YO I U X 4 72—-1
(2000. 3. 21)

BREZZE LV v 7L X2l — % ORI

HE AE
[pEstlid il

T 211-8588 NG A BX F/hmd 4-1-1
E-mail: koga@flab.fujitsu.co.jp

INFRAFATT =5 %5y T REATEEZEL THECBETALIMEAD Y v FOBEDOD &
E(DOvd) 8MADILDBRYTH LD, FRETIE, BEEBEARDPICHEL—FIZBVT, 79k %5y
TrIVYTTBIEIEIN TS ERINTEF 5 AT LT XA FRDES,

ERHETEN—FIAONYy 77 BOBIIEB L TT VT IARBIF LTV, KETIRZRICINL
T BEOVTAI AL MEERL. b—FRIZNT y 2 RFTELBMIC LRSS 2 & v &5 58
WCEAL CTT 2 T o7, FDHR, 254 77’Il/j')XA@\competitiveness BNy 7 ryHID_LL
AN—=FHDINry M EFERBICKET A2 LIRS, T BAPRELEF VI AT T X
ABT I 2 ENLETEENIIRNT 2RIV T HERT S L7,

An Analysis for Jitter Regulators with Delay Consideration

Hisashi Koga
Fujitsu Laboratories Ltd.

4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan
E-mail: koga@flab.fujitsu.co.jp

In order to playback multimedia data smoothly, it is important to keep the jitter, the variability of delay
" of individual packets, low. This paper examines on-line algorithms in a single router on the distribution
path for a given multimedia stream which attempt to regulate jitter by holding packets in an internal
buffer.

The previous work solved the problem with focusing only on the buffer size in the router. However, for
the purpose of providing the stream communication with real-time property, this paper introduces the new
condition that a packet can stay in the router at most for a constant time which we name the permitted
delay time into the problem besides the conventional constraint about the buffer size. Our analysis of
this new version of the problem obtains the result that the competitiveness of on-line algorithms depends
on the permitted delay time rather than the buffer size. Finally we investigate quantitatively how much
jitter is removed by our on-line algorithm.

1 Introduction

With the rapid expansion of network communica-
tion to public represented by the Internet, there is
a growing need for networks with guaranteed qual-
ity of service (QoS). Whereas the traditional best-
effort networks like the current Internet does not
give guarantees on communication performance to
the clients, QoS networks allow them to transfer
information with a certain level of performance
guarantees which are evaluated in terms of delay,
delay jitter, throughput and packet loss rate.

Delay jitter which we refer to simply as jitter
hereafter is defined as the maximal gap between
delay of each packet in the given stream. Keep-
ing jitter low is important for many real-time ap-
plications which continuously transmit multimedia
data for the reason below. Ideally, in a real-time
application, it is desirable that packets which are
generated at the source in a periodic fashion should
arrive to the destination also periodically, which
means the jitter is equal to 0. However, in reality,
as packets pass through intermediate switches or
routers, the jitter increases due to variable queu-
ing delays at these network equipments and vari-
able propagation delays over network links. As the
result, for stable playback of multimedia data, the
real-time applications must prepare & buffer in the
destination host to absorb the jitter. The large
jitter forces the destination host to prepare a huge
buffer. The jitter should be kept low also from the
viewpoint of the network management.

Ffjiljifjer
packet arrival

sequence

packet release
sequence
Router R

Figure 1: Jitter regulation at a router

This paper focuses on the jitter regulation at
a single router for a given stream in the context
that, by holding the incoming packets in an in-
ternal buffer, the router attempts to output the
packets at the same intervals whose lengths are X
(Figure 1). Here, X denotes the length of the inter-
val between adjacent packets at the source gener-
ating packets periodically. As packets go through
the network before reaching the router, the packet
intervals become distant from X. We may con-
sider that the router tries to reconstruct the origi-
nal traffic pattern at the source. The router is as-
sumed to know the value of X a priori. Mansour
and Patt-Shamir [3] deals with on-line algorithms
for this problem under the condition that the num-
ber of spaces constituting the internal buffer is re-

stricted, where each space can exactly store one
packet. Packets in the buffer must be pushed
out obeying a FIFO service discipline, when the
buffer becomes full. They presented an on-line al-
gorithm using 2B buffer spaces which obtains the
same jitter as the optimal off-line algorithm using
B spaces. As for lower bounds, they proved that,
in case on-line algorithms have the same buffer ca-
pacity B as the optimal off-line algorithm, there
exist arrival sequences for which the off-line algo-
rithm achieves 0-jitter and any on-line algorithm
gets a jitter at least BX.

