choose the optimal edge (vg,v1) in the subtree under consideration.

4.1.2 Analysis of Algorithm ERT

_ m. In this subsection, we prove the inequality (3) of Lemma 4; i.e., Algorithm ERT
always gives a y-edge ranking to a tree T = (V, Er), where n = |V| and we assume Az > 3. Note that y is
non-decreasing in Az as can be proved by direct calculation.

The proof is done by induction on n.

In case of n=1, Lemma 4 clearly holds. Assuming that Lemma 4 holds for all trees 7" with n’' (<n)
vertices and its maximum degree Az (< A7), we consider the case of n vertices.

For an optimal partition (V,Vs) of atree T = (V, Er), the subtree which includes the centroid vertex
vg of T is called the main subtree. By the definition of vy, the main subtree is always greater than or
equal to the other subtree. '

Now, given a tree 7 = T00) = (Vio.0): E(0,0))» we recursively define its vertices vg), v(li) and subtrees

700 = (V00 E(i0)) and TED = (Vj; 1y, Ei) for i=1,2,..., as follows: (i) (vg),v(li)) is an optimal edge
in T(-19 (e, v is a centroid vertex of TU=19), (i) T¢9) = T[V,0)] and TG = T[V;,)], where
(V(:0), V{5,1)) is the optimal partition of V{;_; o) obtained by the deletion of edge (v(() ,v1) such that V{; o)

is its main subtree, i.e., v(()) € Viio)-

Note that Vi;_1 gy = V(;0) UV(i,1) and E(;_1,0) = Ei0) U E(i1y U {(Vo ,vli))} hold for all i (> 1). The
above condition (ii) implies that _
T80 > |6 @

for all i. Of course, this partition process of T (= T(00)) constitutes a part of the partition tree of ERT, as
shown in Fig. 3.

In the above partition process, let 0; be the positive integer such that v(()l) = v(()z) = v(J

1) #V(XI‘H) (o +1)

and
if such v; exists, and ocz be the positive integer such that 2|T"1| < |T)| for all
i=1,2,...,0p— 1 and ZIT(“Z D} > |1(®%0), Notice that o; > 1 and ¢ > 1 hold by definition. Now
define

o = min{0o, 0}

Letvy = v(()l). Since vg = v((;) holds fori = 1,2,...,a, we have o < deg(vo). Let us consider the case

of o = deg(vp); i.e., T(%0) consists of a single vertex vg. In this case, since vo = vgl) is a centroid vertex
of T(=10) |T(@D)| < |7(0=10)| /2 holds by Lemma 5. By |T(®~10)] = |7(0) t+ |70 and |T(®0)| =1,
we have |T(°‘ 1.0)| =2, However, since 7(®~11) > 1, it holds 2[T(®~1)| > |T a=10)| (= 2), contradicting
the definition of o.. Hence, we have

o < deg(vo)—1 (< Ar—1). G)

Claim: Algorithm ERT can give at most a (y— i)-edge ranking for 70D (= T;), i = 1,2,..., 0, and a
(y— o)-edge ranking for 7(%-0),

Note that this will complete our inductmn since Algorithm ERT then gives the ranks, which are at
most Y+ 1 — i, to the remaining edges (v),v(1)) i=1,2,...,0. Before showing our claim, we require
the lemma which estimates the sizes of 7/,

Lemma 6 Lervy, T01) i=1,2,... o and T{®9 pe defined as above. Then

TG0 < |T)/(+2) i=1,2,...,a—1 ©)
7@ < |7/ (1) D
0] < 2T/ (0 +2). ®

hold. Furthermore, if o= deg(vo) — 1, we have
1T < (IT] 4+ 0) /(@ +1).)

Now we are ready to prove the above claim.

First, let us consider the edge ranking of T7(:1), i =1,2,...,a. By Lemma 6, |T:1)|<|T|/(i+1) holds

foralli=1,2,...,0. By the induction hypothesis, Claim is proved by showing y—i> %w
T 1,

- holds by the monotonicity of yin Ar, it suffices to show y—i> 41= zk))lg"fi'i 1('+1>))

which is equivalent to f1 (z) = (AT —2)log(i+1) —i(logAr —1) > 0. Since 1 <i < Az — 1 holds by (5),
and its derivative fi (i) = (Ar —2)loge/(i+1) — (log Ay — 1) is monotone decreasing in this range, it is
sufficient to show that £;(1) > 0 and f;(Ar — 1) > 0. Actually, f(1) = fi (A — 1) = Ay — log Ap — 1 >
2—1log3 > 0, and thus Algorithm ERT gives a (y— i)-edge ranking for T(:D, i =1,2,...

