T U X A 71-5
(2000. 1. 17)

HARRKY v TF 2T & RDBUFHEERI T VT) X L

LR B (uehara@komazawa-u.ac. ip)
EHERF BARRERE

BE: DICEADODT SN S TNEI SN EEI, FOEANBRICELL IR YF
T OB ERD DA TN T XAEEET S, 6RO PRAM TFIITIL., FBROLNES
ZOHDIIHEE EDZENTERN, FI T, PHVITUZLATRERZOLDTHAEL, B
HO TEF) K 2FAT3, D20, PITYXLOFTRTOODIOES OB LN THIT
Wo =D T7IVT U X LERENIZ O(log n) IO TN T U XATH 2, ¥ I TDBKKKE
A ELEEE, EHERIZ E'A%?z LB, ZTOEHOTZINT D) XASEEBE 5= 7 d) LAT,
BRI il 755, 2 L TETHRMI Olog A) B, DEDY 5709 4 XITKEL B
EiZ785, LERS>TIOT7NITN XARERBAHOE S AF A LTEEERE <8ETS,
F—T—RAEUTNIT) XL, BABRKORF 7, BiFITNIT UL, B EESTNT
U XA

Fast Parallel Approximation Algorithms for Maximum Weighted
Matching Problem

Ryuhei Uehara (uehara®komazawa-u.ac.jp)
Natural Science Faculty, Komazawa University

Abstract: We present two parallel approximation algorithms for finding a matching of max-
imum weight in a given edge-weighted graph. To deal with unbounded weights efficiently on
a PRAM, the algorithms only use the total order of the weights. That is, we assume that
the algorithms can only compare with weights of edges. The first algorithm deterministically
runs in O(logn) time. Its approximation ratio is 3'5'2'4._2) where A is the maximum degree of
the graph. The second algorithm is randomized ﬁ—approximation algorithm. It runs in
O(log A) time, not depending on the size of the graph. Hence the algorithm can be performed
on a large scale distributed system.
Key words: approximation algorithm, maximum weighted matching, parallel algorithm, ran-
domized algorithm.
1 Introduction produced an algorithm using O(n(m+nlogn)) time
and O(m) space, where n = |V | and m = | E|.

A matching in a graph is the set of independent
edges. The problem to find a matching is a funda-
mental topic in graph theory. In this paper, we deal
with the graphs having weighted edges. For given
graph G = (V, E) and edge weights w : E — R*,
a mazimum weighted maiching is the subset M of
E such that M is a matching, and 7 ¢ 0 w(e) is
greater than or equal to 3, 5y w(e) for any other
matching M”’. The MWM problem is to find a max-
imum weighted matching for given graph. For the
MWM problem, Edmonds’ algorithm [Edm65] has
stood as one of the paradigms in the search for poly-
nomial time algorithms for integer programming
problems (see also {Gal86]). Some sophisticated im-
plementations of his algorithm have improved its
time complexity: for example, Gabow [Gab90] has

From the theoretical point of view, the complex-
ity of the MWM problem is still open; Galil asks
if the MWM problem is P-complete [Gal86], and
only CC-hardness has been pointed in [GHR95] (see
[MS92] for the detail of the class CC). It is worth
remarking that Karp, Upfal, and Wigderson have
shown that the MWM problem is in the class RNC
if each weight is bounded by some polynomial of n
[KUWS8s6].

On the other hand, from the practical point of
view, Edmonds’ algorithm is too expensive. Faster
algorithms are required, and heuristic algorithms
and approximation algorithms have been widely in-
vestigated. For example, a survey of heuristic algo-
rithms can be found in [Avi83], and some approx-
imation algorithms can be found in [Ven87]. Re-

cently, for general graphs, Preis [Pre99] has pro-
posed a linear time %~appr0ximation algorithm for
the MWM problem. The algorithm is based on a
greedy algorithm, that picks up the locally heavi-
est edges step by step, analyzed by Avis [Avi83].
On the other hand, for the maximum cardinal-
ity matching problem (or the maximum weighted
matching problem on uniformly weighted graphs),
several NC approximation algorithms have been
known (see [KR98] for comprehensive reference).
The maximum cardinality matching can be char-
acterized by the notions of alternating paths and
augmenting paths (see, e.g., [PS82] for the de-
tails). The NC approximation algorithms are based
on the characterization. However, when the edges
are weighted, we can not use the characterization.
(For example, for a path (e1,e2, €3, 4, es,€5), when
wle)) = wles) = wles) = w(es) = 1 and w(ez) =
wles) = 3, {es,e5} is heavier than the alternating
paths {e,es,es} and {es, €4, ec}.) Hence the NC
approximation algorithms for the maximum cardi-
nality matching problem cannot be extend to the
maximum weighted matching problem.