However, they examine the problem allowing a
packet to stay in the router infinitely long unless
the buffer is not full. In fact, their proof for the
lower bounds utilizes the technique that an off-
line algorithm postpones arbitrarily long sending
out a packet, after the on-line algorithm outputs
the very packet. We argue here that this assump-
tion is not realistic to satisfy the requirement of
some types of real-time applications. For exam-
ple, keeping a packet long in the routers on the
way between the source and the destination in-
creases the end-to-end delay very much. This dis-
ables the bi-directional interactive communication
demanded by real-time discussion services, etc.

Hence, to get closer to practical use, this paper
introduces the new condition that a packet can
stay in the router at most for a constant time L to
the jitter regulation problem besides the conven-
tional condition about the buffer capacity. That
is, if L time units have passed since a packet ar-
rival, the corresponding packet is thrown out of
the router. In a normal situation, L > X. Specif-
ically we name this constant L as the permitted
delay time. This new problem is named jitter reg-
ulation problem with delay consideration (JRDC)
hereafter.

This paper examines the power of on-line algo-
rithms for JRDC. We analyze and evaluate on-
line algorithms with competitive analysis {4] which
compares the performance of an on-line algorithm
with that of the optimal off-line algorithm. First
in Section 3. we introduce the optimal off-line al-
gorithm which is derived by simply extending the
optimal off-line algorithm by Mansour and Patt-
Shamir [3] for the case without delay considera-
tion. In Section 4 the lower bounds of the com-
petitiveness of on-line algorithms are investigated.
We show, for any on-line algorithm, a packet ar-
rival sequence exists such that the jitter incurred
by the on-line algorithm is larger than or equal to
that of the optimal off-line algorithm plus % —-2X.
In Section 5, we present a simple on-line algorithm
with the nearly tight upper bound, i.e. its jitter

— 2 —

does not exceed that of the optimal off-line algo-
rithm by —% Interestingly, the competitiveness for
JRDC depends only on the permitted delay-time
and not on the number of buffer spaces. We also
make clear quantitatively how much jitter our on-
line algorithm absorbs against individual packet
arrival sequences. This result is valuable in prac-
tice, because the competitive analysis itself does
not give actual quantitative bounds, thus not being
utilized in applied research fields. We show that,
provided the buffer size is sufficient, our algorithm
decreases the jitter L at its best. Especially if the
Jitter of the packet arrival sequence is less than %,
the output stream gets 0-jitter.

We conclude the introduction by contrasting
this paper with practical QoS processing proposed
- inthe applied research fields on communication. In
the QoS system proposed in the applied research
fields, routers with jitter control function consist
of two components: regulators and a scheduler [1]
[2], [5]. The regulators shape the input traffic into
the desired traffic pattern by holding packets in a
buffer, where one regulator is responsible for one
input stream. When a packet is released from a
regulator, it is passed to the scheduler which de-
cides the order of transmitting packets from all the
streams to the output link. This system has two
primary features.

1. The routers on the distribution path for a
given stream cooperate such that a regulator
of a router holds packets long enough to ab-
sorb the jitter generated at the scheduler of
the previous router whose size grows up to the
maximal scheduling delay in the worst case.

2. The amount of the total traffic is restricted by
the admission control to suppress the schedul-
ing delay. When there is a request to establish
a new stream connection, the entire network
judges whether it can afford to accommodate
the new stream.