Let us next consider the edge ranking of T(%9_ Since o < Ar —1by (5), we divide it into two cases:
(@) < Ar—2and (b) 0= A7 — 1.

Case (a): we have |T(%%| < 2|T|/(a+2). By the induction hypothesis, we shall show y— o >

(B(00) —2)log(2n/(0+2)) (Ar=2)log(2n/(042))
1082 (0~ 1 Tog A7 —1 - Lase

(b): |7(*0| > 2 holds by (5). If |7(®0)| = 2 or 3, then Algorithm ERT gives 1- or 2-edge ranking of
7(®0) respectively. If |T(%0)| > 4, it follows from (9) that |7(%9)| < (|T|+ o)/(ct+ 1) holds, and by
(A (a,0) —2)og((n+a)/ (a+1))
log .
Claim by a direct case analysis in a manner similar to the case of 7(:1),
Consequently, the proof of the claim is completed.

2 T(l 1)
-1 2 logA ;1

. AT_"
Since 7w

. By the monotonicity of a, it suffices to show y— o >

the induction hypothesis, we shall show y— o > . In every case, we can prove

4.2 Tight Examples of Algorithm ERT

Let T(4) denote a tree in which all the inner vertices have the same degree d and there exists a vertex vy
such that the distances between vg and all the leaves are exactly A. This Ty, attains the upper bound of
Lemma 4.

Lemma 7 Let d and h be integers such that d >3 and h > 2. Then, Tigp satisfies rank(Z(gy)) >
(d—2)logn
log(d —1) °

5 Conclusion

In this paper, we introduced the minimum edge ranking spanning tree problem (MERST), and proved
that MERST is NP-hard, but it has a simple approximation algorithm, whose approximation ratio is
min{(A* — 1) logn/A*, A* — 1}/ (log(A* 4-1) — 1), where n is the number of vertices in a given graph and
A* is the maximum degree of a spanning tree whose maximum degree is minimum.

Some issues remain for future work. One issue is finding special classes of graphs, in which MERST
is polynomially solvable. Indeed, we could show that MERST is polynomially solvable for the class of
threshold graphs [10].

Another issue is to consider the minimum vertex ranking spanning tree problem (MVRST), which is
the vertex version of our problem. Although this problem seems to be as hard as MERST, its complexity
is still open.

References

[1] Bodlaender, H. L., Deogun, J. S., Jansen, K., Kloks, T., Kratsch, D., Miiller, H. and Tuza, Zs., Ranking of
graphs, SIAM J. Discrete Mathematics, 11, 1, 168-181, 1998.

[2] de la Torre, P., Greenlaw, R. and Schiffer, A. A., Optimal edge ranking of trees in polynomial time, Algo-
rithmica, 13, 592618, 1995.

[3] Dyer, M. E. and Frieze, A. M., On the complexity of partitioning graphs into connected subgraphs, Discrete
Applied Mathematics, 10, 139-153, 1985.

[4] Fiirer, M. and Raghavachari, B., Approximating the minimum-degree Steiner tree to within one of optimal,
Journal of Algorithms, 17, 409-423, 1994,

[5] Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman and Company, New York, 1979.

[6] Ibaraki, T. and Kameda, T., On the optimal nesting order for computing N-relational joins, ACM Transactions
on Database Systems, 9, 3, 482-502, 1984.

[7] Iyer, A. V., Ratliff, H. D. and Vijayan, G., On an edge-ranking problem of trees and graphs, Discrete Applied
Mathematics, 30, 43-52, 1991.

[8] Lam, T. W. and Yue, F. L., Optimal edge ranking of trees in linear time, Proc. 9th ACM-SIAM SODA, 436~
445, 1998.

[9] Lam, T. W. and Yue, F. L., Edge ranking of graphs is hard, Discrete Applied Mathematics, 85, 71-86, 1998.
[10] Makino, K., Uno, Y. and Ibaraki, T., Minimum edge ranking spanning trees of threshold graphs, Working
paper.
[11] Uno, Y. and Ibaraki, T., Complexity of the optimum join order problem in relational databases, IEICE Trans-
actions, E74, 7, 2067-2075, 1991.
[12] Zhou, X., Kashem, M. A. and Nishizeki. T., Generalized edge-rankings of trees, IEICE Transactions, E81-A,
2,310-319, 1998.