In this paper, we propose two parallel approxi-
mation algorithms for the MWM problem. We first
clarify how to deal with the unbounded weights of
edges. Standard parallel computation models as
PRAM cannot deal with unbounded weights effi-
ciently when the weights are exponentially large, or
real numbers taking many bits to represent. Our
algorithms require only comparison operation be-
tween two weights of edges. That is, the algorithms
are sufficient to know the total order of the weights
of edges, and they do not need to store each weight
itself. For given graph G with maximum degree A,
the first algorithm is an NC —S——iﬁ—approximation
algorithm. It runs in O(log n) time using n proces-
sors on an EREW PRAM. The second algorithm
is an RNC gzl_—’_—{l—approximation algorithm. It runs
in O(log A) time using n processors on an EREW
PRAM. Remark that the time complexity of the
second algorithm does not depend on the size of the
graph; the algorithm can be performed efficiently in
parallel even on a large scale distributed system.

The rest of the paper is organized as follows. In
section 2, we give basic definitions of the problem
and state a useful lemma for trees. We then present
the first algorithm in section 3. In the section, we
modify the first algorithm and obtain the second
algorithm. The approximation ratios are analyzed
in section 4. In section 5, we consider the limits of
the algorithms and conclude the paper.

2 Preliminaries

We will deal only with graphs without loops or mul-
tiple edges. Throughout the paper, unless stated
otherwise, G = (V,E) always denotes the input
(undirected) graph, and w always denotes a map
from E to R, set of positive real numbers. For
each edge e in E, we call w(e) the weight of the
edge. We also denote the sum of the weights of
edges in a subset F C E by w(F). We denote by
n and m the number of vertices and edges, respec-
tively. Without loss of generality, we assume that
w(ey) # w(es) for each e1,e2 € E.

The neighborhood of a vertex v in G, denoted by
Ng(v), is the set of vertices in G adjacent to v. The
degree of a vertex v in G is |Ng(v)]|, and denoted
by degg(v). The mazimum degree of a graph G
is maxyev degg(v), and denoted by Ag. Without
loss of generality, we assume that Ag > 2. The
notations degg(v), Ng(v), and Ag is somefimes
denoted by just deg(v), N(v), and A if G is under-
stood. For F C E, G[F] denotes the graph (V, F).

A matching of G is a subset M C E, such that
no two edges of M are adjacent. A matching M is
mazimalif that is not properly contained in another
matching. A matching M is a mazimum weighted
matching if w(M) > w(M’) for any other match-
ing M' of G. Remark that a maximum weighted
matching is a maximal matching since w(e) > 0 for
all e € E. A vertex incident to an edge of M is
called matched (by M) and a vertex not incident to
an edge of M is called free.

The MWM problem is to find a maximum
weighted matching for given graph G. A determin-
istic algorithm is §-approzimation algorithm for the
MWM problem if the algorithm produces a match-
ing M such that w(M) is at least w(M™), where
M* is a maximum weighted matching. A random-
ized algorithm is §-approzimation algorithm for the
MWM problem if the expected value of the weight
of a matching produced by the algorithm is at least
Sw(M™).

An acyclic connected graph, one not containing
any cycles, is called a tree. In a tree, the leaves are
the vertices of degree 1, and the internal vertices
are the vertices which are not leaves. We first state
a proposition and a useful lemma for a tree:

Proposition 1 Let T be a tree with n vertices.
We let n; be the number of vertices of degree i
with 1 < i < Agp. Then (a) S2AT n; = n; and
(b) Y07 iny = 2(n — 1).

i=1
Proof. (a) is trivial. When each vertex counts up
its degree, each edge is counted exactly twice. Since
any tree with n vertices has n — 1 edges [Har72,
Chapter 4], (b) follows.