However these two features are difficult to realize
in the networks like the Internet managed by a lot
of different organizations. It is probable that only
a part of routers support the QoS mechanism, so
the adjacent routers cannot work together. Fur-
thermore it seems also hard to limit the total traf-
fic flowing into the scheduler so as to bound the
maximal scheduling delay.

This paper studies regulators. We concentrate
on a single router without considering the entire
network. This approach is reasonable for this rea-
son that the admission control over the entire net-
work like the current Internet seems impossible.

2 Problem Statement

The jitter-regulation problem is formally defined
as follows. We are given a router R and a se-
quence of packets pi,ps,...p, which arrive to R.
Each pr (1 < k < n) arrives at time a(k). Upon
their arrivals, R stores the packets into an internal
buffer and releases them later. A jitter-regulation
algorithm A decides the release time of packets.
The release time of p; by the algorithm A is de-
noted as sa(k). R must release packets obeying
the FIFO service discipline. That is, s4(k) <
salk+1)for 1 <k <n-1. Throughout this
paper we refer to the sequence a(1),a(2),...,a(n)
as the arrival time sequence and the sequence
54(1),54(2),...54(n) as the release time sequence
by the algorithm A.

The purpose of a jitter-regulation algorithm is to
make the release time sequence near to the ideal
time sequence in which all the packets are spaced
X time units apart. R knows the value of X before
the transmission of the stream starts. The jitter
of a time sequence o: t1,%2,...,%, is defined as
follows.

J? = Ogil’%)s(n{[ti -t — (’L - k)XI} (1)

That is, this variable measures the distance be-
tween o and the ideal time sequence. Remark
that we can calculate the jitter not only for the
release time sequence but also for the arrival time
sequence. We express the jitter of the release time
sequence by the algorithm A for the arrival time
sequence o as J4(o). Mansour and Patt-Shamir
(3] mentions the next property concerning the jit-
ter without proof.

Lemma 1 ([3]) Forallm (1 <m<n),

o o . —_— ;
J7 = Org%:%{t, tm — (i —m)X}
+ Dréx%xn{tm —t; ~ (m—1)X}

Proof: First we prove that the value of J° is not
influenced, even if the absolute value brackets are
removed from the definition (1). Suppose that i,k
are a pair of indices which maximizes J° and that
ti—ty ~ (i~ k)X < 0. Then, by swapping i and k,
we find another pair of indices which achieves the
same value of J” and satisfies t; —t; — (i— k)X > 0.
Hence J = maxoSi,kSn{ti —-tp — (i — k)X}. It
follows that

o — — -
J oé?,%)g(n{t' ty — (i —k)X} |
= o’é‘%’%{ti —iX}+ o?/?gxn{kx ~t}

.

= Orgagcn{ti —iX} — (tm —mX)
+ Orézggcn{kX —tg} + (tm — mX)
= Orglezzcrt{ti —tm — (1 —m)X}
Jr_oréias:;{tm —ti— (m-)X).

]

This paper examines the jitter regulation prob-
lem under the next two conditions one of which is
newly introduced in this paper.

1. The number of spaces in an internal buffer is
exactly B.

2. The permitted delay time.is equal to L for
every packet.

The first condition says that R can store at most
B packets simultaneously. Before pg4p arrives, pj
needs to be released. The second condition means
that each packet cannot stay at R more than L
time units. Normally L is far greater than X. In
summary, we solve the problem under the condi-
tion for the release time that

a(k) < sa(k) < min{a(k + B),a(k) + L}, (2)

where we define a(k) = oo for k > n.

Because Mansour and Patt-Shamir [3] does not
consider the permitted delay time, they solve the
problem under the release time condition that

a(k) < (k) < a(k + B). (3)

Instead, if the buffer size is large enough to assure
that the buffer never becomes full, it is natural
to examine the problem under the next condition,
focusing only on the permitted delay time,

a(k) < sa(k) <alk) + L. (4)

In this way, in terms of the interests in algorithmic
theory, setting a different condition for the release
time yields a different problem.