Lemma 2 Let L(n,A) be the maximum number
of leaves in a tree of maximum degree A with n

vertices. Then L(n,A) < LA_AZ-——_TL*Z.

Proof. Let T be an n vertex tree with L(n,A)
leaves. Let Vi be the set of internal vertex of T.
Then, the graph induced by V7 is also a tree. It con-
tains | V| vertices and {Vr| —1 edges. Each leaf of
T is incident to one internal vertex. Moreover, each
vertex in Vy can be incident to at most A vertices.
Thus we have L(n,A) < A V| —2(|Vi] —1). We
also have L(n,A) + |Vi| = n. Hence L(n,A) <
(A=-2)n-2)]
f%eclall that the EREW PRAM is the parallel
model where the processors operate synchronously
and share a common memory, but no two of them
are allowed simultaneous access to a memory cell
(whether the access is for reading or for writing in
that cell). We here clarify the operation on the
weights of edges. The algorithms use one compar-
1son operation to determine the heavier edge be-
tween two edges in unit cost. This assumption is
natural and it can be implemented on an ordinary
PRAM storing the total order of the weights.

In this paper, each algorithm uses n processors;
every vertex in G has a processor associated with
it. As the input representation of G, we assume
that each vertex has a list of the edges incident to
it. Thus, each edge {7,7} has two copies - one in
the edge list for vertex ¢ and the other in the edge
list for vertex j.

3 Algorithms

The deterministic parallel approximation algorithm
contains three phases:

Algorithm 1

1. For given G, construct a heavy spanning forest
F' (defined later) of G;

2. construct a set of paths P in G[FY;

3. produce a matching M, in G[P].

The matching M, is the output of the algorithm.
We describe phase by phase, and show the complex-
ity of algorithm. We also show some useful lemmas
for F, P, and M,;. Finally, we modify Algorithm 1
and obtain the randomized parallel approximation
algorithm.

3.1 The First Phase
The first phase of the algorithm contains two steps:

1.1. In parallel, each vertex marks the heaviest
edge incident to the vertex;

1.2, F is the set of marked edges.
We first show that G[F] is acyclic.
Proposition 3 G[F] is acyclic.

Proof. Assume G[F] is not acyclic and e1,e9,---, ¢
are edges producing a cycle in G[F]. We let
v1,v3, -+, v be vertices on the cycle. If two consec-
utive vertices in these vertices mark the same edge,
there should be an edge on the cycle not marked
by any vertices. Hence each vertex marks differ-
ent edge. Thus we can assume that v; marks e;,
and w(e;) < w(es). However, this implies that
wler) < wlex) < --- < w(e)) < wley), that is a
contradiction: |

Thus, G[F] is a set, of trees. Moreover, it is trivial
that deggpi(v) > 0 for all v in V. Hence we call
F heavy spanning forest of G. Hereafter, we denote
by ¢ the number of trees in G[F].

We now introduce some notions for the heavy
spanning forest F. Let T be a tree in G[F], and
ny be the number of vertices in 7. Then, in the
first step, each of ny vertices in T' marks one edge,
and T has ny — 1 edges. This implies that T has
exactly one edge marked by two vertices. We call
the edge and two vertices a root edge and two roots
of T, respectively. That is, F' contains ¢ trees, and
each tree has one root edge and two roots. We can
show the following lemma by a simple induction.

Lemma 4 Let T be a tree in F, and e, be the root
edge of T. Then for any leaf-root path (e, ey, es,
er)in T, wie) < wler) < w(eg) < -+ < wep).

That is, the root edge is the heaviest edge in the
tree.

Let M* be a maximum weighted matching in G.
We now show the theorem for the relation between
w(M™) and w(F).

Theorem 5 w(F) > w(M*).