3 Optimal Off-line Algorithm

Our on-line algorithms are compared with the op-
timal off-line algorithm OFF in the subsequent
sections. We present OF F here. OFF is derived
by simply extending the optimal off-line algorithm
for the case without delay consideration [3].

Algorithm OFF:

1. Let Fx be the time interval such that B, =
l[a(k) — (k — 1)X,min{a(k + B),a(k) + L} —
(k-=1X],for1<k<n.

2. OFF finds a minimal interval M which in-
tersects all the intervals Ey for 1 < k < n.
Define Py = min(E; N M).

3. OFF releases the k-th packet pp at time
SOFF(k) = P, + (k - 1)X‘

___E_____I

3

M
Figure 2: An example of Ey

Figure 2 gives an example of Ej for three con-
secutive packets py,py,ps, where p; and p; arrive
simultaneously and p3 arrives R extremely later
than the first two packets. Since p; and py arrive
at the same time, min(E3) = min(E;) + X. The
region M is partitioned off by two vertical thick
lines.

Theorem 1 OFF is an off-line algorithms which
achieves the minimal jitter.

Proof: First we prove that OFF is a valid algo-
rithm by showing OFF satisfies the release time
condition (2) and the FIFOness. Since sorp(k) =
min(Ex N M) + (k — 1)X, it is obvious that
sorp(k) € [a(k), min{a(k + B),a(k) + L}]. Thus
the release time condition is (2) satisfied. With
respect to the FIFOness, we need to show

Pepr + X > Py, (5)

as Sopp(k) = P, + kX and SOFF(k+ 1) =P+
(k + 1)X. We need to consider the following two
cases.

(Case 1) min(M) > min(Ey): In this case, P is
equal to min(}) which is less than min(Ey,, N
M) = Pr.;. Thus (5) is proved.

(Case II) min(M) < min(E%): In this case, Py =
min(Fj). Therefore,

min(Egy1 N M) + X
min(Bgiq) + X

alk+1) — (k- 1)X

a(k) — (k — 1)X = min(Ey) = P,

Pepn+X

AV [AVAR |

Thus, (5) is verified. This concludes the proof for
the FIFOness. From the minimality of M, OFF
achieves the minimal jitter. 0O

4 The Lower Bound

In this section, the lower bound on the compet-
itiveness of on-line algorithms is derived as The-
orem 2. In the proof, an adversary constructs a
arrival time sequence ¢ which annoys on-line algo-
rithms, observing the action by the on-line algo-
rithms.

Theorem 2 For any on-line algorithm A, there
ezists a arriwval time sequence o for which
Jorr(o) = 0, while J4(0) becomes at least % -
2X — € when B > 2| £ | +1, where € is a constant
which can be arbitrarily close to 0.

The lower bound is proved for particular values of
B. However, since, in the next section, we present
an on~lme algorithm whose jitter is larger at most
by 5 than OFF without regard to the value of B,

thls theorem is sufficient to insist that our on-hne
algorithm is nearly optimal. As a matter of of fact,
the values of B are chosen so that the buffer never
becomes full when OFF and A process o.

Proof: The request sequence o is constructed
by an adversary in the next way. The adversary
passes the first packet p; at time 0 to R. Then it
passes the subsequent packets at the same interval
of X, until A releases p;. Let T be the time A
releases p;. From the release time condition (2),
T < L. The number of packets passed to R before
T is expressed as I_%J + 1 from the construction
of 0. The adversary alters how to construct the
rest of o according to whether T > % or not. In
aword, if T'> £ 7, the adversary constructs o such
that sopp(l) = 0 Otherwise it attempts to orga-
nize o such that sopp(l) = L.

(Case I) Suppose that T’ < %

The adversary passes the (L%J + 2)-th packet to
R at time L + ([—)T?J +1)X. Since the number of
packets composing o is | £ | +2, the buffer overflow

never takes place, because [%—J +2 < 2[-)—%_[-1-1 < B.
From the definition of jitter (1),

Ja(o) J+2)-

v

sa(l) = (L] + DX]

J+D)X

jsall

L+([—§,—

v

J+UX—T—Q§

L
-T>Z,
L Tv_2

Il

On the other hand, OFF gets 0-jitter by releas-
ing py at time L + (k — 1)X. Thus the theorem
holds.

(Case II) Suppose that 7' > L

The adversary puts in the next | % XJ packets at
time 7", where 7" is an arbitrary time in the in-
terval (T, (| %] + 1)X). In this case the number
of packets included in o is | %] + | £] + 1 which

is less than 2[| + 1. Thus, the buffer overflow
does not occur. OFF gets O-Jltter by releasing pg
at (k—1)X,for1 <k < [Xj-i-[] +1. On the
?ther hand, the jitter incurred by A4, J4(o) is at
east

sallg)+ L]+ 1) = 54D = (151 + 12 x]
T L

3! T LD

> (§—+3L(--2)X+T—T'—L

= T-2X+(T-T" >§—-2X+(T——T’)

A\

KT+ L) -T - (|

Since T — T" can be arbitrarily close to 0, the
theorem holds for (Case II) by replacing T — T"
with e. Thus, the entire proof completes. |

5 The Upper Bound

This section pursues on-line algorithms which have
an upper bound on the competitiveness. First we
present a technique which narrows the scope of
the candidate algorithms. After that, our on-line
algorithm named HALF is introduced among the
set of candidate algorithms. For any arrival time
sequence, H ALF gets a jitter greater than OF F
by at most £ 5

The next theorem claims that, in designing an
efficient on-line algorithm, we should concentrate
on when it releases p;. The strategy to choose the
release times for packets after p; can be decided in
a rather routine fashion.

Theorem 3 On condition that an on-line algo-
rithm A releases py at time s4(1), A gets the
best jitter by choosing the release times for pack-
ets after p1 in the following way. Let s*(k) =
sa()+ (k- 1)X,(1 <k <n).

(s*(k) (TYPE A)

if a(k) < s*(k) < min{a(k + B),a(k) + L}
) ax) (TYPEB)

salk) =9 i 5 (k) < a(k)
min{a(k + B),a(k) + L} (TYPE C)
if s*(k) > min{a(k + B),a(k) + L}

Proof: It is obvious that A behaves as an on-
line algorithm. Let o be an arrival time sequence.
From Lemma 1, J4(o) is equal to
- - (k-1)X
jmax {sa(k) = sa(1) =)X}
- -(1-k 6
+ o max {sa(l) sa(k)—(1-k)X} (6)

Note that both the first term and the second
term in the right side of (6) cannot be negative,
because they are 0 when substituting 1 for k.
When an index k satisfies s4(1) + (k — 1)X €
[a(k), min{a{k + B),a(k) + L)], both terms of
the right side of (6) equal 0 by setting s4(k) to
s4(1) + (k — 1)X, and, hence, this index %k does
not contribute to the increase of the jitter. This
case corresponds to (TYPE A) illustrated in The-
orem 3. Otherwise, when an index k satisfies
s4(1) + (k — 1)X < a(k), the second term is less
than 0 and unrelated to increasing the jitter. To
minimize the first term, s4(k) must be chosen as
small as possible. Therefore s4(k) must be a(k),
which corresponds to (TYPE B). Finally, when k
satisfies s 4(1)+(k—1)X > min{a(k+B),a(k)+L},
the first term is less than 0 and irrelevant to in-
creasing the jitter. To reduce the second term
s4(k) must be as large as possible and chosen to
min{a(k) + L,a(k + B)}. This case is associated
with (TYPE C). O

If the release time condition is replaced with (3)
for the case without considering delay, the similar
argument yields the next corollary immediately.
For this version of the jitter regulation problem, no
on-line algorithm which present the upper bound
on the competitiveness has been found so far un-
fortunately, when on-line algorithms have the same
amount of buffer as the off-line algorithm. How-
ever this corollary may shed light on this difficulty.