Proof. Let e = {u,v} be an edge in M*, but not in
F. Then, since ¢ ¢ F', ¢ is not marked by both u
and v. Let e, and e, be edges marked by u and v,
respectively. Since M* is a matching, both e, and
e, are not in M*. That is, {e,,e,} C F— M*. Now
we divide the weight w(e) in two weights w(e), and
pile them onto fw(e,) and $w(ey), respectively.
Since ¢ is not marked, w(e) < w(ey,), w(e,). More-
over, e, and e, are not piled by the other edges in
M™ at the points u and v since e is an element in
the matching M*. That is, no edge e in F — M* will
be piled more than w(e) by the edges in M* — F.
Thus each edge in M* is either in F or it can be

divided and piled onto two edges in F' — M™. ThlS
implies that w(F") > w(M™).
We moreover analyze the proof of Theorem 5 in
detail. We now fix any maximum weighted match-
ing M*. Let C = Fn M, F=F—C, and
M = M* — C. We let R be the set of the root
edges of F'. Then we have the following corollary.

Corollary 6 w(F) > 2uw(M*) — w(C) — w(R).

Proof. In the proof of Theorem 5, each weight of an
edge in M is divided and piled onto two edges in P,
because corresponding edges in F can be piled at
both endpoints. However, only root edges can be
piled at both endpoints. Now we pile each weight of
an edge in M onto two edges in F without division.
In the case, root edges may be piled twice. The ob-
servation 1mphes that w(£) > 2w(M) w(R). Thus
w(F) = w(F) 4+ w(C) > 2w(M) — w(R) + w(C) =
2w(M* — C) — w(R) + w(C) = 2w(M*) — w(C) -
w(R).

3.2 The Second Phase

The second phase of the algorithm easy to describe:

2.1. In parallel, each vertex v with deggey(v) >
2 deletes all edges incident to v except two
heaviest edges. Let P be the set of remaining
edges. (Comment: It is easy to see that G[P]
is a set of paths, and degg(py(v) > 0 still holds
if v was not a leaf in F.)

Theorem 7 w(P) > ﬁw(F).

Proof. We first assume that G[F'] contains only one
tree. We let n; be the number of vertices of de-
gree ¢ in G[F] with 1 <¢ < A. Then the number of
edges deleted in step 2.1 is equal to Zf:s(i"z)”i =
Zf:s ing —24'\:?:3 n;=2(n—1)—ny—2ny,—2(n—

ni—n3) = ny — 2. Using Lemma 2, we have -I—f—,!r =

”"ln"_”ll“ > "“n‘r’(” 2) Thus, using Lemma
2 we have n41l— L(n A) (a- 1)(n+1) (A-2)n+2 -

(A1)
o2y = oy + iy > s

We then consider the weights of deleted edges.
For each deleted edge e, there exists at least one
edge ¢’ in P with w(e’) > w(e). On the other hand,
for each remaining edge ¢’ in P, it is corresponded
by such deleted edges e at most A—1 times. This to-

gether with % > ﬁ implies that g—%% > -Alj-,

When G[F] contains two or more trees, the dis-
cussion above can be applied on tree by tree. 8

3.3 The Third Phase

We define the distance of edges to describe the
third phase. Let o = (ey,e2,--+,¢;) be a path of
length [. Then the distance of e; from e; on «, de-
noted by D(e;,e1), is defined by D(e1,e1) = 0, and
D(e;,e1) = D(ej-1,e1)+ 1 for 1 < i < I The third
phase contains the following steps:

3.1. In paralle], find the heaviest edge in each
path in P.

3.2. M, is the set of edges having even distance
from the heaviest edge on the same path.

For any given path, we call a set of edges an alfer-
nating path on the path if it is a maximal matching
on the path, and so is its complement. Using this
notation, we can rewrite step 3.2 as follows: In each
path in P, each edge in the alternating path con-
taining heaviest edge is in M.

We here show a proposition and a useful lemma
for paths with special properties.

Proposition 8 Let o = (eq,e3,--+,¢;) be a path
with w(e;) > w(es) > w(er). Then
the maximum weighted matching M, is either
{e1,e3,---,e;} for odd I, or {ey,es3, -+, €1} for
even [. Moreover, w(Ma) > jw(a).

Proof. When [is odd, considering w(e;) > w(ez),
w(es) > wleq), -+, wlei=1) > wler), we immedi-
ately have the proposition. When [is even, the last
edge e; just increases the weight of M, .