Corollary 1 On condition that an on-line algo-
rithm A which serves the case without consider-
ing delay releases packet at time s4(1), A gets the
best jitter by choosing the release times for pack-
ets after p1 in the following way. Let s*(k) =
sa(l)+(k-1X,(1<k<n).

s*(k), if a(k) < s*(k) <
sa(k) = { a(k), if s*(k) < a(k)
a(k + B), if s*(k) > a(k+ B)

a(k + B)

Among the algorithms fulfilling the behavior spec-
ification in Theorem 3, we present our on-line al-
gorithm named HALF wh1ch gets the jitter larger
than OF F by at most £

Algorithm HALF: Thls algorithm release p;
at time min{a(l + B),a(1) + £}. After that,

it constructs the release time sequence obeying
the rule mentioned in Theorem 3, where s*(k) =

min{a(1 + B),a(1) + %} +(k-1)X.

Theorem 4 For any arrivel time sequence o,

Jrarr(o) <= Jorr(o) + % (7)
Theorem 2 and Theorem 4 together claim the
competitiveness of on-line algorithms for JRDC is
dominated by the permitted delay time L and is
not affected by the buffer size B, despite we incor-
porate both B and L into the problem statement.
In other words, these theorems clarify the differ-
ence between JRDC and the case without consid-
ering delay [3] where its lower bound becomes BX
when both on-line algorithms and the optimal off-
line algorithm have the same buffer size B.

Proof: The proof proceeds as divided into two

cases depending on whether Jopp(o) = 0. Recall
the notation in the proof of Theorem 1. To save
the space, we only write H instead of the algorithm
name HALF, when it appears in mathematical
expressions.

(Case 1) Jopr(o) # 0: In this case the width of
the region M is not 0. Suppose ¢ is the value of the
index k which maximizes max{a(k)—(k—1)X} and
Jj is the one which minimizes min{a(k + B),a(k) +
L} —(k-1)X}. Since the width of M is not 0, we
have a(i) — (i — 1)X > min{a(j + B),a(j) +L} -
(7 — 1)X. Jorr(0o) is expressed as:

a(é) - a(j) +1} (8)

As for HALF, we classify the values of k into three
sets §4,58,S5¢c by the behavior of HALF.

(t— 7}X — min{a(j + B),

Sq4 = {k:sH() sp(l) +(k-1)X}
Sp = {k:su(k)>su(l)+(k-1)X}
So = {k:sn(k) < sp(1) + (k- 1)X)

From the description of HALF, S4, Sp and S¢
correspond to {TYPE A), (TYPE B) and (TYPE
C) respectively. As is stated in the proof of The-
orem 3, regarding to the right side of the formula
(6), we have

o The indices included in §4 make both of the
first and the second terms get the value 0.

e The first term is made positive only by the
indices in Sp.

e On the contrary, the second term is made pos-
itive only by the indices in S¢.

— B —

Therefore (6) may be transformed into the next
expression.

Jule) = max{0, max{sp(k) - su(1) - (k ~ 1) X}}
+ max{0, Eelgaé{s;g(l) —su(k) + (k- 1)X}},
where we define maxg{sy(k)—su(1)—(k-1)X} =

maxg{sy(1) - sg(k) + (k —)X} = —1. From
now on, we start to show Jy(o) < Jopr(o) + £ 5

There are three cases depending on the relation be-
tween min{a(1) + £, a(1 + B)} and the open space
(min{a(j +B),a(j)+ L}~ (j=1)X, a(t) — (i~ 1)X).

o If min{a(l + B),a(1) + %} € (min{a(j +
B),a(j) + L} = (j —1)X,a(i) — (i - 1)X), we
have i € Sp, and j € S¢. Thus neither Sg
nor S¢ is an empty set. In this case, Jy (o) is
computed as follows.

max{sg (k) —sp(l) - (k- 1)X}

kESy
+,§gg§{8f1(1) —su(k)+ (k~1)X}

(k—-1)X}
+11;ré%x{(k —1)X - min{e(k + B),
= a(t) = (i = /)X — min{a(j + B),a(j) + L}

= ,I:relg;g{a(k) -

This indicates Jopr(o) = Ju(o).

e If min{a(l+ B),a(1)+ £} > a(i) - (i - 1) X,
we have Sp = ¢ because for any k, a(k) —
(min{e(1+B),a(l)+ L}+(k 1)X) <a(i)—
(i-1X -~ mm{a(l) + £,a(1+ B)} < 0. We
can calculate Jy(o) in the next way. Note
a(i) = (i~-1)X >a(l)~(1-1)X = a(1).

max{sg(1) ~ su(k) + (k- 1)X}
= sp(1)+ (j =)X — min{a(j + B), a(y)
o(1) + g +(j - DX - min{a(j + B),

+L}
a(j) + L}

a(i) — (i —)X — min{a(j + B),a(j) + L} + —21:-'
L
2"

IA

IA

= Jorr(o)+

The proof for this case is completed.

e If min{a(l + B),a(1) + £} < min{a(j
B),a(j) + L} — (j — l)X we have S¢
¢ because for any k, min{a(l + B),a(l

+
1) +
LY+ k-1)x - m1n{a(k)+Lak+B)} <

a(k) + L}}

min{a(1+B),a(1)+%}+(i—1)X ~min{a(j) +
L,a(j + B)} < 0. In addition, we have
sp(l) = a(l) + !2: This is because, if we as-
sume a(1)+£ > a(1+B), the right edge of By
becomes a(1+ B) < min{a(j+B),a(j)+L} ~
(j —1)X, which contradicts with the premise
that M intersects with Ey. Thus Jy(o) =

max{a(k) ~ (k ~1)X - sy(1)}

< a) - (- 1X - 1) + D)

(i = 1)X — min{a(1 + B),

IA
Sl

a(i) —
a(i) -

a(l) + L) + 5

a(j)+L}+—§—

IA

(i - j)X — min{a(j + B),

L
= JOFF(U) + —2~

(Case II) Jopp(a) = (: Our purpose for this case
is to show Jy(o) = ~ . Since the width of M is 0, w
e have that a(k) — (k 1)X < min{a(1+B) a(l)
L} and that a(1) < min{a(k+ B),a(k)+L}

1)X for any k. First we show that either SB = ¢
or S¢ = ¢. Suppose that Sp # ¢ and S¢ # ¢.
Then there exists a pair of indices p, g such that:

1. a(p) > sp(1) + (p—1)X.
2. min{e(g+ B),a{q) + L} < sg(1) + (¢ - 1)X

Therefore min{a(g + B),a(g) + L} - (g— 1)X <
a(p) — (p—1)X. However this inequality indicates
the width of M is not 0, contradicting with the
fact Jorr(o) = 0. Hence at least one of Sz and
S¢ must be empty. There are two cases whether
Sp = ¢ or S¢ = ¢. We mention only for the case
Sc¢ = ¢ here due to space limitation. If S¢ = ¢,
Jy (o) is bounded from the above as follows.

Ju(o)

1l

,ggg);{m(k) —su(1) - (k-1)X}
min{a(1 + B),a(1) + L}
~ min{a(1 + B), a(1) + 92-} <

IA
i)

Since we have proved (7) regardless of the value of
Jorr (o), the whole proof finishes. |

Although we have evaluated HALF by the com-
petitiveness, these results are not necessary suf-
ficient for router designers, since the competi-
tive analysis does not produce actual quantitative
bounds. The actual router designer will have more
interests in how much jitter is removed by HALF
from arrival time sequences. We answer this ques-
tion by insisting that HALF decreases the jitter

-7 —

by L at its best from an arrival time sequence, in
case the size of the buffer is sufficient. Hereafter
we denote the release time sequence for the arrival
time sequence ¢ by HALF as oq.