Lemma 9 Let o = (e1, ez, -+, er) be a path such
that w(el) < w(ez) < e < w(e,-_l) < w(ei) >
w(ejp1) > -+ > w(e) for some 7 with 1 < 4 < [,
Let A; be the alternating path containing e;, and
As be the other alternating path. Then

(1) Either A; or A, is the maximum weighted
matching of «, and that has at least half weight of
a.

(2) When A, is the maximum weighted matching
of o, w(e;—1) + wleip1) > wle;).

(3) w(Ar) > bula).

Proof. (1) We first show that M, satisfies either (a)
e; € My or (b) {€;-1,ei41} C My. To derive a con-
tradiction, assume that ¢; € My, ei—; & M,, and
€41 € Mo. Then (My — {ei41}) U {e;} is a match-
ing heavier than M, since w(e;) > w(e;41), thatisa
contradiction. The other symmetric case (e; € My,
e;-1 € Mg, and e;41 € My) can be shown by the
same argument. In the case (a), we have ¢; € My,
ei—1 & Mgy, and €41 & My. Then we can consider
« as two paths (e1, ez, -, e;-2) and (ei42, -, e€r)
separately. Using Proposition 8, we have M, =
{eitU{eima,eima, -} U {eipa, €544, -}, that is an
alternating path. In the case (b), we have e; ¢ M,,

ei—1 € My, and e;4; € M,. Thus we have M, =
{eim1,eip1}U{eso3, €is, - -YU{eiy3, €045, - -}, that
is also an alternating path. Heavier alternating
path clearly has at least half weight of «. This
completes the proof of (1).

(2) Let A} be (Ay—{e;—1,e:41})U{ei}. Then Af is
a matching. Since A, is the maximum weighted
matching, w(Aj) < w(A;). This implies that
w(eioy) + w(eipr) > wle;).

(3) When A; is the maximum weighted matching,
it follows from Proposition 8. Thus we assume that
A; is not the maximum weighted matching. Then,
as in (1), Ay is the maximum weighted matching.

We here consider two paths a) =
(e1, €2, -, €-1,€) and oz = (e;,€,41, - -,€;). Let
A} (and A?) be the alternating path of o (and o,
resp.) containing e;. That is, A} is the former half
of A1, A? is the latter half of A4;, and A}NA? = {e;}.
Then, by Proposition 8, w(A}) > fw(a;) and
w(A}) > tw(ay).

Thus, w(A4;) = w(Al U A?) = w(Al) + w(A?) ~
W(ALAD) > H(w(an)+w(as)) —w(e:) = J(w(a)+
w(er)) - wier) = H(u(a) — w(e)) > hu(e) -
w(A1)). This implies that w(A;) > fw(a). |

We here remark that, in Lemma 9(1), we can-
not determine in general which alternating path is
heavier. (For example, a path (e, €2, e3) has differ-
ent answers when w(e;) = 1, w(eq) = 3,w(es) = 1
and w(e;) = 2,w(ey) = 3,w(es) = 2). We also
remark that Lemma 9(1) does not hold for gen-
eral weighted path (for example, each alternating
path of (e1, ez, e3, €4) is not the maximum weighted
matching for w(e;) = 5,w(es) = 1,w(es) =
1,w(esq) = 5).

We now show the relation between w(M;) and
w(P).

Lemma 10 w(M;) > fw(P).

Proof. We first-observe the following claim: in step
2.1, if vertex v delete an edge {u,v}, the edge was
marked by u in step 1.1. This is easy because each
vertex marked the heaviest edge in step 1.1, and
remains the heaviest edge(s) in step 2.1. Using the
claim and simple induction, we can show that each
path in P is either

(1) a part of some leaf-root path in some tree in
F;or

(2) two parts of leaf-root paths connected by the
root edge in a tree in F.

In the case (1), combining Lemma 4 and Proposi-
tion 8, M; contains the maximum weighted match-
ing of the path, and that has at least half weight
of the path. Thus it is sufficient to show for the
case (2). By Lemma 4, the path o = (e1,eq,- -, €1)

satisfies that w(e)) < w(ez) < -+ < w(e,_y) <
w(er) > wler41) > --+ > w(e;), where e, is the
root edge. Thus, according to Lemma 9(3), for the
alternating path A, containing e,, w(4,) > Lu(a).
Thus w(My) > sw(P).

Combining Theorem 5, Theorem 7, and Lemma
10, we can show that Algorithm 1 is a m’—:—l—)-
approximation algorithm. But the better approx-

imation ratio A2+2 will be stated in Section 4.

3.4 Complexity of Algorithm 1

Theorem 11 Algorithm 1 is the NC algorithm
that runs in O(logn) time using n processors on
an EREW PRAM. It requires only comparison op-
eration.

Proof. We first assume that each processor has two
memory cells to store the edges in P. Then the first
and second phases can be efficiently implemented
modifying the following:

1.7°. In parallel, each vertex v finds the heaviest
edge ¢ = {v,u} incident to v;

1.2°. In parallel, v stores the first cell of v with e.

2.1, In parallel, each vertex v checks the contents
of the first cell of u. If it is e, then the process
is end. If it is not e, v tries to store the second
cell of v with e. This trial will succeed if w(e)
is the heaviest among the other edges that are
tried to store the same cell.

The step 1.2’ can be done in a unit time. More-
over, it is not difficult to see that the steps 1.1’ and
2.1 can be done in O(log A) time using standard
technique with comparison operation.

In the third phase, we can easy to see the follow-
ing: ‘
(1) if e = {u,v} is a root edge, e is stored in the
first cells of both u and v; and
(2) otherwise, e is stored in the first cell of one end-
point, and in the second sell of the other.

Moreover, each non-root edge knows which end-
point is close to the root edge; the endpoint storing
the second cell with the edge. Thus step 3.1 can
be done in O(1) time, and step 3.2 can be done
in O(logn) time using standard list ranking tech-
nique (see e.g., [KR90]). We remind that, through-
out the computation, only comparison operation is
required. 2

3.5 Algorithm 2

In Algorithm 1, almost all computations are per-
formed “locally”. That is, all computations can be
performed within the neighbors except steps 3.1 and

3.2. Algorithm 2 is the same as Algorithm 1 except
the third phase. We modify the steps 3.1 and 3.2,
and obtain the RNC approximation algorithm using
randomization.

3.1°. In parallel, each vertex randomly choose one
of two edges incident to the vertex in G[P].
(The vertices of degree one choose the unique
edge incident to the vertex.)

3.2’. M, is the set of edges chosen by both end-
points.)

Since each vertex choose one edge, the resulting M,
is a matching. These modified steps can be per-
formed in O(1) time. This immediately implies the
following theorem.

Theorem 12 Algorithm 2 is the RNC approxima-
tion algorithm that runs in O(log A) time using n
processors on an EREW PRAM. It requires only
comparison operation.

4 Analysis of Approximation
Ratios

We remind that M* is any fixed maximum weighted
matching, F' is the heavy spanning forest, 12 is the
set of the root edges of F, and P is a set of paths
obtained in step 2.1. Moreover we let C = FnM*,
F=F—C,and M =M*~C.

To derive good approximation ratios, we define
two maximum matchings: Mp denotes any fixed
maximum weighted matching of G[P], and Mr de-
notes any fixed maximum weighted matching of

G[F].
Lemma 13 w(Mp) > m—ll—l—)w(F).

Proof. As seen in the proof of Lemma 10, each path
in P is either

(1) a part of some leaf-root path in some tree in
I or

(2) two leaf-root paths connected by a root edge
in atree in F.

For each path, by Lemma 9(1), Mp contains heav-
ier alternating path that has at least half weight
of the path. This together with Theorem 7 implies
that w(Mp) > 3w(P) > gx—yw(F). g

Lemma 14 w(Mp) > fw(M*).
Proof. We first remind that Mp is the maximum

weighted matching in F'. Thus, since C is a match-
ing in F, w(Mp) > w(C). It is casy to see that R is

amatching in F. This implies that w(Mp) > w(R).
It is also easy to see that Mp is a matchingin F, and
thus w(Mp) > w(Mp). Hence, combining Corol-
lary 6, we have w(F) > 2w(M*) — w(C) — w(R) >
Zw(M*) 2w(MFp). On the other hand, by Lemma
13, w(Mp) > w(Mp) > 2(A 1)'w(F) Combining
the equations, we have (2(A — 1) + 2)w(Mr) 2
2w(M*), consequently, w(Mp) > Lw(M*).