Theorem 5 Pick up an arbitrary arrival time se-
quence o. If the buffer size is sufficiently large that
any buffer overflow does not occur, J°H -~ J7 =L
at the best of HALF. Especially, if J7 < %,
JOH = 0.
Proof: Since B is sufficiently large, we may re-
place min{a(k+ B),a(k)+L} simply with a(k)+L
in the description of HALF. For the same reason,
HALF release p; at time a(1) + —é‘— Forl1 <k <mn,
we define two sequences b(k) = a(k) — (k - 1)X
and c(k) = sg(k) — (k—1)X. Let i (and j) be the
index which minimizes (respectively, maximizes)
b(k). Then we have

J? = b(j) — b(z)- (9)
As for the release time sequence, first we show that
the index i minimizes c(k) also. Since a(i) — (i —
1NX <a(l) <sp(l),i€Sgori€ Sc. Ifie€ S,
we have a(k)+L—(k—1)X > a(d)+L—-(i-1)X >
sg(1) for any k. Hence S¢ = ¢ and i becomes the
index which minimizes ¢(k). If i € S¢, we have
a(i)+ L~ (i—1)X <a(k)+ L~ (k—1)X for any
k. Therefore i is the index minimizing ¢(k) among
the indices in S¢, which in turn implies ¢ minimizes
c(k) among all indices. In the same way, we can
prove easily that j is the index which maximizes
c(k) and that either j € §4 or j € Sp. Therefore
J7H is expressed as:

JOH = ¢(j) - c(3). (10)
Next we obtain the concrete value of c¢(i) and
c(j). About c(i), if i € Sa, c(i) = a(l) + £
b(1) + % Otherwise c(1) b(i) + L. Hence
e(i) = min{b(1) + £,b(i) + L}. About c(j), if
j € Sa, c(f) = a(l) + L = b(1) + £. Otherwise
e(j) = b(g). Hence, c(j) = max{b(5),b(1) + 5}.
By substituting these formulas for ¢(i) and ¢(j) in

(10), the amount of the jitter absorbed by HALF,
J? — J°H is calculated in the next way.

b(j) - (i)
~ (max{b(7),b(1) + 5} ~ min{o(5) + L, (1) + Ly

Il

min{Z, b(1) + g — (i)} + min{0, b(j) — b(1) - _’;i}

1l

min{g,b(l) - b(#)} + min{—é’-, b(3) — b(1)}.

We conclude that the jitter is decreased by up to

£ in both directions with b(1) being centered. So

the jitter is absorbed by L at its best. Especially
if b(j) — b(i) < £, we have b(1) — b(i) < % and
b(7) — b(1) < % Thus the amount of the jitter
absorbed by HALF is equal to b(j) — b(¢) and the
jitter is completely removed for this case. o.

27

6 Concluding Remarks

In this paper we examined the jitter regulation
problem on the realistic condition that a packet
must be released from the router within the per-
mitted delay time L in addition to the conventional
restriction on the buffer size, which is named the
JRDC problem. We presented a on-line algorithm
for JRDC whose jitter is larger than OFF by at
most % Furthermore we proved that the compet-
itiveness of on-line algorithms for JRDC depends
only on L and not on the buffer size by obtaining
the comparable lower bound. One natural open
problem is to make clear how much jitter HALF
can absorb while allowing buffer overflows to take
place from time to time. Another interesting open
problem is to control jitter for multiple streams
while handling the interrelation between them in
the scheduler.

References

[1] N.R. Figueira and J. Pasquale. Leave-in-time:
A new service discipline for real-time communi-
cations in a packet-switching network. In Pro-
ceedings of ACM SIGCOMM’95, pages 207-
218, 1995.

S. J. Golestani. A stop-and-go queueing frame-
work for congestion management. In Proceed-
ings of ACM SIGCOMM’90, pages 8-18, 1990.

Y. Mansour and B. Patt-Shamir. Jitter con-
trol in QoS networks. In Proceedings of 39th
Annual IEEE Symposium on Foundations of
Computer Science, pages 50~59, 1998.

R.E. Tarjan and D.D. Sleator. Amortized ef-
ficiency of list update and paging rules. Com-
munication of the ACM, 28:202-208, 1985.

H. Zhang and D. Ferrari. Rate-controlled
static-priority queuing. In Proceedings of IEEE
INFOCOM’93, pages 227-236, 1993.

(5]

— 8 —