Lemma 15 w(C) < w(Mp) < 2w(Mp).

Proof. It is clear that w(C) < w(Mp). Thus we
show w(Mp) < 2w(Mp). We are going to show
that each edge in Mp can be piled onto an edge in
Mp, and each edge in Mp is piled by such edges
at most twice. Let e = {u,v} be any edge in Mp.
Then three cases occur according to e.

(1) e € Mp. We pile e onto itself.

(2) e € P — Mp. We first assume that e is not a
root edge. We assume that u is closer to the root
edge than v on G[F]. In the case, ¢ is incident to
¢’ in P at the vertex u with w(e’) > w(e). Thus we
pile w(e) onto w(e’). We next assume that ¢ is a
root edge. That is, € is a root edge not in the maxi-
mum weighted matching of G[P]. Then, by Lemma
9, Mp contains two edges ¢/ and e” such that ¢’
and e’ are the edges incident to e at vertex u and
v, respectively, and w(e’) + w(e") > w(e). Thus we
divide w(e) into w(e’) and w(e) — w(e)(< w(e")),
and pile them onto w(e’) and w(e”), respectively.
(3) e ¢ Mp. We assume that u is closer to the root
edge than v on G[F]. In the case, e was deleted by
u in step 2.1. The vertex u remains two edges e’
and e” in P with w(e"),w(e”) > w(e). Moreover,
either ¢’ or ¢ is in Mp. Thus we pile w(e) onto the
edge in Mp.

Since M is a matching, no two edges are piled at
the same endpoint. Thus each edge in Mp is piled
at most twice at both endpoints. This implies that
w(Mr) < 2w(Mp). B

Theorem 16 w(Mp) > s2=w(M™).

> 3Ry
Proof. Combining Corollary 6 and Lemma 13, we
get ’LU(MP) > f(ﬁltﬁw(F) 2 ﬁ:ﬁ@w(]\/[*) _
w(R) — w(C)). Using Lemma 15, we have
2w(Mp) > w(C). On the other hand, since
R C My, w(Mp) > w(M) > w(R). Thus,
w(Mp) > sa=y(2w(M*) - w(R) — w(C)) 2
Z’./Tl:ﬁ(Qw(M*) — w(Mp) — 2w(Mp)). Thu
w(Mp) > sgw(M*).

Theorem 17 The approximation ratio of Algo-
rithm 1 is

2
3A+2°

Proof. We first show that w(M1) > $w(Mp). As
seen in the proof of Lemma 10, each path in P is
either

(1) a part of some leaf-root path in some tree in
F;or

(2) two leaf-root paths connected by a root edge
in a tree in F.

In the case (1), both M; and Mp contains the same
alternating path that contains the heaviest edge.
We consider the paths in the case (2). Let « be
the path in P, and A; be the alternating path of «
containing the root edge, and A; be the other al-
ternating path. According to Lemma 9, A; or A4,
is the maximum weighted matching of . When
A; is the maximum weighted matching, both M
and Mp contains it. Now we assume that A,
is the maximum weighted matching of a. Then,
by Lernmd 9(3), w(4) > w(a), consequently,
w(Ag) < 2w(e). Thus w(Al) > 1w(4,). There-
fore, in a.ny cases, w(M;) > tw(Mp).

Combining Corollary 6, Theorem 7, and Lemma
10, we have w(M) > %w(P) > ’ST‘A‘lZTjw(F) >
sy (2w(M™) - w(C) ~ w(R)). It is clear that
w(My) > w(R) since R C M1 Thus, using Lemma
15, we have w(Ml) > 3(A 1)(211)(M) — w(C) ~

w(R)) 2 sy (2w(M*) — 2w(Mp) — w(My)) >
m(Qw(M)—5w(Mji)), consequently, w(M;) >
ez (M). "

Theorem 18 The approximation ratio of Algo-
rithm 2 is ﬂ%}_’.{

Proof. Each edge in P is chosen with probability
at least i-, Thus, the expected value of w(Ms)
is at least %w(P), Using Corollary 6 and The-
orem 7, we have E(w(M,)) > Z(KIZTSW(F) >
A (w(M*) = w(C) — w(R)).

We now compare w(Ms) with w(Mp). Each
edge in Mp appears in M, with probability at
least %. This implies that the expected value

fw(Mp). Thus, using
Lemma 15, we have E(w(M3)) > Z(TI.TS(ZW(M*)"

of w(Mj) is at least
w(C) — w(R)) 2 a=p(2w(M*) ~ Sw(Mp)) >

—(—1———5(2w(M*) — 12E(w(M3))), consequently,
E(w(My)) 2 spgw(M*).]

5 Concluding Remarks

In this paper, we state two parallel approxima-
tion algorithms for the maximum weighted match-
ing problem. In this section, we briefly show the
limits of the algorithms. Each approximation ratio

contains the factor 4. This factor is hard to im-

prove by reason of the strategy in the first phase.
Figure 1(a) is a bad example for the algorithms.
At the first phase, all algorithms mark the edges
of weights 50 and 49, and then they miss all edges
of weights 48. In the time, the approximation ra-
tio for the graph in Figure 1(a) is actually ©(%).
For such graph, it seems to be effective to repeat
the algorithms until the matching becomes maxi-
mal. (The matchings produced by the algorithms
are not maximal in general.) However, there exists
the graphs such that the repeating algorithm takes
O(n) time; see the graph in Figure 1(b) that recur-
sively contains the upper half structure of the graph
in Figure 1(a). (In the figure edges are written only
in the first and second levels.)

References
[Avi83] D. Avis. A Survey of Heuristics for the
Weighted Matching Problem. Networks,
13:475-493, 1983.

[Edm65] J. Edmonds. Paths, Trees and Flowers.

Canad. J. Math., 17:449-467, 1965.

[Gab90] H.N. Gabow. Data Structures for
Weighted Matching and Nearest Com-
mon Ancestors with Linking. In Proc.
1st Ann. ACM-SIAM Symp. on Discrele

Algorithms, pages 434-443. ACM, 1990.

[Gal86] Z. Galil. Efficient Algorithms for Finding
Maximum Matching in Graphs. Comput-

ing Surveys, 18(1):23-38, 1986.

[GHR95] R. Greenlaw, H.J. Hoover, and W.L.
Ruzzo. Limaits to Parallel Computation.

Oxford University Press, 1995.

[Har72] F. Harary.

Wesley, 1972.

Graph Theory. Addison-

[KR90] R.M. Karp and V. Ramachandran. Par-
allel Algorithms for Shared-Memory Ma-
chines. In J. van Leeuwen, editor, The
Handbook of Theoretical Computer Sci-
ence, Vol I: Algorithms and Complexity,

pages 870-941. Elsevier, 1990.

[KR98] M. Karpinski and W. Rytter. Fast Paral-
lel Algorithms for Graph Maiching Prob-

lems. Clarendon Press, 1998.

R.M. Karp, E. Upfal, and A. Wigder-
son. Constructing a Perfect Matching is
in Random NC. Combinatorica, 6(1):35—
48, 1986.

[KUWS86]

[MS92)

[Paw87]

[Pre99]

49

48

Figure 1: Bad examples for the algorithms

E.W. Mayr and A. Subramanian. The
Complexity of Circuit Value and Net-
work Stability. Journal of Computer and
System Science, 44:302-323, 1992.

S. Pawagi. Parallel Algorithm for Max-
imum Weight Matching in Trees. In
Proc. International Conference on Par-
allel Processing, pages 204-206. IEEE,
1987.

R. Preis. Linear Time %-Approximation
Algo-

[PS82]

[Ven8T]

rithm for Maximum Weighted Matching
in General Graphs. In STACS ’99, pages
259-269. Lecture Notes in Computer Sci-
ence Vol. 1563, Springer-Verlag, 1999.

C.H. Papadimitriou and K. Steiglitz.
Combinatorial Optimization. Dover,
1982.

S.M. Venkatesan. Approximation Algo-
rithms for Weighted Matching. Theoreti-
cal Computer Science, 54:129-137, 1987.

